Biodiversity and conservation of conservation priority fish species in the Nicaraguan volcanic crater lakes
Vol 7, Issue 2, 2024
(Abstract)
Abstract
The theory of island biogeography was tested in Nicaraguan volcanic crater lakes, colonized by fish from the older and larger source Nicaraguan Great Lakes. Spearman correlations of ranked molecular phylogenetic diversity in the Midas cichlid species complex (Amphilophus cf. citrinellus) were significant (p ≤ 0.05) or marginally significant (0.05 < p ≤ 0.10) with diversity with crater lake age in three of four data sets tested. Correlations were noted with deepwater area, the product of littoral area and age, and with the product of horizontal and vertical barriers between the crater lakes and the nearest source lakes divided by the product of littoral area and age. By treating the Midas cichlid species complex as a single taxon, ranked fish taxon richness in each lake correlated significantly with lake age, littoral area, and with the product of age and littoral area. These results support the concept that littoral area and lake age may be factors in the colonization of volcanic crater lakes from the source lakes, and the amount of deep water in a lake as well as lake age may be important factors in speciation in the Midas cichlid species complex. Seven species from the crater lakes have been classified as Critically Endangered by the IUCN.
Keywords
Full Text:
PDFReferences
1. Laurance WF. (2010). Habitat destruction: death by a thousand cuts. In: Sodhi NS, Ehrlich PR. (editors). Conservation Biology for All. Oxford University Press, New York. pp. 73–88. doi: 10.1093/acprof:oso/9780199554232.001.0001
2. DeClerck FAJ, Chazdon R, Holl KD, et al. Biodiversity conservation in human-modified landscapes of Mesoamerica: Past, present and future. Biological Conservation. 2010; 143(10): 2301–2313. doi: 10.1016/j.biocon.2010.03.026
3. Espinoza-Delgado J, Klasen S. Gender and multidimensional poverty in Nicaragua: An individual based approach. World Development. 2018; 110: 466–491. doi: 10.1016/j.worlddev.2018.06.016
4. Stevens K, Campbell L, Urquhart G, et al. Examining complexities of forest cover change during armed conflict on Nicaragua’s Atlantic coast. Biodiversity and Conservation. 2011; 20(12): 2597–2613. doi: 10.1007/s10531-011-0093-1
5. MacArthur RH, Wilson EO. The Theory of Island Biogeography. Princeton University Press; 2001. doi: 10.1515/9781400881376
6. Whittaker RJ, Fernández-Palacios JM, Matthews TJ, et al. Island biogeography: Taking the long view of nature’s laboratories. Science. 2017; 357(6354). doi: 10.1126/science.aam8326
7. Abzhanov A. Darwin’s Galapagos finches in modern biology. Philosophical Transactions of the Royal Society B. Biological Sciences. 2010; 365(1543): 1001–1007. doi: 10.1098/rstb.2009.0321
8. Gavrilets S, Losos JB. Adaptive radiation: Contrasting theory with data. Science. 2009; 323(5915): 732–737. doi: 10.1126/science.115796
9. Russell JC, Kueffer C. Island biodiversity in the Anthropocene. Annual Review of Environment and Resources. 2019; 44(1): 31–60. doi: 10.1146/annurev-environ-101718-033245
10. Fernández-Palacios JM, Kreft H, Irl SDH, et al. Scientists’ warning—The outstanding biodiversity of islands is in peril. Global Ecology and Conservation. 2021; 31: e01847. doi: 10.1016/j.gecco.2021.e01847
11. Matthews TJ. On the biogeography of habitat islands: The importance of matrix effects, noncore species, and source-sink dynamics. The Quarterly Review of Biology. 2021; 96(2): 73–104. doi: 10.1086/714482
12. Browne RA. Lakes as islands: Biogeographic distribution, turnover rates, and species composition in the lakes of central New York. Journal of Biogeography. 1981; 8(1): 75. doi: 10.2307/2844594
13. Harris AT, Woolnough DA, Zanatta DT. Insular lake island biogeography: Using lake metrics to predict diversity in littoral zone mollusk communities. Journal of the North American Benthological Society. 2011; 30(4): 997–1008. doi: 10.1899/11-020.1
14. Waid RM, Raesly RL, McKaye KR, et al. Fish zoogeography of Nicaraguan crater lakes (Spanish). Encuentro. 1999; 51: 65–80. doi: 10.5377/encuentro.v0i51.3832
15. Villa J. Nicaraguan Freshwater Fishes (Spanish). Fondo de Promoción Cultural del Banco de América, Managua. Nicaragua. 1982; 253.
