Climate change and emerging pathogens: Toward nature-based solutions

Francesco Chiappelli, Olivia Sekimoto

Article ID: 1944
Vol 6, Issue 1, 2023

VIEWS - 987 (Abstract) 274 (PDF)

Abstract


Our planet has experienced several drastic changes in climate during its history. Nonetheless, human activity in the last two hundred years of industrialization has brought about a significant rise in greenhouse gases, which have led to inexorable global warming and climate change, a direct threat to our ecosystem. Global warming is precipitating the thawing of peri-glacial permafrost, which then releases additional greenhouse gasses, which can be toxic to our health, and alter fresh water supplies and crops. Melting permafrost also releases ancient and novel pathogens potentially harmful to human health. This paper outlines certain nature-based solutions that could bring about carbon-neutral energy generation, as well as immune protective interventions.


Keywords


Global Warming; International Commission on Stratigraphy (ICS); Atlantic Meridional Overturning Circulation (AMOC); Carbon Dioxide (CO2); Global Warming Potential (GWP); Vitamin D Receptor (VDR); Vitamin D3 (D3); T Helper 1 (TH1); Interleukin (IL)-2

Full Text:

PDF


References


1. Denton GH, Anderson RF, Toggweiler JR, et al. The last glacial termination. Science 2010; 328(5986): 1652–1656. doi: 10.1126/science.1184119. PMID: 20576882.

2. Waters CN, Zalasiewicz J, Summerhayes C, et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 2016; 351(6269): aad2622. doi: 10.1126/science.aad2622. PMID: 26744408.

3. Johnson TC, Barry SL. Chan Y, Wilkinson P. Decadal record of climate variability spanning the past 700 yr in the Southern Tropics of East Africa. Geology 2001; 29(1): 83–86. doi: 10.1130/0091-7613(2001)029<0083.

4. Lozano-García Mdel S, Caballero M, Ortega B, et al. Tracing the effects of the Little Ice Age in the tropical lowlands of eastern Mesoamerica. Proceedings of the National Academy of Sciences of the United States of America 2007; 104(41): 16200–16203. doi: 10.1073/pnas.0707896104. PMID: 17913875.

5. Wanamaker AD Jr, Butler PG, Scourse JD, et al. Surface changes in the North Atlantic meridional overturning circulation during the last millennium. Nature Communications 2012; 3: 899. doi: 10.1038/ncomms1901. PMID: 22692542.

6. Thornalley DJ, Elderfield H, McCave IN. Holocene oscillations in temperature and salinity of the surface subpolar North Atlantic. Nature 2009; 457(7230): 711–714. doi: 10.1038/nature07717. PMID: 19194447.

7. Berglund S, Döös K, Groeskamp S, McDougall TJ. The downward spiralling nature of the North Atlantic Subtropical Gyre. Nature Communications 2022; 13(1): 2000. doi: 10.1038/s41467-022-29607-8. PMID: 35422049.

8. Yang Q, Dixon TH, Myers PG, et al. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation. Nature Communications 2016; 7: 10525. doi: 10.1038/ncomms10525. PMID: 26796579.

9. Little CM, Hu A, Hughes CW, et al. The relationship between U.S. east coast sea level and the Atlantic meridional overturning circulation: A review. Journal of Geophysical Research: Oceans 2019; 124(9): 6435–6458. doi: 10.1029/2019JC015152. PMID: 31763114.

10. Delworth TL, Cooke WF, Naik V, et al. A weakened AMOC may prolong greenhouse gas-induced Mediterranean drying even with significant and rapid climate change mitigation. Proceedings of the National Academy of Sciences of the United States of America 2022; 119(35): e2116655119. doi: 10.1073/pnas.2116655119. PMID: 35994643.

11. Palter JB. The role of the Gulf Stream in European climate. Annual Review of Marine Science 2015; 7: 113–137. doi: 10.1146/annurev-marine-010814-015656. PMID: 25560606.

