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Abstract: There are many studies about soil organic carbon (SOC) around the world but, in 

extensive territories, it is more difficult to obtain data due to the number of variables involved 

in the models and their high cost. In large regions with poor infrastructure, low-cost SOC 

models are needed. With this in mind, our objective was to estimate the SOC using a simple 

model based on soil textural data. The work was focused on savanna soil and validated the 

model in the Brazilian Savanna. Two models were constructed, one for topsoil (0–0.3 m) and 

other for subsoil (0.3–1.0 m). The SOC models can be carried out in a textural triangle 

together with SOC values. The results showed that subsoil models were more accurate than 

topsoil models, but both had good performance. The models give support to SOC-related 

preliminary research in gross and fast estimates, requiring only reduced financial contribution 

to calculate SOC in a large region of interest. 
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1. Introduction 

Many authors have been estimating the soil organic carbon (SOC) content for 

years because the data allow interpretation of soil conservation conditions in both 

natural [1] and anthropic areas [2]. One good advantage is that results help to 

understand the damage caused by human actions in nature [3]. 

SOC modelling often employs machine learning techniques [4] based on several 

soil parameters and properties (textural data, N, pH, Ca2+, Mg2+, Al, Fe), and their 

covariates related to climate, organisms, topography, parent material, time and site 

[5,6]. However, the availability of these extensive datasets can often be limited or 

lacking in certain study sites, particularly in regions with limited financial resources 

and skilled labor for database construction [7], as commonly observed in tropical 

savannas of countries like Brazil. As highlighted by Mutuku et al. [8], smallholder 

farmers usually cannot afford soil laboratory tests, and methods for visual soil 

evaluations need to be developed. 

Garsia et al. [9] evaluated the effectiveness of 221 soil organic carbon models 

and found that most of them are not validated (71%), only just four included Brazil 

as a study area. Despite being one of the world’s biodiversity hotspots [10], the 

Brazilian Savanna has experienced significant deforestation, losing over 50% of its 

native vegetation cover due to agricultural expansion [11]. It is expected that 

changes in land use-cover affect the SOC in the whole national territory, as we found 

in several other regions of the world [3,12–15]. However, as in other countries, it is 

difficult to study SOC in the whole Brazilian territory due to its large extension and 

the soil data are highly discontinuous in the territory [16]. 
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In this context, it is usual to find studies that rely on a limited number of 

samples, highlighting the challenge of scarce soil data and without methodological 

validation. Zinn et al. [17], for example, examined the relationship between soil 

texture and SOC in Brazilian Savanna soils, analyzing 17 soil samples across seven 

different depths. Ruggiero et al. [18] investigated the correlation between vegetation 

and soil properties in the Brazilian Savanna by randomly sampling 10 quadrants of 

10 × 10 m. They discovered that soil properties were more closely associated with 

variations in vegetation physiognomy in the superficial soil layers than at deeper 

depths. Neufeldt et al. [19] also studied Brazilian Savanna Oxisols, focusing on the 

effects of texture and land use on soil organic matter (SOM). Their study, based on 

five undisturbed topsoil samples, concluded that SOM content was correlated with 

the clay fraction. These studies, while informative, based on a small number of 

samples, are often related to low financial resources and skilled labor to construct 

strong systematic datasets [7,20]. 

We know that it is vital to understand SOC behavior as well as the 

consequences of agricultural activities. Thus, it is crucial to create ways to allow 

SOC estimates—with efficiency, effectiveness, and low cost—in large territories and 

from information easily obtained. Bearing this in mind, we aim to elaborate a model 

to obtain an exploratory estimate of the SOC based on soil textural data in Brazilian 

Savannas—the simpler parameter to be evaluated in the soil. This approach should 

prove valuable for areas where intensive soil surveys and analytical efforts are not 

feasible. 

2. Materials and methods 

We developed SOC models based on three steps: dataset organization; 

mathematical models’ construction; and validation under different land use-cover 

(Figure 1). 

