Advantages of ozone disinfection method for water purification over chlorine disinfection
Vol 6, Issue 2, 2023
VIEWS - 597 (Abstract) 295 (PDF)
Abstract
The improvement of various advancements for water sanitization is a significant issue. Among numerous elective drinking water treatment advances, the well-known disinfectant techniques are ozonation and chlorination to treat drinking water. All through the ozonation procedure, it produces biodegradable organic by-products while in the chlorination process, some risky by-products (trihalomethanes and haloacetic acids) are generated. Because of the possible danger of these results, several water purification methods have been reported, such as ozonation, chlorination, UV, etc. During ozonation, exceptionally reactive hydroxyl radicals are produced, which has a crucial effect on purifying water. In this paper, we have discussed the wide use of ozone disinfectants for water treatment with an emphasis on radical chemistry of ozonization as well as advanced oxidation processes instead of the chlorination process, low-cost ozone generation processes, the impact of ozone and chlorine disinfectants on cryptosporidium oocysts, and the removal of seven strains microbes from drinking water. The favorable circumstances, hindrances of the utilization of ozone and chlorine in wastewater treatment, and their confinements in water treatment innovation just as the elective advances, for example, ozone-based oxidation process, catalytic ozonation, photocatalytic oxidation, and so on are additionally clarified in this paper.
Keywords
Full Text:
PDFReferences
1. Ashbolt NJ. Microbial contamination of drinking water and disease outcomes in developing regions. Toxicology 2004; 198(1–3): 229–238. doi: 10.1016/j.tox.2004.01.030
2. Montgomery MA, Elimelech M. Water and sanitation in developing countries: Including health in the equation. Environmental Science and Technology 2007; 41(1): 17–24. doi: 10.1021/es072435t
3. Richardson SD, Thruston AD, Caughran TV, et al. Identification of new drinking water disinfection by-products from ozone, chlorine dioxide, chloramine and chlorine. Water, Air, and Soil Pollution 2000; 123: 95–102.
4. Glaze WH. Drinking-water treatment with ozone. Environmental Science Technology 1987; 21: 224–230. doi: 10.1021/es00157a001
5. Siddiqui MS, Amy GL, Murphy BD. Ozone enhanced removal of natural organic matter from drinking water sources. Water Research 1997; 31(12): 3098–3106. doi: 10.1016/S0043-1354(97)00130-9
6. Ding W, Jin W, Cao S, et al. Ozone disinfection of chlorine-resistant bacteria in drinking water. Water Research 2019; 160: 339–349. doi: 10.1016/j.watres.2019.05.014
7. Malik MA, Ghaffar A, Malik SA. Water purification by electrical discharges. Plasma Sources Science Technology 2001; 10: 82–89. doi: 10.1088/0963-0252/10/1/311
8. Camel V, Bermond A. The use of ozone and associated oxidation processes in drinking water treatment. Water Research 1998; 32(11): 3208–3222. doi: 10.1016/S0043-1354(98)00130-4
9. Alternative disinfectants and oxidants guidance manual. Available online: https://eec.ky.gov/Environmental-Protection/Water/Drinking/DWProfessionals/ComplianceDocuments/Alternative%20Disinfection%20and%20Oxidants%20Guidance%20Manual.pdf (accessed on 16 August 2023).
10. Eliasson B, Hirth M, Kogelschatz U. Ozone synthesis from oxygen in dielectric barrier discharges. Journal of Physics D: Applied Physics 1987; 20(11): 1421–1437. doi: 10.1088/0022-3727/20/11/010
11. Morris RD, Audet AM, Angelillo IF, et al. Chlorination, chlorination by-products, and cancer: A meta-analysis. American Journal of Public Health 1992; 82(7): 955–963. doi: 10.2105/ajph.82.7.955
12. Current WL, Haynes TB. Complete development of Cryptosporidium in cell cultures. Science 1984; 224(4649): 603–605. doi: 10.1126/science.6710159
13. Richardson SD, Postrigo C. Drinking water disinfection by-products. In: Emerging Organic Contaminants and Human Health. Springer; 2011. pp. 93–137.
14. Gleick PH, Cooley H. The World’s Water 2006–2007. Island Press; 2006.
15. Red T. 8 common water contaminants and how to prevent them. Available online: https://www.technologynetworks.com/tn/lists/8-common-water-contaminants-and-how-to-prevent-them-296339 (accessed on 16 August 2023).
16. Hasan MK, Shahriar A, Jim KU. Water pollution in Bangladesh and its impact on public health. Heliyon 2019; 5(8): e02145. doi: 10.1016/j.heliyon.2019.e02145
17. Harmful impurities found in drinking water. Available online: https://water-purifiers.com/harmful-impurities-found-in-drinking-water/amp/ (accessed on 16 August 2023).