16. Kautt AF, Machado-Schiaffino G, Meyer A. Lessons from a natural experiment: Allopatric morphological divergence and sympatric diversification in the Midas cichlid species complex are largely influenced by ecology in a deterministic way. Evolution Letters. 2018; 2(4): 323–340. doi: 10.1002/evl3.64
17. McCrary JK, Jiménez-García MI. First records of a dorosomatid fish and a metazoan fish parasite in Lake Masaya, Nicaragua (Spanish). Revista Científica Estelí. 2024; 49: 161–175. doi: 10.5377/esteli.v13i49.17891
18. Torres-Dowdall J, Meyer A. Sympatric and allopatric diversification in the adaptive radiations of Midas cichlids in Nicaraguan Lakes. In: Abate ME, Noakes DLG. (editors). The Behavior, Ecology and Evolution of Cichlid Fishes. Springer, Netherlands; 2021. pp. 175–216. doi: 10.1007/978-94-024-2080-7
19. Kutterolf S, Freundt A, Pérez W, et al. Late Pleistocene to Holocene temporal succession and magnitudes of highly-explosive volcanic eruptions in west-central Nicaragua. Journal of Volcanology and Geothermal Research. 2007; 163(1–4): 55–82. doi: 10.1016/j.jvolgeores.2007.02.006
20. Geiger MF, McCrary JK, Schliewen UK. Not a simple case—A first comprehensive phylogenetic hypothesis for the Midas cichlid complex in Nicaragua (Teleostei: Cichlidae: Amphilophus). Molecular Phylogenetics and Evolution. 2010; 56(3): 1011–1024. doi: 10.1016/j.ympev.2010.05.015
21. Barluenga M, Meyer A. Phylogeography, colonization and population history of the Midas cichlid species complex (Amphilophus spp.) in the Nicaraguan crater lakes. BMC Evolutionary Biology. 2010; 10(1): 326. doi: 10.1186/1471-2148-10-326
22. Zar JH. Spearman Rank Correlation. Encyclopedia of Biostatistics. John Wiley & Sons. 2005. doi: 10.1002/0470011815.b2a15150
23. MARENA (Ministerio del Ambiente y Recursos Naturales). Ministerial Resolution 010-2024, Update of bans and seasons for the year 2024 (Spanish). Available online: http://legislacion.asamblea.gob.ni/gacetas/2024/2/g34.pdf (accessed on 6 June 2024).
24. IUCN Red List. International Union for the Conservation of Nature. Available online: https://www.iucnredlist.org (accessed on 6 June 2024).
25. National Commission for Technical Standardization and Quality. NTON 05-002 08, Technical rules for the protection and conservation of the crater lakes (Spanish). Available online: https://legislacion.asamblea.gob.ni/gacetas/2010/7/g131.pdf (accessed on 6 June 2024).
26. Barrios de Chamorro V. Decree 9–96, Regulations for the General Law for the Environment and Natural Resources Law (Spanish). Available online: https://legislacion.asamblea.gob.ni/gacetas/1996/8/g163.pdf (accessed on 6 June 2024).
27. Asamblea Nacional. Law 217, General Law for the Environment and Natural Resources, with its reforms included (Spanish). Available online: https://legislacion.asamblea.gob.ni/SILEG/Gacetas.nsf/15a7e7ceb5efa9c6062576eb0060b321/fc2f67348416ae2306257c74005c504e/$FILE/2014-01-17-%20Texto%20de%20Ley%20No%20217,%20Ley%20general%20del%20medio%20ambiente%20con%20reformas%20incorporadas.pdf (accessed on 6 June 2024).
28. Ortega SD. Decreto 01-2007, Regulations for Nicaraguan Protected Areas (Spanish). Available online: http://legislacion.asamblea.gob.ni/gacetas/2007/1/g8.pdf (accessed on 6 June 2024).
