The potential of the entomopathogenic fungus Beauveria bassiana to manage insect pests and diseases

Amar Bahadur

Article ID: 2543
Vol 6, Issue 2, 2023

VIEWS - 803 (Abstract)

Abstract


The saprophytic white muscardine fungus Beauveria bassiana (Balsamo) Vuillemin is a potential biocontrol agent against varied insect pests, is a commercially available mycopesticide in many countries, and is extensively used for insect pest management. It produces several metabolites, such as antibacterial, antifungal, cytotoxic, and insecticidal compounds that protect against insect pests and plant pathogens, with dual-purpose crop protection, a new concept in plant disease management. This insect pathogen is also beneficial to plant endophytes that are antagonistic to plant diseases and promote rhizosphere colonizers and plant growth, inducing systemic resistance. The induced systemic responses of fungal endophytes enhance genes that are expressed in pathogenesis and increase the production of pathogenesis-related proteins and defense enzymes. The fungus infects the insects by degrading mechanically and chemically their cuticles. It promotes plant growth, provides systemic protection against pests and pathogens in sustainable agricultural crop production, and reduces the usage of chemical pesticides.


Keywords


entomopathogen; mycopesticides; endophytes; growth promotion; induce resistance; pests management

Full Text:

PDF


References


1. Lord JC. From Metchnikoff to Monsanto and beyond: The path of microbial control. Journal of Invertebrate Pathology 2005; 89(1): 19–29. doi: 10.1016/j.jip.2005.04.006

2. Steinhaus EA. Insect pathology, introduction. In: Steinhaus EA (editor). Insect Pathology, An Advanced Treatise. Academic Press; 1963.

3. Götz P. Invertebrate immune response to fungal cell wall components. In: Latgé JP, Boucias D (editors). Fungal Cell Wall and Immune Response. Springer Berlin Heidelberg; 1991. pp. 317–329. doi: 10.1007/978-3-642-76074-7_24

4. Tanada Y, Kaya HK. Insect Pathology. Academic Press; 1993. pp. 319–385.

5. Keller S. Use of Beauveria brongniartii in Switzerland and its acceptance by farmers. In: Proceedings of Integrated Control of Soil Pest Subgroup “Melolontha”; 19–21 October 1998; Sion, Switzerland.

6. Goettel MS, Hajek AE. Evaluation of non-target effects of pathogens used for management of arthropods. In: Wajnberg E, Scott JK, Quimby PC (editors). Evaluating Indirect Ecological Effects of Biological Control. Key Papers from the Symposium ‘Indirect Ecological Effects in Biological Control’, Montpellier, France, 17–20 October 1999. CABI Publishing; 2001. pp. 81–97. doi: 10.1079/9780851994536.0081

7. Meyling NV, Eilenberg J. Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: Potential for conservation biological control. Biological Control 2007; 43(2): 145–155. doi: 10.1016/j.biocontrol.2007.07.007

8. de Faria MR, Wraight SP. Mycoinsecticides and mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biological Control 2007; 43(3): 237–256. doi: 10.1016/j.biocontrol.2007.08.001

9. Klingen I, Eilenberg J, Meadow R. Effects of farming system, field margins and bait insect on the occurrence of insect pathogenic fungi in soils. Agriculture, Ecosystems & Environment 2002; 91(1–3): 191–198. doi: 10.1016/S0167-8809(01)00227-4

10. Jaber LR, Ownley BH. Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biological Control 2018; 116: 36–45. doi: 10.1016/j.biocontrol.2017.01.018

11. Ownley BH, Griffin MR, Klingeman WE, et al. Beauveria bassiana: Endophytic colonization and plant disease control. Journal of Invertebrate Pathology 2008; 98(3): 267–270. doi: 10.1016/j.jip.2008.01.010

12. Jaber LR. Grapevine leaf tissue colonization by the fungal entomopathogen Beauveria bassiana s.l. and its effect against downy mildew. BioControl 2015; 60: 103–112. doi: 10.1007/s10526-014-9618-3

13. Azadi N, Shirzad A, Mohammadi H. A study of some biocontrol mechanisms of Beauveria bassiana against Rhizoctonia disease on tomato. Acta Biologica Szegediensis 2016; 60(2): 119–127.