12. Olson R, An SI, Fan Y, Evans JP. Accounting for skill in trend, variability, and autocorrelation facilitates better multi-model projections: Application to the AMOC and temperature time series. PLoS One 2019; 14(4): e0214535. doi: 10.1371/journal.pone.0214535. PMID: 30969982.

13. McMichael C. Climate change-related migration and infectious disease. Virulence 2015; 6(6): 548–553. doi: 10.1080/21505594.2015.1021539. PMID: 26151221.

14. He Q, Silliman BR. Climate change, human impacts, and coastal ecosystems in the Anthropocene. Current Biology 2019; 29(19): R1021–R1035. doi: 10.1016/j.cub.2019.08.042. PMID: 31593661.

15. Malhi Y, Franklin J, Seddon N, et al. Climate change and ecosystems: Threats, opportunities and solutions. Philosophical Transactions of the Royal Society B: Biological Sciences 2020; 375(1794): 20190104. doi: 10.1098/rstb.2019.0104. PMID: 31983329.

16. Mariotti A. Female climate science pioneer steps out of obscurity. Nature 2019; 571(7764): 174. doi: 10.1038/d41586-019-02117-2. PMID: 31289396.

17. Cardoso SSS, Cartwright JHE, Huppert HE. Stokes, Tyndall, Ruskin and the nineteenth-century beginnings of climate science. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2020; 378(2174): 20200064. doi: 10.1098/rsta.2020.0064. PMID: 32507093.

18. Salas RN. The growing link between climate change and health. NEJM Catalyst: Innovations in Care Delivery 2022; 3(3): 1–25. doi: 10.1056/CAT.22.0052.

19. Myers SS, Smith MR, Guth S, et al. Climate change and global food systems: Potential impacts on food security and undernutrition. Annual Review of Public Health 2017; 38: 259–277. doi: 10.1146/annurev-publhealth-031816-044356. PMID: 28125383.

20. Lake IR, Hooper L, Abdelhamid A, et al. Climate change and food security: Health impacts in developed countries. Environmental Health Perspectives 2012; 120(11): 1520–1526. doi: 10.1289/ehp.1104424. PMID: 23124134.

21. Botelho J, Machado V, Proença L, et al. Vitamin D deficiency and oral health: A comprehensive review. Nutrients 2020; 12(5): 1471. doi: 10.3390/nu12051471. PMID: 32438644.

22. Colotta F, Jansson B, Bonelli F. Modulation of inflammatory and immune responses by vitamin D. Journal of Autoimmunity 2017; 85: 78–97. doi: 10.1016/j.jaut.2017.07.007. PMID: 28733125.

23. Sassi F, Tamone C, D’Amelio P. Vitamin D: Nutrient, hormone, and immunomodulator. Nutrients 2018; 10(11): 1656. doi: 10.3390/nu10111656. PMID: 30400332.

24. Baeke F, Takiishi T, Korf H, et al. Vitamin D: Modulator of the immune system. Current Opinion in Pharmacology 2010; 10(4): 482–496. doi: 10.1016/j.coph.2010.04.001. PMID: 20427238.

25. Cantorna MT, Snyder L, Lin YD, Yang L. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients 2015; 7(4): 3011–3021. doi: 10.3390/nu7043011. PMID: 25912039.

26. Chiappelli F, Khakshooy A, Gilardi J. Immune suppression. In: Fink G (editor). Handbook of stress volume 5. Stress: Immunology and inflammation. Amsterdam, Netherlands: Elsevier; 2022. p. 400.

27. Ben-Eltriki M, Hopefl R, Wright JM, Deb S. Association between vitamin D status and risk of developing severe COVID-19 infection: A meta-analysis of observational studies. Journal of the American Nutrition Association 2022; 41(7): 679–689. doi: 10.1080/07315724.2021.1951891. PMID: 34464543.

28. Stroehlein JK, Wallqvist J, Iannizzi C, et al. Vitamin D supplementation for the treatment of COVID-19: A living systematic review. Cochrane Database of Systematic Reviews 2021; 5(5): CD015043. doi: 10.1002/14651858.CD015043. PMID: 34029377.