29. Geiger MF, McCrary JK, Schliewen UK. Crater lake Apoyo revisited-Population genetics of an emerging species flock. PLoS ONE. 2013; 8(9): e74901. doi: 10.1371/journal.pone.0074901
30. Barlow GW, Munsey JW. The red devil-Midas-arrow cichlid species complex in Nicaragua. In Thorson TB (editor). Investigations of the Ichthyofauna of Nicaraguan Lakes. University of Nebraska-Lincoln, Nebraska. 1976. pp. 359-369. Available online: https://digitalcommons.unl.edu/ichthynicar/24/ (accessed on 6 June 2024).
31. McCrary JK, López LJ. Midas cichlid (Amphilophus spp.) monitoring with contributions to their ecology and conservation status in Lake Apoyo (Spanish). Revista Nicaragüense de Biodiversidad. 2008; 1: 43–48.
32. McCrary JK, Murphy BR, Stauffer JR, et al. Tilapia (Teleostei: Cichlidae) status in Nicaraguan natural waters. Environmental Biology of Fishes. 2006; 78(2): 107–114. doi: 10.1007/s10641-006-9080-x
33. Alda F, Reina RG, Doadrio I, et al. Phylogeny and biogeography of the Poecilia sphenops species complex (Actinopterygii, Poeciliidae) in Central America. Molecular Phylogenetics and Evolution. 2013; 66(3): 1011–1026. doi: 10.1016/j.ympev.2012.12.012
34. Davies WD, Pierce PC. Lake Nicaragua Fisheries Survey. International Center for Aquaculture. Auburn, Alabama. Available online: https://books.google.com/books/about/Lake_Nicaragua_Fisheries_Survey.html?id=M-ljAAAAMAAJ (accessed on 6 June 2024).
35. Buitrago Vannini F, Incer BJ, Cedeño J, et al. Protected Areas of Nicaragua. First Volume: Pacific Region (Spanish). Cooperación Alemana/FUNDENIC SOS, Managua, Nicaragua. Available online: https://fundenic.org/uploads/3/6/4/8/36486485/areas_protegidas_pacifico_nicaragua_2013_web_.pdf (accessed on 6 June 2024).
36. Vammen K, Montenegro Guillén S, Martínez Herrera V, et al. Limnology, water quality, hydrogeology, and hydrogeochemistry of Lake Apoyo (Spanish). Revista Estudios Ambientales. 2014; 1: 4–72.
37. Bethune DN, Farvolden RN, Ryan MC, et al. Industrial Contamination of a Municipal Water‐Supply Lake by Induced Reversal of Ground‐Water Flow, Managua, Nicaragua. Groundwater. 1996; 34(4): 699–708. doi: 10.1111/j.1745-6584.1996.tb02058.x
38. Barberena-Moncada J, Hurtado-García I, Sirias-Silva M. Application of stable isotopes and hydrochemistry for the understanding of the hydrological system in Laguna de Tiscapa (Spanish). Revista Científica Estelí. 2021; (37): 35–53. doi: 10.5377/farem.v0i37.11211
39. Bedarf AT, McKaye KR, Van Den Berghe EP, et al. Initial six-year expansion of an introduced piscivorous fish in a tropical Central American lake. Biological Invasions. 2001; 3: 391–404. doi: 10.1023/A:1015806700705
40. Barlow GW. The Midas cichlid in Nicaragua. In: Thorson TB. (editor). Investigations of the Ichthyofauna of Nicaraguan Lakes. University of Nebraska-Lincoln, Lincoln Nebraska; 1976. pp. 333–358.
41. Vela L. Natural diet of fish from Lake Xolotlán (Managua). Hydrobiological Bulletin. 1991; 25(2): 169–172. doi: 10.1007/bf02291250
42. Ahlgren G, Ahlgren I, Hernández S, et al. Fatty acid quality of seston and its effects on small fish in the Lakes Xolotlán and Cocibolca, Nicaragua. In: Proceedings of the International Society of Limnology: Verhandlungen. 2002; 28(2): 786–791. doi: 10.1080/03680770.2001.11901821
43. McKaye KR, Hale J, van den Berghe EP. The reproductive biology of a Central American cichlid Neetroplus nematopus in Lake Xiloá, Nicaragua. Current Zoology. 2010; 56(1): 43–51. doi: 10.1093/czoolo/56.1.43
DOI: https://doi.org/10.24294/nrcr.v7i2.5582
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Jeffrey K. McCrary
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.