The effects of climate changes on Posidonia oceanica meadows in the Mediterranean Basin

Nicola Cantasano

Article ID: 1961
Vol 6, Issue 1, 2023

VIEWS - 394 (Abstract) 171 (PDF)

Abstract


Climate changes are affecting the fate of Posidonia oceanica meadows. Actually, the Mediterranean Sea is threatened by abiotic, biotic and climate changes coupled with human pressures regarding coastal regions. In this way, Posidonia oceanica is able to counteract the effects of climate changes through the high thermotolerance of the species, range shift processes of the meadows and variations in the community composition of this valuable marine ecosystem. Anyway, the power of acclimatization to temperature shifts and the adaptative capacity of Posidonia oceanica meadows against human pressures let to suggest a positive trend in the long evolutionary pathway of the species.


Keywords


Climate Changes; Posidonia Oceanica Meadows; Thermotolerance; Adaptative Process

Full Text:

PDF


References


1. Burrows MT, Schoeman DS, Buckley LB, et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 2021; 334(6056): 652–655. doi: 10.1126/science.1210288.

2. Bellard C, Bertelsmeier C, Leadley P, et al. Impacts of climate change on the future of biodiversity. Ecology Letters 2012; 15: 365–377. doi: 10.1111/j.1461-0248.2011.01736.x.

3. Urban MC. Accelerating extinction risk from climate change. Science 2015; 348(6234): 571–573. doi: 10.1126/science.aaa4984.

4. Isbell F, Craven D, Connoly J, et al. Biodiversity increases the resistance of ecosystenm productivity to climate extremes. Nature 2015; 526: 574–577. doi: 10.1038/nature15374.

5. Pecl GT, Araùjo MB, Bell JD, et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 2017; 355(6332): eaai9214. doi: 10.1126/science.aai9214.

6. Titeux N, Henle K, Mihoub JB, et al. Global scenarios for biodiversity need to better integrate climate and land use change. Diversity and Distributions 2017; 23(11): 1231–1234. doi: 10.1111/ddi.12624.

7. Halpern BS, Frazier M, Afflerbach J, et al. Recent pace of change in human impact on the world’s ocean. Scientific Reports 2019; 9: 11609. doi: 10.1038/s41598-019-47201-9.

8. United Nations. Framework convention on climate change. Paris Climate Change Conference; 2015 Nov 30–2015 Dec 11; Paris. New York: United Nations; 2015. p. 1–36.

9. Balzan MV, Hassoun AER, Arouna N, et al. Ecosystems. In: Cramer W, Guiot J, Marini K (editors). Climate and environmental change in the Mediterranean Basin—Current situation and risks for the future. First Mediterranean assessment report. Marseille: MedECC, Union for the Mediterranean, Plan Blue, UNEP/MAP; 2020. p. 323–468. doi: 10.5281/zenodo.7101090.

10. Médail F, Quézel P. Hot-spots analysis for conservation of plant biodiversity in the Mediterranean Basin. Annals of the Missouri Botanical Garden 1997; 84(1): 112–127. doi: 10.2307/2399957.

11. Coll M, Piroddi C, Steenbeek J, et al. The biodiversity of the Mediterranean Sea: Estimates, patterns, and threats. PloS One 2010; 5(8): e11842. doi: 10.1371/journal.pone.0011842.

12. Coll M, Piroddi C, Albouy C, et al. The Mediterranean Sea under siege: Spatial overlap between marine biodiversity, cumulative threats and marine reserves. Global Ecology and Biogeography 2012; 21(4): 465–480. doi: 10.1111/j.1466-8238.2011.00697.x.

13. IPCC (Intergovernmental Panel on Climate Change). IPCC. Climate Change 2014: Synthesis Report. Core Writing Team, Pachauri RK, Meyer LA (editors). Geneva: IPCC; 2014. p. 1–151.

14. Bell G, Collins S. Adaptation, extinction and global change. Evolutionary Applications 2008; 1(1): 3–16. doi: 10.1111/j.1752-4571.2007.00011.x.

15. Otto SP. Adaptation, speciation and extinction in the anthropocene. Proceedings of the Royal Society B 2018; 285(1891): 20182047. doi: 10.1098/rspb.2018.2047.