14. Lozano TMD, Garrido JI, Quesada ME. M. brunneum and B. bassiana release secondary metabolites with antagonistic activity against V. dahlia and P. megasperma olive pathogens. Crop Protect 2017; 100: 186–195.

15. Sinno M, Ranesi M, Di Lelio I, et al. Selection of endophytic Beauveria bassiana as a dual biocontrol agent of tomato pathogens and pests. Pathogens 2021; 10(10): 1242. doi: 10.3390/pathogens10101242

16. Gupta R, Keppanan R, Leibman-Markus M, et al. The entomopathogenic fungi Metarhizium brunneum and Beauveria bassiana promote systemic immunity and confer resistance to a broad range of pests and pathogens in tomato. Phytopathology 2022; 112(4): 784–793. doi: 10.1094/PHYTO-08-21-0343-R

17. Ownley BH, Gwinn KD, Vega FE. Endophytic fungal entomopathogens with activity against plant pathogens: Ecology and evolution. BioControl 2010; 55: 113–128. doi: 10.1007/s10526-009-9241-x

18. Jaber LR, Salem NM. Endophytic colonisation of squash by the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) for managing Zucchini yellow mosaic virus in cucurbits. Biocontrol Science and Technology 2014; 24(10): 1096–1109. doi: 10.1080/09583157.2014.923379

19. Lopez DC, Sword GA. The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea). Biological Control 2015; 89: 53–60. doi: 10.1016/j.biocontrol.2015.03.010

20. Bruck DJ. Fungal entomopathogens in the rhizosphere. In: Roy HE, Vega FE, Chandler D, et al. (editors). The Ecology of Fungal Entomopathogens. Springer; 2010. pp. 103–112. doi: 10.1007/978-90-481-3966-8_8

21. Mantzoukas S, Eliopoulos PA. Endophytic entomopathogenic fungi: A valuable biological control tool against plant pests. Applied Sciences 2020; 10(1): 360. doi: 10.3390/app10010360

22. Bamisile BS, Dash CK, Akutse KS, et al. Fungal endophytes: Beyond herbivore management. Frontiers in Microbiology 2018; 9: 544. doi: 10.3389/fmicb.2018.00544

23. Quesada Moraga E. Entomopathogenic fungi as endophytes: Their broader contribution to IPM and crop production. Biocontrol Science and Technology 2020; 30(9): 864–877. doi: 10.1080/09583157.2020.1771279

24. Posada F, Vega FE. Inoculation and colonization of coffee seedlings (Coffea arabica L.) with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycoscience 2006; 47: 284–289. doi: 10.1007/s10267-006-0308-6

25. Prabhukarthikeyan R, Saravanakumar D, Raguchander T. Combination of endophytic Bacillus and Beauveria for the management of Fusarium wilt and fruit borer in tomato. Pest Management Science 2014; 70(11): 1742–1750. doi: 10.1002/ps.3719

26. Jaber LR, Enkerli J. Effect of seed treatment duration on growth and colonization of Vicia faba by endophytic Beauveria bassiana and Metarhizium brunneum. Biological Control 2016; 103: 187–195. doi: 10.1016/j.biocontrol.2016.09.008

27. Russo ML, Pelizza SA, Vianna MF, et al. Effect of endophytic entomopathogenic fungi on soybean Glycine max (L.) Merr. growth and yield. Journal of King Saud University-Science 2019; 31(4): 728–736. doi: 10.1016/j.jksus.2018.04.008

28. Russo ML, Scorsetti AC, Vianna MF, et al. Endophytic effects of Beauveria bassiana on corn (Zea mays) and its herbivore, Rachiplusia nu (Lepidoptera: Noctuidae). Insects 2019; 10(4): 110. doi: 10.3390/insects10040110

29. Veloz-Badillo GM, Riveros-Ramírez J, Angel-Cuapio A, et al. The endophytic capacity of the entomopathogenic fungus Beauveria bassiana caused inherent physiological response in two barley (Hordeum vulgare) varieties. 3 Biotech 2019; 9: 12. doi: 10.1007/s13205-018-1548-9