 

Figure 1. Framework of procedure used. 
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Data source and analysis methods 

The study area was the Brazilian Savanna (Cerrado Biome), covered with 

natural vegetation or pasture and sugarcane, totaling more than 2 million km2, 

equivalent to 22% of the national territory [21]. Due to its large extension, three 

climate zones are found: (a) the largest one is tropical climate with 88% of the area, 

(b) 11% of the area is humid subtropical climate, and less than 1% is dry climate 

[22]. The average annual temperature varies from 20 ℃ to 26 ℃, and the average 

annual precipitation from 1000 to 1800 mm. Soil fertility is the key factor in 

determining the Savanna biome vegetation [23]. To represent this diversity, we 

collected data from the predominant soil type, Oxisols, occupying 41% of the biome 

[24] in the three climatic zones (Figure 2), with natural vegetation and farming 

production. The remnants of Savanna are established on ancient soils, which are 

acidic, depleted of nutrients, and rich in aluminum [25,26]. The vegetation upon 

these soils displays a mosaic of the structures from savanna-like formations to 

forests. 

 

Figure 2. Cerrado soil data distribution obtained from literature review on 

pedological profiles and ground surveys. 

The 10,796 data points were obtained from secondary sources of pedological 

profiles and ground surveys. They were stored in an information system operated as 

an Open Access library of the georeferenced data PANGAEA [27]. The dataset 

considered all pedological profiles to have at least four depths sampled up to a 

minimum of one meter and located in natural vegetation, pasture, or sugarcane 

according to Landsat satellite images from soil analysis dates. The available dataset 

is limited to the savanna center-south region. 

The textural data were submitted to a quadratic spline function of the same area 
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(λ = 0.1) [28,29] using a MATLAB routine [30] to obtain the average values of sand, 

clay, and silt for two depths, 0–0.3 m (topsoil layer) and 0.3–1.0 m (subsoil layer) as 

it was done for the SGDBE (Soil Geographical Database of Europe). We checked the 

dataset variability by mean, standard deviation, and coefficient of variation in 

Minitab program excluding the outliers. The Pearson correlation method was applied 

to identify the textural factors (predictable variable) that could be correlated with 

SOC (response variable), with 0.01 < p-value > 0.5. The correlated data in the two 

depths were included in the linear multiple regression and stepwise (forward and 

backward) to adjust the SOC estimation models in the statistical program Minitab 

[17,31,32]. 

The acceptability of the models was evaluated by mean absolute error (MAE), 

root mean square error (RMSE), concordance index (d) and linear coefficient (a), 

angular coefficient (b) and correlation coefficient (r) applying the bootstrap method 

[33] coded in MATLAB [34] for 10.000 iterations. The accepted models were 

validated by 350 soil points (139 points for 0–0.3 m and 211 points for 0.3–1.0 m) 

located in the Brazilian Savanna with different depths by MAE, RMSE and Adjusted 

R-squared (R2). 

To explore the potential of elaborating SOC maps from the models proposed in 

this work, we elaborated a SOC map for São Paulo State—Brazil. We obtained the 

soil textures from the Pedological Map of São Paulo State [35] and estimated the 

SOC values from a textural triangle. For this area we have 14 SOC values for topsoil 

and 40 for subsoil obtained in field points and with lab analysis. Then, we calculated 

the percentual concordance between these values and the estimated values by the 

triangle to the same points as a way of evaluating the effectiveness. 

3. Results 

3.1. Application of the mathematical models in study case 

The 10,796 Oxisols soil data points were submitted to a quadratic Spline 

function obtaining 164 pedological profiles for 0–0.3 m depth and 164 profiles for 

0.3–1.0 m, composed of 656 data points of sand, clay, silt, and SOC. These soils 

displayed textural data values with large-scale variability, from 92 to 515 g∙kg−1, and 

high standard deviations (Table 1). The dataset covers all the textural variation 

characteristics of Oxisols [4]. The layer 0–0.3 m had higher SOC values (1.2 g∙kg−1 

< SOC < 47.1 g∙kg−1) than the layer 0.3–1.0 m (1.0 g∙kg−1 < SOC < 14.7 g∙kg−1). The 

SOC data present normality for both layers by the Anderson-Darling Test (Appendix 

Figure A1). 

Table 1. Statistical variation for four soil attributes in two depths. 