18. Fang J, Liu H, Shang C, et al. E. coli and bacteriophage MS2 disinfection by UV, ozone and the combined UV and ozone processes. Frontiers of Environmental Science and Engineering 2014; 8(4): 547–552. doi: 10.1007/s11783-013-0620-2
19. Nathanson JA. Water supply system. Available online: https://www.britannica.com/technology/water-supply-system (accessed on 16 August 2023).
20. Samaranayake WJM, Miyahara Y, Namihira T, et al. Pulsed streamer discharge characteristics of ozone production in dry air. IEEE Transaction on Dielectrics and Electrical Insulation 2000; 7(2): 254–260.
21. Langlais B, Reckhow DA, Brink DR. Ozone in Water Treatment: Application and Engineering, 1st ed. Lewis Publishers; 1991.
22. Tripathia S, Hussain T. Water and wastewater treatment through ozone-based technologies. In: Rodriguez-Couto S, Shah M, Biswas J (editors). Development in Wastewater Treatment Research and Processes. Elsevier; 2022. pp. 139–172.
23. Richardson SD, Thruston AD, Caughran TV, et al. Identification of new ozone disinfection by-products in drinking water. Environmental Science and Technology 1999; 33: 3368–3377. doi: 10.1021/es981218c
24. Kim J, Chung Y, Shin D, et al. Chlorination by products in surface water treatment process. Desalination 2003; 151(1): 1–9. doi: 10.1016/S0011-9164(02)00967-0
25. National primary drinking water regulations. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations (accessed on 16 August 2023).
26. Gupta SKS. Contact glow discharge electrolysis: Its origin, plasma diagnostics and non-faradaic chemical effects. Plasma Sources Science and Technology 2015; 24(6): 063001. doi: 10.1088/0963-0252/24/6/063001
27. Xiao W, Zhang H, Wang X, et al. Interaction mechanisms and application of ozone micro/nanobubbles and nanoparticles: A review and perspective. Nanomaterials (Basel) 2022; 12(12): 1958. doi: 10.3390/nano12121958
28. Malik MA, Rehman U, Ghaffar A, Ahmed K. Synergistic effect of pulsed corona discharges and ozonation on decolourization of methylene blue in water. Plasma Sources Science and Technology 2002; 11(3): 236–240. doi: 10.1088/0963-0252/11/3/302
29. Clements JS, Sato M, Davis RH. Preliminary investigation of prebreakdown phenomena and chemical reactions using a pulsed high-voltage discharge in water. IEEE Transaction Industrial Applications 1987; 1A-23(2): 224–235.
30. Yan K, Hui H, Cui M, et al. Corona induced non-thermal plasmas: Fundamental study and industrial applications. Journal of Electrostatic 1998; 44(1–2): 17–39. doi: 10.1016/S0304-3886(98)00019-9
31. Ohshima T, Sato K, Terauchi H, Sato M. Physical and chemical modifications of high-voltage pulse sterilization. Journal of Electrostatics 1997; 42(1–2): 159–166. doi: 10.1016/S0304-3886(97)00152-6
32. Sunka P, Babicky V, Clupek M, et al. Generation of chemically active species by electrical discharge in water. Plasma Sources Science and Technology 1999; 8(2): 258–265. doi: 10.1088/0963-0252/8/2/006
33. Sun H, Huang S, Wang Q, et al. Characteristics of negative corona discharge in air at various gaps. IEEE Transactions on Plasma Science 2018; 47(1): 1–6. doi: 10.1109/TPS.2018.2884696
34. Urbanietz T, Stewig C, Böke M, Keudell A. Oxygen removal from a hydrocarbon containing gas stream by plasma catalysis. Plasma Chemistry and Plasma Processing 2021; 41(2): 619–642. doi: 10.1007/s11090-020-10151-6
35. Kogelschatz U, Eliasson B, Hirth M. Ozone generation from oxygen and air: Discharge physics and reaction mechanisms. Ozone: Science & Engineering 1988; 10(4): 367–378. doi: 10.1080/01919518808552391
36. Hadj-Ziane S, Heild B, Pignolet P, et al. Ozone generation in an oxygen-fed wire-to-cylinder ozonizer at atmospheric pressure. Journal of Physics D: Applied Physics 1992; 25(4): 677–685. doi: 10.1088/0022-3727/25/4/014
37. Atkinson R, Baulch DL, Cox RA, et al. Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement III. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. Journal of Physical and Chemical Reference Data 1989; 18: 881–1097. doi: 10.1063/1.555832
38. McCollum BS. Mastersing the fundamentals of ozone: Ozone generation. Available online: https://www.wqpmag.com/mastering-fundamentals-ozone-ozone-generation (accessed on 16 August 2023).