29. Chiappelli F, Fotovat L. Post acute CoViD-19 syndrome (PACS) - Long CoViD. Bioinformation 2022; 18(10): 908–911. doi: 10.6026/97320630018908.

30. Biskaborn BK, Smith SL, Noetzli J, et al. Permafrost is warming at a global scale. Nature Communications 2019; 10(1): 264. doi: 10.1038/s41467-018-08240-4. PMID: 30651568.

31. Edwards A, Cameron KA, Cook JM, et al. Microbial genomics amidst the Arctic crisis. Microbial Genomics 2020; 6(5): e000375. doi: 10.1099/mgen.0.000375. PMID: 32392124.

32. Turetsky MR, Abbott BW, Jones MC, et al. Permafrost collapse is accelerating carbon release. Nature 2019; 569(7754): 32–34. doi: 10.1038/d41586-019-01313-4. PMID: 31040419.

33. Schuur EA, McGuire AD, Schädel C, et al. Climate change and the permafrost carbon feedback. Nature 2015; 520(7546): 171–179. doi: 10.1038/nature14338. PMID: 25855454.

34. Smith O, Dunshea G, Sinding MS, et al. Ancient RNA from Late Pleistocene permafrost and historical canids shows tissue-specific transcriptome survival. PLoS Biology 2019; 17(7): e3000166. doi: 10.1371/journal.pbio.3000166. PMID: 31361744.

35. Lee EJ, Merriwether DA, Kasparov AK, et al. Ancient DNA analysis of the oldest canid species from the Siberian Arctic and genetic contribution to the domestic dog. PLoS One. 2015; 10(5): e0125759. doi: 10.1371/journal.pone.0125759. PMID: 26018528.

36. Shmakova L, Malavin S, Iakovenko N, et al. A living bdelloid rotifer from 24,000-year-old Arctic permafrost. Current Biology 2021; 31(11): R712–R713. doi: 10.1016/j.cub.2021.04.077. PMID: 34102116.

37. Nikrad MP, Kerkhof LJ, Häggblom MM. The subzero microbiome: Microbial activity in frozen and thawing soils. FEMS Microbiology Ecology 2016; 92(6): fiw081. doi: 10.1093/femsec/fiw081. PMID: 27106051.

38. Mackelprang R, Saleska SR, Jacobsen CS, et al. Permafrost meta-omics and climate change. Annual Review of Earth and Planetary Sciences 2016; 44: 439–462. doi: 10.1146/annurev-earth-060614-105126.

39. Wood JR. DNA barcoding of ancient parasites. Parasitology 2018; 145(5): 646–655. doi: 10.1017/S0031182018000380. PMID: 29557324.

40. Ernakovich JG, Barbato RA, Rich VI, et al. Microbiome assembly in thawing permafrost and its feedbacks to climate. Global Change Biology 2022; 28(17): 5007–5026. doi: 10.1111/gcb.16231. PMID: 35722720.

41. Trubl G, Roux S, Solonenko N, et al. Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils. PeerJ 2019; 7: e7265. doi: 10.7717/peerj.7265. PMID: 31309007.

42. Wu R, Bottos EM, Danna VG, et al. RNA viruses linked to eukaryotic hosts in thawed permafrost. mSystems 2022; 7(6): e0058222. doi: 10.1128/msystems.00582-22. PMID: 36453933.

43. Rigou S, Santini S, Abergel C, et al. Past and present giant viruses diversity explored through permafrost metagenomics. Nature Communications 2022; 13(1): 5853. doi: 10.1038/s41467-022-33633-x. PMID: 36207343.

44. Chiappelli F, Penhaskashi J. Permafrost immunity. Bioinformation 2022 18: 734–738. doi: 10.6026/97320630018734.

45. Chiappelli F. Putative natural history of CoViD-19. Bioinformation 2020; 16(5): 398–403. doi: 10.6026/97320630016398. PMID: 32831521.