16. Aurelle D, Thomas S, Albert C, et al. Biodiversity, climate change, and adaptation in the Mediterranean. Ecosphere 2022; 13(4): e3915. doi: 10.1002/ecs2.3915.

17. Lascaratos A, Roether W, Nittis K, Klei B. Recent changes in deep water formation and spreading in the Eastern Mediterranean Sea: A review. Progress in Oceanography 1999; 44(1-3): 5–36. doi: 10.1016/S0079-6611(99)00019-1.

18. Millot C, Taupier-Letage I. Circulation in the Mediterranean Sea. In: Saliot A (editor). The Mediterranean Sea. Heidelberg: Springer Berlin; 2005. p. 29–66. doi: 10.1007/b107143.

19. Garrabou J, Ledoux JB, Bensoussan N, et al. Sliding toward the collapse of Mediterranean coastal marine rocky ecosystems. In: Canadell JG, Jackson RB (editors). Ecosystem collapse and climate change. Cham: Springer Cham; 2021. p. 291–324. doi: 10.1007/978-3-030-71330-0_11.

20. Garrabou J, Coma R, Bensoussan N, et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Global Change Biology 2009; 15(5): 1090–1103. doi: 10.1111/j.1365-2486.2008.01823.x.

21. Rixen M, Beckets JM, Levitus S, et al. The Western Mediterranean deep water: A proxy for climate change. Geophysical Research Letters 2005; 32(12): L12608. doi: 10.1029/2005GL022702.

22. Adloff F, Somot S, Sevault F, et al. Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Climate Dynamics 2015; 45(9): 2775–2802. doi: 10.1007/s00382-015-2507-3.

23. Fernández-Torquemada Y, Sánchez-Lizaso JL. Responses of two Mediterranean seagrasses to experimental changes in salinity. Hydrobiologia 2011; 669: 21–33. doi: 10.1007/s10750-011-0644-1.

24. Noto AE, Shurin JB. Early stages of sea-level rise lead to decreased salt marsh plant diversity through stronger competition in Mediterranean-climate marshes. PLoS One 2017; 12(1): e0169056. doi: 10.1371/journal.pone.0169056.

25. Vicente O, Boscaiu M. Will halophytes in Mediterranean salt marshes be able to adapt to climate change? AgroLife Scientific Journal 2020; 9(2): 369–376.

26. Cornwall CE, Comeau S, DeCarlo TM, et al. A coralline alga gains tolerance to ocean acidification over multiple generations of exposure. Nature Climate Change 2020; 10(2): 143–146. doi: 10.1038/s41558-019-0681-8.

27. Vela A, Pasqualini V, Leoni V, et al. Use of SPOT 5 and IKONOS imagery for mapping biocenoses in a Tunisian Coastal Lagoon (Mediterranean Sea). Estuarine, Coastal and Shelf Science 2008; 79(4): 591–598. doi: 10.1016/j.ecss.2008.05.014.

28. Meinesz A, Cirik Ş, Akcali B, et al. Posidonia oceanica in the Marmara Sea. Aquatic Botany 2009; 90(1): 18–22. doi: 10.1016/j.aquabot.2008.04.013.

29. Cox TE, Schenone S, Delille J, et al. Effects of ocean acidification on Posidonia oceanica epiphytic community and shoot productivity. Journal of Ecology 2015; 103(6): 1594–1609. doi: 10.1111/1365-2745.12477.

30. Cox TE, Gazeau F, Alliouane S, et al. Effects of in situ CO2 enrichment on structural characteristics, photosynthesis and growth of the Mediterranean seagrass Posidonia oceanica. Biogeosciences 2016; 13(7): 2179–2194. doi: 10.5194/bg-13-2179-2016.

31. Bianchi CN, Morri C. Marine biodiversity of the Mediterranean Sea: Situation, problems and prospects for future research. Marine Pollution Bulletin 2000; 40(1): 367–376. doi: 10.1016/S0025-326X(00)00027-8.

32. Boudouresque CF. Marine biodiversity in the Mediterranean: Status of species, populations and communities. Scientific Reports of the Port-Cross National Park 2004; 20: 97–146.