39. Pogrebnyak AD, Kaverina AS, Kylyshkanov MK. Electrolytic plasma processing for plating coatings and treating metals and alloys. Protection of Metals and Physical Chemistry of Surfaces 2014; 50(1): 72–87. doi: 10.1134/S2070205114010092
40. Parfenov EV, Yerokhin A, Nevyantseva RR, et al. Towards smart electrolytic plasma technologies: An overview of methodological approaches to process modelling. Surface Coating Technology 2015; 269: 2–22. doi: 10.1016/j.surfcoat.2015.02.019
41. Wuthrich R, Fascio V. Machining of non-conducting materials using electrochemical discharge phenomenon—An overview. International Journal of Machine Tools and Manufacture 2005; 45(9): 1095–1108. doi: 10.1016/j.ijmachtools.2004.11.011
42. Chen Q, Li J, Li Y. A review of plasma-liquid interactions for nanomaterial synthesis. Journal of Physics D: Applied Physics 2014; 48(42): 424005. doi: 10.1088/0022-3727/48/42/424005
43. Wang X, Zhou M, Jin X. Application of glow discharge plasma for wastewater treatment. Electrochimica Acta 2012; 83: 501–512. doi: 10.1016/j.electacta.2012.06.131
44. Gao J. A novel technique for wastewater treatment by contact glow-discharge electrolysis. Pakistan Journal of Biological Sciences 2006; 9(2): 323–329. doi: 10.3923/pjbs.2006.323.329
45. Siemens W. Ueber die elektrostatische induction und die Verzogerung des stroms in Flaschendrahten. Annalen der Physilk 1857; 178(9): 66–122. doi: 10.1002/andp.18571780905
46. Roland U, Holzer F, Kopinke FD. Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds: Part 2. Ozone decomposition and deactivation of γ-Al2O3. Applied Catalysis B: Environmental 2005; 58(3–4): 217–226. doi: 10.1016/j.apcatb.2004.11.024
47. Li J, Ma C, Zhu S, et al. A review of recent advances of dielectric barrier discharge plasma in catalysis. Nanomaterials (Basel) 2019; 9(10): 1428. doi: 10.3390/nano9101428
48. Subrahmanyam C, Magureanu M, Renken A, Kiwi-Minsker L. Catalytic abatement of volatile organic compounds assisted by non-thermal plasma: Part 1. A novel dielectric barrier discharge reactor containing catalytic electrode. Applied catalysis B: Environment 2006; 65(1–2): 150–156. doi: 10.1016/j.apcatb.2006.01.006
49. Cabrera OG, Callejas RL, Vanelcia R, et al. Effect of air-oxygen and argon-oxygen mixtures on dielectric discharge decomposition of toluene. Brazilian Journal of Physics 2004; 34(4B): 1766–1770. doi: 10.1590/S0103-97332004000800047
50. Kogelschatz U, Eliasson B, Egli W. Dielectric-barrier discharges: Principles and applications. Journal of de Physique IV Proceedings 1997; 7(4): 47–66. doi: ff10.1051/jp4:1997405
51. Eliasson B, Kogelschatz U. Non-equilibrium volume plasma chemical processing. IEEE Transactions on Plasma Science 1991; 19(6): 1063–1077. doi: 10.1109/27.125031
52. Chang MB, Wu SJ. Experimental study on ozone synthesis via dielectric barrier discharges. Ozone: Science and Engineering 2014; 19(3): 241–254. doi: 10.1080/01919519708547304
53. Staehelin J, Hoigne J. Decomposition of ozone in water: Rate of initiation by hydroxide ions and hydrogen peroxide. Environmental Science and Technology 1992; 16(10): 676–681. doi: 10.1021/es00104a009
54. Forni L, Bahnemann D, Hart EJ. Mechanism of the hydroxide ion-initiated decomposition of ozone in aqueous solution. Journal of Physical Chemistry 1982; 86(2): 255–259. doi: 10.1021/j100391a025
55. Flanagan E. Ozone in water purification and bromate formation. Available online: https://www.wateronline.com/doc/ozone-in-water-purification-and-bromate-formation-0001 (accessed on 16 August 2023).