Depth (m)  Sand (g∙kg−1) Silt (g∙kg−1) Clay (g∙kg−1) SOC (g∙kg−1) 

0–0.3  
(a) 514.3 ± 268.2 101.7 ± 70.0 383.9 ± 223.3 13.3 ± 7.8 

(b) 52.2 68.8 58.2 58.6 

0.3–1.0 
(a) 473.2±265.2 92.2 ± 64.2 434.8 ± 230.4 6.7 ± 3.0 

(b) 56.1 69.6 53.0 45.5 

(a) Mean standard deviation; (b) coefficient of variation (%). 
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The clay and sand data were correlated with SOC by Pearson correlation (Table 

2), presenting a direct positive correlation between clay and carbon, and an inversed 

negative correlation with sand. 

Table 2. Pearson correlation for SOC response variable. 

Depth (m) Response variable Sand Silt Clay + Silt Clay 

0–0.3 
SOC 

−0.63 0.38 0.63 0.64 

0.3–1.0 −0.72 0.35 0.72 0.74 

The best models obtained by multiple linear regression were two for each depth 

(Table 3). 

Table 3. Predictive models of SOC (g∙kg−1) occurring at two depths in soils. 

Depth (m) Models R2 

0–0.3 SOC = 580 − 0.575 × Sand − 0.557 × (Clay + Silt) 0.44 

0–0.3 SOC = 4.771 + 0.02235 × Clay 0.41 

0.3–1.0 SOC = 2.452 + 0.009743 × Clay 0.54 

0.3–1.0 SOC = 3 − 0.00057 × Sand + 0.0091 × Clay 0.54 

3.2. Evaluation of the models sensitive 

All the models presented a significant regression ((b) ≠ 0) and were more 

adjusted in the subsoil layer ((a) closer to zero). The statistical parameters ((MAE); 

(RMSE)) of this study also indicated the topsoil layer with low performance, which 

the SOC was overestimated in 5 g∙kg−1. The concordance index (d) agreed with the 

MAE/RMSE, ranging from 0.33 to 0.45 (Figure 3; Appendix Figure A2). For the 

subsoil layer (0.3–1.0 m) the SOC was overestimated in approximately 1.8 g∙kg−1 

and (d) was near to 0.52. The correlation coefficient (r) indicated the subsoil layer 

(0.3–1.0 m) as a better combination between the real SOC and the estimated SOC 

than the topsoil layer models. 

  

Figure 3. The values estimated by the bootstrap for the best models in the two depths were representing by the 

histograms above, where (a) linear coefficient, (b) angular coefficient, (r) correlation coefficient, (MAE), (RMSE) and 

(d) statistical parameters. 

These equations resulting from the SOC models provided the basis to estimate 

SOC based on a textural triangle [36] and making it possible to create a new triangle 
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by placing the estimated values of organic carbon on the points of junction of 

textural values. The best equations are represented in the Figure 4 and the others can 

be seen in the Appendix Figure A3. 

 

Figure 4. Estimated SOC (g∙kg−1) in Savanna Oxisols based in the textural triangle. 

3.3. Models validation 

The clay values of 139 data points were inserted in the textural triangle which 

represents the topsoil (Figure 4) to estimate the SOC. Then, these values were 

compared with the measured SOC presented in their respective studies (Figure 5). 

The same approach was utilized for the subsoil (0.3–1.0 m) but with clay and sand 

data from 211 data points. 

 

Figure 5. Field measuring versus simulated value of the soil SOC by the textural 

triangle. 

The statistical parameters ((MAE); (RMSE); (R2)) of the study case indicated 

the topsoil layer with lower performance than the subsoil (Table 4). 

 

 

https://www.linguee.pt/ingles-portugues/traducao/approach.html
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Table 4. Statistical tests applied to check the agreement between simulated and observed values, where n is the 

number of data used in each depth. 