46. Chiappelli F. Towards neuro-CoViD-19. Bioinformation 2020; 16(4): 288–292. doi: 10.6026/97320630016288. PMID: 32773986.

47. Chiappelli F, Khakshooy A, Greenberg G. CoViD-19 immunopathology and immunotherapy. Bioinformation 2020; 16(3): 219–222. doi: 10.6026/97320630016219. PMID: 32308263. PMCID: PMC7147500.

48. Chiappelli F. Transnational environmental restoration (TER) for climate solutions. Solutions for a sustainable and desirable future. The Solutions Journal 2019; 10(1).

49. McDonald J, Harkin J, Harwood A, et al. Supporting evidence-based adaptation decision-making in Tasmania: A synthesis of climate change adaptation research. Gold Coast: National Climate Change Adaptation Research Facility; 2013. p. 173.

50. Chiappelli F, Khakshooy A, Balenton N. New frontiers in comparative effectiveness research. In: Khakshooy A, Chiappelli F (editors). Practical biostatistics in translational healthcare. New York: Springer-US; 2018.

51. Chiappelli F, Balenton N. Translational research and effectiveness: Going forward into the 21st century. In: Chiappelli F (editor). Translational research: Recent progress and future directions. Hauppauge, NY: Nova Science Publisher, Inc.; 2018.

52. Chiappelli F. Personal protective equipment (PPE) in a time of pandemic. Solutions for a sustainable and desirable future. The Solutions Journal 2020; 11(2).

53. Karnataka Solar Power Development Corporation. Pavagada Solar Park, Karnataka [Internet]. New York: Power Technology; 2020 [published 2020 May 5]. Available from: https://www.power-technology.com/projects/pavagada-solar-park-karnataka/.

54. Platio Solar [Internet]. Budapest: Platio Solar; 2022. Available from: https://platiosolar.com.

55. Brown B, Wilkins M, Saha R. Rhodopseudomonas palustris: A biotechnology chassis. Biotechnology Advances 2022; 60: 108001. doi: 10.1016/j.biotechadv.2022.108001. PMID: 35680002.

56. Li M, Ning P, Sun Y, et al. Characteristics and application of rhodopseudomonas palustris as a microbial cell factory. Frontiers in Bioengineering and Biotechnology 2022; 10: 897003. doi: 10.3389/fbioe.2022.897003. PMID: 35646843.

57. Chiappelli F, Balenton N, Khakshooy A. Future innovations in viral immune surveillance: A novel place for bioinformation and artificial intelligence in the administration of health care. Bioinformation 2018; 14(5): 201–205. doi: 10.6026/97320630014201. PMID: 30108416.

58. Arevalo CP, Bolton MJ, Le Sage V, et al. A multivalent nucleoside-modified mRNA vaccine against all known influenza virus subtypes. Science 2022; 378(6622): 899–904. doi: 10.1126/science.abm0271. PMID: 36423275.

59. Long DD, Aggen JB, Christensen BG, et al. A multivalent approach to drug discovery for novel antibiotics. The Journal of Antibiotics 2008; 61(10): 595–602. doi: 10.1038/ja.2008.79. PMID: 19168973.

60. Chiappelli F, Fotovat L. Viral interference in CoViD-19. Bioinformation 2022; 18: 768–773. doi: 10.6026/97320630018768

61. Xie G, Dong H, Liang Y, et al. CAR-NK cells: A promising cellular immunotherapy for cancer. EBioMedicine 2020; 59: 102975. doi: 10.1016/j.ebiom.2020.102975. PMID: 32853984.

62. Young RM, Engel NW, Uslu U, et al. Next-generation CAR T-cell therapies. Cancer Discovery 2022; 12(7): 1625–1633. doi: 10.1158/2159-8290.CD-21-1683. PMID: 35417527.




DOI: https://doi.org/10.24294/nrcr.v6i1.1944

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Francesco Chiappelli, Olivia Sekimoto

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.