30. Mantzoukas S, Lagogiannis I, Mpousia D, et al. Beauveria bassiana endophytic strain as plant growth promoter: The case of the grape vine Vitis vinifera. Journal of Fungi 2021; 7(2): 142. doi: 10.3390/jof7020142

31. Qin X, Zhao X, Huang S, et al. Pest management via endophytic colonization of tobacco seedlings by the insect fungal pathogen Beauveria bassiana. Pest Management Science 2021; 77(4): 2007–2018. doi: 10.1002/ps.6229

32. Griffin MR. Beauveria Bassiana, A Cotton Endophyte with Biocontrol Activity against Seedling Disease [PhD thesis]. The University of Tennessee; 2007.

33. Ownley BH, Pereira RM, Klingeman WE, et al. Beauveria bassiana, a dual purpose biocontrol organism, with activity against insect pests and plant pathogens. In: Lartey RT, Caesar AJ (editors). Emerging Concepts in Plant Health Management. Research Signpost; 2004. pp. 255–269.

34. Culebro-Ricaldi JM, Ruíz-Valdiviezo VM, Rodríguez-Mendiola MA, et al. Antifungal properties of Beauveria bassiana strains against Fusarium oxysporum f. sp. lycopersici race 3 in tomato crop. Journal of Environmental Biology 2017; 38(5): 821–827. doi: 10.22438/jeb/38/5/MRN-412

35. Renwick A, Campbell R, Coe S. Assessment of in vivo screening systems for potential biocontrol agents of Gaeumannomyces graminis. Plant Pathology 1991; 40(4): 524–532. doi: 10.1111/j.1365-3059.1991.tb02415.x

36. Pizarro L, Leibman-Markus M, Gupta R, et al. A gain of function mutation in SlNRC4a enhances basal immunity resulting in broad-spectrum disease resistance. Communications Biology 2020; 3: 404. doi: 10.1038/s42003-020-01130-w

37. Rasool S, Cárdenas PD, Pattison DI, et al. Isolate-specific effect of entomopathogenic endophytic fungi on population growth of two-spotted spider mite (Tetranychus urticae Koch) and levels of steroidal glycoalkaloids in tomato. Journal of Chemical Ecology 2021; 47: 476–488. doi: 10.1007/s10886-021-01265-y

38. Cachapa JC, Meyling NV, Burow M, et al. Induction and priming of plant defense by root-associated insect-pathogenic fungi. Journal of Chemical Ecology 2021; 47(1): 112–122. doi: 10.1007/s10886-020-01234-x

39. Xu YJ, Luo F, Li B, et al. Metabolic conservation and diversification of Metarhizium species correlate with fungal host-specificity. Frontiers in Microbiology 2016; 7: 2020. doi: 10.3389/fmicb.2016.02020

40. Saikkonen K, Lehtonen P, Helander M, et al. Model systems in ecology: Dissecting the endophyte–grass literature. Trends in Plant Science 2006; 11(9): 428–433. doi: 10.1016/j.tplants.2006.07.001

41. Tefera T, Vidal S. Effect of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. BioControl 2009; 54: 663–669. doi: 10.1007/s10526-009-9216-y

42. Russo ML, Pelizza SA, Cabello MN, et al. Endophytic colonisation of tobacco, corn, wheat and soybeans by the fungal entomopathogen Beauveria bassiana (Ascomycota, Hypocreales). Biocontrol Science and Technology 2015; 25(4): 475–480. doi: 10.1080/09583157.2014.982511

43. Greenfield M, Gómez-Jiménez MI, Ortiz V, et al. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation. Biological Control 2016; 95: 40–48. doi: 10.1016/j.biocontrol.2016.01.002

44. Allegrucci N, Velazquez MS, Russo M L, et al. Endophytic colonisation of tomato by the entomopathogenic fungus Beauveria bassiana: The use of different inoculation techniques and their effects on the tomato leafminer Tuta absoluta (Lepidoptera: Gelechiidae). Journal of Plant Protection Research 2017; 54(2): 205–211. doi: 10.1515/jppr-2017-0045