56. Glaze WH, Kang JW, Chapin DH. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone: Science and Engineering 1987; 9(4): 335–352. doi: 10.1080/01919518708552148
57. Kurahashi M, Katsura S, Mizuno A. Radical formation due to discharge inside bubble in liquid. Journal of Electrostatics 1997; 42(1–2): 93–105. doi: 10.1016/S0304-3886(97)00146-0
58. Hoigne J. Inter-calibration of OH radical sources and water quality parameters. Water Science and Technology 1997; 35(4): 1–8. doi: 10.1016/S0273-1223(97)00002-4
59. Lim S, Shi JL, Gunten U, McCurry DL. Ozonation of organic compounds in water and wastewater: A critical review. Water Research 2022; 213: 118053. doi: 10.1016/j.watres.2022.118053
60. Cooper C, Burch R. An investigation of catalytic ozonation for the oxidation of halocarbons in drinking water preparation. Water Research 1999; 33(18): 3695–3700. doi: 10.1016/S0043-1354(99)00091-3
61. Gunten UV. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Research 2003; 37(7): 1443–1467. doi: 10.1016/S0043-1354(02)00457-8
62. Staehelin J, Hoigne J. Decomposition of ozone in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environmental Science and Technology 1985; 19(12): 1206–1213. doi: 10.1021/es00142a012
63. Fawell J, Robinson D, Bull R, et al. Disinfection by-products in drinking water: Critical issues in health effects research. Environmental Health Perspectives 1997; 105(1): 108–109. doi: 10.1289/ehp.97105108
64. Gunten U. Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Research 2003; 37(7): 1469–1487. doi: 10.1016/S0043-1354(02)00458-X
65. Sonntag C. The Chemical Basis of Radiation Biology, 1st ed. Taylor & Francis; 1987.
66. Pulicharla R, Proulx F, Behmel S, et al. Trends in ozonation disinfection by-products-occurrence, analysis and toxicity of carboxylic acids. Water 2020; 12(3): 756. doi: 10.3390/w12030756
67. Glaze WH, Weinberg HS. Identification and occurrence of ozonation by-products in drinking water. Available online: https://www.waterrf.org/research/projects/identification-and-occurrence-ozonation-products-drinking-water (accessed on 16 August 2023).
68. Ikwhata K, El-Din MG. Aqueous pesticide degradation by ozonation and ozone-based advanced oxidation processes: A review part 1. Ozone: Science and Engineering 2005; 27(2): 83–114. doi: 10.1080/01919510590925220
69. Masschelein WJ. Unit Processes in Drinking Water Treatment, 1st ed. CRC Press; 1992.
70. Horderna BK, Ziolek M, Nawrocki J. Catalytic ozonation and method of enhancing molecular ozone reactions in water treatment. Applied Catalysis B: Environmenta 2003; 46(4): 639–669. doi: 10.1016/S0926-3373(03)00326-6
71. Silva LMD, Franco DV, Goncalves IC, Sousa LGD. Advanced technologies based on ozonation for water treatment. In: Gertsen N, Sonder L (editors). Water purification. Nova Science Publisher; 2009. pp. 1–53.
72. Baffle MO, Schumacher J, Meylan S, et al. Ozonation and advanced oxidation of wastewater: Effect of ozone dose, pH, DOM, OH radical, scavengers on ozone decomposition and OH radical generation. Ozone: Science and Engineering 2006; 28(4): 247–259. doi: 10.1080/01919510600718825
73. Munter R. Advanced oxidation processes—Current status and prospects. Proceedings of the Estonian Academy of Sciences, Chemistry 2001; 50(2): 59–80. doi: 10.3176/chem.2001.2.01
74. Misra NN. The contribution of non-thermal and advanced oxidation technologies towards dissipation of pesticide residues. Trends in Food Science & Technology 2015; 45(2): 229–244. doi: 10.1016/j.tifs.2015.06.005
75. Brillasa E, Mur E, Sauleda R, et al. Aniline mineralization by AOP’s: Anodic oxidation, photo catalysis, electro-Fenton and photo electro-Fenton processes. Applied Catalysis B: Environmental 1998; 16(1): 31–42. doi: 10.1016/S0926-3373(97)00059-3
76. Mazille F. Sustainable sanitation and water management. Available online: https://sswm.info/sites/default/files/reference_attachments/SEECON%202012%20SSWM%20Booklet.pdf (accessed on 16 August 2023).