Statistical 

parameters 

Depth (m) 

0 < x ≤ 0.05 0.05 < x ≤ 0.1 0.1 < x ≤ 0.15 0.15 < x ≤ 0.2 0.2 < x ≤ 0.25 0.25 < x ≤ 0.3 0.3 < x ≤ 0.35 

RMSE 10.6 9.7 3.9 4.7 3.7 5.4 6.5 

MAE 8 7.8 3.1 3.5 2.6 4 5.6 

R2 - 0.2 0.5 0.3 0.5 0.5 0.1 

n 2 16 18 57 18 17 11 

 0.35 < x ≤ 0.45 0.45 < x ≤ 0.55 0.55 < x ≤ 0.65 0.65 < x ≤ 0.75 0.75 < x ≤ 0.85 0.85 < x ≤ 0.95 0.95 < x ≤ 1.05 

RMSE 3 2 2.7 1.9 1.9 2 2.1 

MAE 2 1.6 2.1 1.5 1.5 1.7 1.6 

R2 0.4 0.8 0.5 0.6 0.6 0.7 0.3 

n 7 24 56 28 23 33 40 

We also applied the estimated SOC values in Pedological Map of São Paulo 

State [35], with the aim to assert the effectiveness of the models. We investigated 

part of the Brazilian Savanna (Sao Paulo State Savanna), which in turn had less 

environmental variability in terms of climate, relief, and land use-cover, then with 

expectations of good results for topsoil [13]. The soil organic carbon mapping 

represented in Figure 6 is an expression of the indirect measure obtained by the 

textural triangle. Our results presented an accuracy of 86% for topsoil and 70% for 

subsoil. However, if the analyzes were made between 0.6 m and 1 m, the accuracy 

goes up to 80%. 

 

Figure 6. Soil organic carbon distribution in topsoil and subsoil according to the 

texture. 

All results presented so far were restricted to Oxisol order. However, it is an 

important issue that these models have applicability to other soil orders. Thus, we 

evaluated eleven different soil orders that occur in São Paulo state, using the same 
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procedure adopted for the Oxisol (Appendix Figure A4). The soils of the orders 

Mollisol and Psamment had an accuracy above 75% for the subsoil and Ultisol an 

accuracy of 67%. In the case of topsoil, the highest accuracy was 67% for 

Psamment. These results are only indicative that our models can assist in other soil 

SOC estimations However, we cannot confirm the SOC models effectiveness for 

other soils since there is no statistically significant and comparable sampling of soil 

profiles between soil orders. 

4. Discussion 

The models were sufficiently validated to prove their merit as a general 

estimation method or, at least, as a prior trial to the research. We have provided 

evidence that the models compute the soil organic carbon values close to the real 

values. This is important mainly to the agricultural regions that do not own a robust 

soil database or financial resources for large surveys, but they need general mapped 

data regarding soil quality [37]. The facility to get a notion of the soil carbon in an 

area where the present status is completely unknown is the greatest strength of these 

models. Enabling a rough estimation of SOC with only soil texture knowledge 

means it is possible to work with very low cost in huge areas. According to Vos et al. 

[38], the soil texture can easily be estimated in the field survey with a relatively high 

precision using the “finger texturing”. However, the models’ performance depends 

on how the variables related to the input data could intervene into the triangle results. 

We recognize that there are more robust methods [4,39,40], involving other variables 

that exert influence on SOC and, therefore, resulting in a higher accuracy. 

Nevertheless, we believe that approach proposed in this work proved to be more than 

enough for areas where intensive soil survey and analytical effort are not capable of 

being accomplished. 

The precision limits of the models are initially linked to the possible variation 

of SOC values in short territorial spaces. We found in the analyses a huge textural 

variation in Oxisols but we expected this result because many other researchers had 

already reported this fact [4]. However, this variation did not prevent the SOC from 

being modeled. This outcome is probably due to the strong-positive association 

between the SOC and clay content [41] and negative association with sand [42] in 

both studied layers of soil profile [32]. 

Our data showed more SOC in the topsoil layer than in the subsoil layer, 

overestimated up to 5 g∙kg−1, which could be attributed both to the vertical 

distribution of roots [43–45] and for litter—responsible for up 50% of SOC 

variations in the levels on the soil surface. Around 62%–79% of the roots in the 

topsoil layer are concentrated in the first 0.2 m of soil [46], showing an exponential 

decline of the root biomass and its size according to the dept [47]. Besides the root 

concentration, the higher SOC values in the topsoil layer also reflect the land use 

[48] and its management, such as crop residues accumulation left on the top of the 

land for protection [49]. In addition, it must be considered that SOC amount on the 

soil surface is related to soil compaction, which would be measured by bulk density 