45. Sword GA, Tessnow A, Ek‐Ramos MJ. Endophytic fungi alter sucking bug responses to cotton reproductive structures. Insect Science 2017; 24(6): 1003–1014. doi: 10.1111/1744-7917.12461

46. Gothandapani S, Boopalakrishnan G, Prabhakaran N, et al. Evaluation of entomopathogenic fungus against Alternaria porri (Ellis) causing purple blotch disease of onion. Archives of Phytopathology and Plant Protection 2015; 48(2): 135–144. doi: 10.1080/03235408.2014.884532

47. Kuzhuppillymyal-Prabhakarankutty L, Tamez-Guerra P, Gomez-Flores R, et al. Endophytic Beauveria bassiana promotes drought tolerance and early flowering in corn. World Journal of Microbiology and Biotechnology 2020; 36: 47. doi: 10.1007/s11274-020-02823-4

48. Griffin MR, Ownley BH, Klingeman WE, Pereira RM. Evidence of induced systemic resistance with Beauveria bassiana against Xanthomonas in cotton. Phytopathology 2006; 96(6).

49. Gómez‐Vidal S, Salinas J, Tena M, Lopez-Llorca LV. Proteomic analysis of date palm (Phoenix dactylifera L.) responses to endophytic colonization by entomopathogenic fungi. Electrophoresis 2009; 30(17): 2996–3005. doi: 10.1002/elps.200900192

50. Eyles A, Bonello P, Ganley R, Mohammed C. Induced resistance to pests and pathogens in trees. New Phytologist 2010; 185(4): 893–908. doi: 10.1111/j.1469-8137.2009.03127.x

51. Vallad GE, Goodman RM. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Science 2004; 44(6): 1920–1934. doi: 10.2135/cropsci2004.1920

52. Vega FE. The use of fungal entomopathogens as endophytes in biological control: A review. Mycologia 2018; 110(1): 4–30. doi: 10.1080/00275514.2017.1418578

53. Dara SK. Non-entomopathogenic roles of entomopathogenic fungi in promoting plant health and growth. Insects 2019; 10(9): 277. doi: 10.3390/insects10090277

54. Canassa F, Tall S, Moral RA, et al. Effects of bean seed treatment by the entomopathogenic fungi Metarhizium robertsii and Beauveria bassiana on plant growth, spider mite populations and behavior of predatory mites. Biological Control 2019; 132: 199–208. doi: 10.1016/j.biocontrol.2019.02.003

55. Espinoza F, Vidal S, Rautenbach F, et al. Effects of Beauveria bassiana (Hypocreales) on plant growth and secondary metabolites of extracts of hydroponically cultivated chive (Allium schoenoprasum L.[Amaryllidaceae]). Heliyon 2019; 5: e03038. doi: 10.1016/j.heliyon.2019.e03038

56. Raya-Díaz S, Sánchez-Rodríguez AR, Segura-Fernández JM, et al. Entomopathogenic fungi-based mechanisms for improved Fe nutrition in sorghum plants grown on calcareous substrates. PloS One 2017; 12(10): e0185903. doi: 10.1371/journal.pone.0185903

57. Moloinyane S, Nchu F. The effects of endophytic Beauveria bassiana inoculation on infestation level of Planococcus ficus, growth and volatile constituents of potted greenhouse grapevine (Vitis vinifera L.). Toxins 2019; 11(2): 72. doi: 10.3390/toxins11020072

58. Dong C, Wang L, Li Q, Shang Q. Epiphytic and endophytic fungal communities of tomato plants. Horticultural Plant Journal 2021; 7(1): 38–48. doi: 10.1016/j.hpj.2020.09.002

59. Yun HG, Kim DJ, Gwak WS, et al. Entomopathogenic fungi as dual control agents against both the pest Myzus persicae and phytopathogen Botrytis cinerea. Mycobiology 2017; 45(3): 192–198. doi: 10.5941/MYCO.2017.45.3.192