77. Andreozzi R, Caprio V, Insola A, Marotta R. Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today 1999; 53(1): 51–59. doi: 10.1016/S0920-5861(99)00102-9
78. Moussavia G, Khosravia R, Omran NR. Development of an efficient catalyst from magnetite ore: Characterization and catalytic potential in the ozonation of water toxic contaminants. Applied Catalysis A: General 2012; 445–446: 42–49. doi: 10.1016/j.apcata.2012.08.002
79. Rekhate CV, Srivastava JK. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater—A review. Chemical Engineering Journal Advances 2020; 3: 100031. doi: 10.1016/j.ceja.2020.100031
80. Gracia R, Aragües JL, Ovelleiro JL. Study of the catalytic ozonation of humic substances in water and their ozonation by-products. Ozone: Science & Engineering 1996; 18(3): 195–208. doi: 10.1080/01919519608547326
81. Cortés S, Sarasa J, Ormad P, et al. Comparative efficiency of the systems O3/high pH and O3/catalyst for the oxidation of chlorobenzenes in water. Ozone: Science and Engineering 2000; 22(4): 415–426. doi: 10.1080/01919510009408784
82. Legrini O, Oliveros E, Braun AM. Photochemical processes for water treatment. Chemical Reviews 1993; 93(2): 671–698. doi: 10.1021/cr00018a003
83. Gilbert E. Influence of ozone on the photocatalytic oxidation of organic compounds. Ozone: Science & Engineering 2002; 24(2): 75–82. doi: 10.1080/01919510208901598
84. Tanaka K, Abe K, Hisanaga T. Photocatalytic water treatment on immobilized TiO2 combined with ozonation. Journal of Photochemical and Photobiology A: Chemistry 1996; 101(1): 85–87. doi: 10.1016/S1010-6030(96)04393-6
85. Mare M, Waldner G, Bauer R, et al. Degradation of nitrogen containin organic compounds by combined photocatalysis and ozonation. Chemosphere 1999; 38(9): 2013–2027. doi: 10.1016/S0045-6535(98)00414-7
86. Garcia-Araya JF, Beltrán FJ. Photocatalytic oxidation/ozonation processes. Catalysts 2023; 13(2): 314. doi: 10.3390/catal13020314
87. Sterling CR, Juranek D, Rose JB, et al. Cryptosporidium. Journal of American Water Works Association 1988; 80: 14–27. doi: 10.1002/j.1551-8833.1988.tb02988.x
88. Angus KW, Sherwood D, Hutchinson G, Campbell I. Evaluation of the effect of two aldehyde-based disinfectants on the infectivity of faecal Cryptosporidia for mice. Research in Veterinary Science 1982; 33(3): 379–381. doi: 10.1016/S0034-5288(18)32320-8
89. Campbell I, Tzipori AS, Hutchison G, Angus KW. Effect of disinfectants on survival of crvptosporidiuin oocysts. Veterinary Record 1982; 111(18): 414–415. doi: 10.1136/vr.111.18.414
90. Isaac-Renton JL, Fogel D, Stibbs HH, Onngerth JE. Giaidia and Cryptosporidiutn in drinking water. Lancet 1987; 1(8539): 973–974. doi: 10.1016/s0140-6736(87)90313-8
91. Madore MS, Rose JB, Gerba CP, et al. Occurrence of Cryptosporidiuim oocysts in sewage effluents and selected surface waters. Journal of Parasitology 1987; 73(4): 702–705.
92. Rennecker JL, Kim JH, Vasquez BC, Martinas BJ. Role of disinfectant concentration and pH in the inactivation kinetics of cryptosporidium parvum oocysts with ozone and monochloramine. Environmental Science and Technology 2001; 35(13): 2752–2757. doi: 10.1021/es010526z
93. Rennecker JL, Driedger AM, Rubin SA, Marinas BJ. Synergy in sequential inactivation of Cryptosporidium parvum with ozone/free chlorine and ozone/monochloramine. Water Research 2000; 34(17): 4121–4130. doi: 10.1016/S0043-1354(00)00188-3
94. Driedger AM, Rennecker JL, Marinas BJ. Inactivation of Cryptosporidium parvum oocysts with ozone and monochloramine at low temperature. Water Research 2001; 35(1): 41–48. doi: 10.1016/s0043-1354(00)00260-8
95. Elhariry HM. Attachment strength and biofilm forming ability of Bacillus cereus on green-leafy vegetables: Cabbage and lettuce. Food Microbiology 2011; 28(7): 1266–1274. doi: 10.1016/j.fm.2011.05.004
96. Zhu Z, Wu C, Zhong D, et al. Effects of pipe materials on chlorine-resistant biofilm formation under long-term high chlorine level. Applied Biochemical and Biotechnology 2014; 173(6): 1564–1578. doi: 10.1007/s12010-014-0935-x
DOI: https://doi.org/10.24294/nrcr.v6i2.2090
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Amjad Hossen, Firoz Ahmed, Siddhartha Sankar Saha, Md. Ibrahim H. Mondal
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.