33. Giaccone G. L’origine della biodiversità vegetale nel Mediterraneo (Italian) [The origin of Mediterranean plant biodiversity]. Genova: Notiziario della Società Italiana di Biologia Marina; 1999. p. 35–51.

34. Lejeusne C, Chevaldonné P, Pergent-Martini C, et al. Climate change effects on a miniature ocean: The high diverse, highly impacted Mediterranean Sea. Trends in Ecology & Evolution 2010; 25(4): 250–260. doi: 10.1016/j.tree.2009.10.009.

35. Myers N, Mittermeier RA, Mittermeier CG, et al. Biodiversity hotspots for conservation priorities. Nature 2000; 403: 853–858. doi: 10.1038/35002501.

36. Ghirardelli E. La vita nelle acque (Italian) [Life in the waters]. Torino: UTET; 1981. p. 610.

37. Pasqualini V, Pergent-Martini C, Clabaut P, Pergent G. Mapping of Posidonia oceanica using aerial photographs and side scan sonar: Application off the Island of Corsica (France). Estuarine, Coastal and Shelf Science 1998; 47(3): 359–367. doi: 10.1006/ecss.1998.0361.

38. Marbà N, Díaz-Almela E, Duarte CM. Mediterranean seagrass (Posidonia oceanica) loss between 1842 and 2009. Biological Conservation 2014; 176: 183–190. doi: 10.1016/j.biocon.2014.05.024.

39. Chefaoui RM, Duarte CM, Serrão EA. Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea. Global Change Biology 2018; 24(10): 4919–4928. doi: 10.1111/gcb.14401.

40. Parmesan C. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 2006; 37: 637–669. doi: 10.1146/annurev.ecolsys.37.091305.110100.

41. Boudouresque CF, Blanfunè A, Fernandez C, et al. Marine biodiversity warming vs. biological invasions and overfishing in the Mediterranean Sea: Take care, “One train can hide another”. MOJ Ecology and Environmental Science 2017; 2(4): 172–183. doi: 10.15406/mojes.2017.02.00031.

42. Martínez-Abraín A, Castejón-Silvo I, Roiloa S. Foreesing the future of Posidonia oceanica meadows by accounting for the past evolution of the Mediterranean Sea. ICES Journal of Marine Science 2022; 79(10): 2597–2599. doi: 10.1093/icesjms/fsac212.

43. Marín-Guirao L, Ruiz JM, Dattolo E, et al. Physiological and molecular evidence of differential short-term heat tolerance in Mediterranean seagrasses. Scientific Reports 2016; 6: 28615. doi: 10.1038/srep28615.

44. Marín-Guirao L, Bernardeau-Esteller J, García-Muñoz R, et al. Carbon economy of Mediterranean seagrasses in response to thermal stress. Marine Pollution Bulletin 2018; 135: 617–629.

45. Sánchez-Jerez P, Barberá-Cebrián C, Ramos-Esplá AA. Influence of the structure of Posidonia oceanica meadows modified by bottom trawling on crustacean assemblages: Comparison of amphipods and decapods. Scentia Marina 2000; 64(3): 319–326.

46. Guilini K, Weber M, de Beer D, et al. Response of Posidonia oceanica seagrass and its epibiont communities to ocean acidifications. PloS One 2017; 12(8): e0181531. doi: 10.1371/journal.pone.0181531.

47. Nijkamp P. Urban environmental quality improvement in developing countries: Socio-ecological possibilities and limits. Amsterdam: Vrije Universiteit; 1993. p. 1–50.

48. Ietto F, Salvo F, Cantasano N. The quality of life with reference to the local environmental management: A pattern in Bivona country (Calabria, Southern Italy). Ocean & Coastal Management 2014; 102(Part A): 340–349. doi: 10.1016/j.ocecoaman.2014.10.014.

49. United Nations. World population prospects 2019–Data booklet. New York: United Nations; 2019. p. 1–25.

50. Birot Y, Gracia C, Matteucci G, et al. L’eau pour la forèt et les hommes en région méditerranéen (French) [Water for forests and people in the Mediterranean region]. Forêt Méditerranéenne 2011; XXXII(4): 359–362.




DOI: https://doi.org/10.24294/nrcr.v6i1.1961

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Nicola Cantasano

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.