60. González-Mas N, Gutiérrez-Sánchez F, Sánchez-Ortiz A, et al. Endophytic colonization by the entomopathogenic fungus Beauveria bassiana affects plant volatile emissions in the presence or absence of chewing and sap-sucking insects. Frontiers in Plant Science 2021; 12: 660460. doi: 10.3389/fpls.2021.660460

61. Gurulingappa P, Sword GA, Murdoch G, McGee PA. Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Biological Control 2010, 55(1): 34–41. doi: 10.1016/j.biocontrol.2010.06.011

62. Jaber LR, Enkerli J. Fungal entomopathogens as endophytes: Can they promote plant growth? Biocontrol Science and Technology 2017; 27(1): 28–41. doi: 10.1080/09583157.2016.1243227

63. Jaber LR, Araj SE. Interactions among endophytic fungal entomopathogens (Ascomycota: Hypocreales), the green peach aphid Myzus persicae Sulzer (Homoptera: Aphididae), and the aphid endoparasitoid Aphidius colemani Viereck (Hymenoptera: Braconidae). Biological Control 2018; 116: 53–61. doi: 10.1016/j.biocontrol.2017.04.005

64. Deb L, Dutta P, Mandal MK, et al. Antimicrobial traits of Beauveria bassiana against Rhizoctonia solani, the causal agent of sheath blight of rice under field conditions. Plant Disease 2023; 107(6). doi: 10.1094/PDIS-04-22-0806-RE

65. Vega FE, Nicolai VM, Luangsa JJ, Blackwell M. Fungal entomopathogens. In: Vega FE, Kaya HK (editors). Insect Pathology, 2nd ed. Academic Press; 2012. pp. 171–220.

66. Copping LG. The Manual of Biocontrol Agents: A World Compendium, 3rd ed. British Crop Protection Council; 2004.

67. Bateman RP, Carey M, Moore D, et al. The enhanced infectivity of Metarhizium flavoviride in oil formulations to desert locusts at low humidities. Annals of Applied Biology 1993; 122(1): 145–152. doi: 10.1111/j.1744-7348.1993.tb04022.x

68. Staples JA, Milner RJ. A laboratory evaluation of the repellency of Metarhizium anisopliae conidia to Coptotermes lacteus (Isoptera: Rhinotermitidae). Sociobiology 2000; 36(1): 133–148.

69. Skinner M, Parker BL, Kim JS. Role of entomopathogenic fungi in integrated pest management. In: Abrol DP (editor). Integrated Pest Management Current Concepts and Ecological Perspective. Academic Press; 2014. pp. 169–191. doi: 10.1016/B978-0-12-398529-3.00011-7

70. Vidal S, Jaber LR. Entomopathogenic fungi as endophytes: Plant–endophyte–herbivore interactions and prospects for use in biological control. Current Science 2015; 109(1): 46–54.

71. Barra-Bucarei L, France Iglesias A, Gerding González M, et al. Antifungal activity of Beauveria bassiana endophyte against Botrytis cinerea in two solanaceae crops. Microorganisms 2019; 8(1): 65. doi: 10.3390/microorganisms8010065

72. Wei QY, Li YY, Xu C, et al. Endophytic colonization by Beauveria bassiana increases the resistance of tomatoes against Bemisia tabaci. Arthropod-Plant Interactions 2020; 14: 289–300. doi: 10.1007/s11829-020-09746-9

73. Preszler RW, Gaylord ES, Boecklen WJ. Reduced parasitism of a leaf-mining moth on trees with high infection frequencies of an endophytic fungus. Oecologia 1996; 108: 159–166. doi: 10.1007/BF00333227

74. Saikkonen K, Faeth SH, Helander M, Sullivan TJ. Fungal endophytes: A continuum of interactions with host plants. Annual review of Ecology and Systematics 1998; 29: 319–343. doi: 10.1146/annurev.ecolsys.29.1.319