[50]. However, the higher carbon concentration in topsoil is not a standard, since 

other authors reported that the subsoil layer contains as much SOC as the topsoil 
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layer [42,51]. On the other hand, the carbon soil variability in the topsoil of the 

Oxisols that we have studied is less compared to other researchers [18,52]. Ruggiero 

et al. [18], for example, reported SOC values from 11.7 up to 26.6 g∙kg−1 in the 

topsoil and from 6.0 up to 13.7 g∙kg−1 in the subsoil in Savanna region with both 

Oxisols and Entisols soils. Carvalho et al. [53] also worked with Oxisol in Savanna, 

describing SOC values from 19.5 to 24.7 g∙kg−1 to topsoil (0.3 m). Then, the models’ 

application must be attentive to the possible margin of error due to these ranges. 

When we look at the topsoil and subsoil in greater fractionation of the soil 

column (Figure 5 and Table 4), we can see the part of the soil that has better 

performance, which is the middle fraction of both topsoil and subsoil. These results 

can be influenced by land use-cover which provides different carbon inputs to the 

soil column. In Brazilian Savanna Oxisols 51% of the area is covered by native 

vegetation [21]. The vegetation upon these soils displays a mosaic of the structures 

from savanna-like formations to forest, contributing with different soil carbon input. 

The planted pasture (27%) was the second land use most presented in Brazilian 

Savanna Oxisols followed by annual agriculture (15%) and perennial agriculture 

with sugar cane (5%). The other land use-cover totalizing 2% [21]. Zhang et al. [13], 

for example, studied SOC profile distribution in 120 samples in native vegetation 

and agriculture areas, finding a small ranging in native vegetation (5.2 g∙kg−1—

topsoil; 3.5 g∙kg−1—subsoil) and a bigger difference in agriculture area (12.0 

g∙kg−1—topsoil; 4.9 g∙kg−1—subsoil). However, when we investigated a land portion 

of Brazilian Savanna Oxisols (Sao Paulo State), the models had better performance 

in topsoil, probably because the area was smaller which guarantees less 

environmental variability in terms of climate, relief, and native vegetation cover. 

According to TerraClass Cerrado [21], in 2013 this region had 46% of its area 

covered by perennial agriculture with sugar cane, 17% native vegetation cover, and 

6% silviculture, with wide homogeneity in its distribution. 

In short, the models’ users must be aware of how the variables related to the 

input data could intervene in the punctual SOC or in SOC final map. However, the 

validation tests concerning the textural triangle both for individual data and SOC 

map, point to worthwhile practical applicability to be employed. 

5. Conclusion 

Our results highlight models grounded on soil textural classes that permit to 

estimate the value of Soil Organic Carbon in Savanna Oxisols. The data can be 

obtained from two textural triangles, one for topsoil and other for subsoil, based on 

the equilateral textural triangle. We warn that the models provide better support to 

SOC-related preliminary research in gross and fast estimates, giving a general notion 

of potential Soil Organic Carbon and facilitating the empirical study. 
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Appendix 

 

Figure A1. Descriptive analysis of SOC values in the two depth. 

 

Figure A2. The values estimated by the bootstrap for the best models in the two depths were represented by the 

histograms above, where (a) linear coefficient, (b) angular coefficient, (r) correlation coefficient, (MAE), (RMSE) and 

(d) statistical parameters. 
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Figure A3. Estimated SOC (g∙kg−1) in Savanna Oxisols based on the textural triangle. 

 

Figure A4. 287 pedological profile obtained from secondary sources of pedological profiles and ground surveys, 

between the years 1960 and 2015.  

All of them were in São Paulo State. We calculated the percentual concordance between the values presented in pedological profiles and the 
estimated values by the triangle to the same points as a way of evaluating the models’ effectiveness. 

Alfisol 	Aqualf Histosol Inceptisol Mollisol Nitisol Oxisol Psamment Spodosol Udalf  	Ultisol

N 16 5 3 3 5 30 14 3 2 3 31

Acurracy 56% 20% 0% 33% 40% 37% 86% 67% 0% 33% 58%

N 20 5 8 2 5 30 40 4 2 5 51

Acurracy 50% 0% 0% 0% 80% 37% 70% 75% 0% 0% 67%

0-0.3 

(m)

0.3 -1.0 

(m)

Soil order