75. Jones JDG, Dangl JL. The plant immune system. Nature 2006; 444: 323–329. doi: 10.1038/nature05286

76. Garcia-Brugger A, Lamotte O, Vandelle E, et al. Early signaling events induced by elicitors of plant defenses. Molecular Plant-Microbe Interactions 2006; 19(7): 711–724. doi: 10.1094/MPMI-19-0711

77. Rondot Y, Reineke A. Endophytic Beauveria bassiana activates expression of defence genes in grapevine and prevents infections by grapevine downy mildew Plasmopara viticola. Plant Pathology 2019; 68(9): 1719–1731. doi: 10.1111/ppa.13089

78. Raad M, Glare TR, Brochero HL, et al. Transcriptional reprogramming of Arabidopsis thaliana defence pathways by the entomopathogen Beauveria bassiana correlates with resistance against a fungal pathogen but not against insects. Frontiers in Microbiology 2019; 10: 615. doi: 10.3389/fmicb.2019.00615

79. Bourgaud F, Gravot A, Milesi S, Gontier E. Production of plant secondary metabolites: A historical perspective. Plant Science 2001; 161(5): 839–851. doi: 10.1016/S0168-9452(01)00490-3

80. Elena GJ, Beatriz PJ, Alejandro P, Roberto LE. Metarhizium anisopliae (Metschnikoff) Sorokin promotes growth and has endophytic activity in tomato plants. Advances in Biological Research 2011; 5(1): 22–27.

81. Liao X, O’Brien TR, Fang W, St. Leger RJ. The plant beneficial effects of Metarhizium species correlate with their association with roots. Applied Microbiology and Biotechnology 2014; 98: 7089–7096. doi: 10.1007/s00253-014-5788-2

82. Wagner BL, Lewis LC. Colonization of corn, Zea mays, by the entomopathogenic fungus Beauveria bassiana. Applied and Environmental Microbiology 2000; 66(8): 3468–3473. doi: 10.1128/AEM.66.8.3468-3473.2000

83. Akello J, Dubois T, Coyne D, Kyamanywa S. Endophytic Beauveria bassiana in banana (Musa spp.) reduces banana weevil (Cosmopolites sordidus) fitness and damage. Crop Protection 2008; 27(11): 1437–1441. doi: 10.1016/j.cropro.2008.07.003

84. Stone JK, Bacon CW, White JF. An overview of endophytic microbes: Endophytism defined. In: White JF, Bacon CW (editors). Microbial Endophytes. CRC Press; 2000. pp. 3–29.

85. Arnold AE. Understanding the diversity of foliar endophytic fungi: Progress, challenges, and frontiers. Fungal Biology Reviews 2007; 21(2–3): 51–66. doi: 10.1016/j.fbr.2007.05.003

86. Landa BB, López-Díaz C, Jiménez-Fernández D, et al. In-planta detection and monitorization of endophytic colonization by a Beauveria bassiana strain using a new-developed nested and quantitative PCR-based assay and confocal laser scanning microscopy. Journal of Invertebrate Pathology 2013; 114(2): 128–138. doi: 10.1016/j.jip.2013.06.007

87. Vega FE, Posada F, Aime MC, et al. Entomopathogenic fungal endophytes. Biological Control 2008; 46(1): 72–82. doi: 10.1016/j.biocontrol.2008.01.008

88. Shin TY, Bae SM, Kim DJ, et al. Evaluation of virulence, tolerance to environmental factors and antimicrobial activities of entomopathogenic fungi against two-spotted spider mite. Tetranychus urticae. Mycoscience 2017; 58(3): 204–212. doi: 10.1016/j.myc.2017.02.002

89. Sanivada SK, Challa M. Mycolytic effect of extracellular enzymes of entomopathogenic fungi to Colletotrichum falcatum, red rot pathogen of sugarcane. Journal of Biopesticides 2014; 7: 33–37.

90. Thakur R, Sandhu SS. Distribution, occurrence and natural invertebrate hosts of indigenous entomopathogenic fungi of Central India. Indian Journal of Microbiology 2010; 50: 89–96. doi: 10.1007/s12088-010-0007-z




DOI: https://doi.org/10.24294/nrcr.v6i2.2543

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Amar Bahadur

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.