Tree structure and composition of the secondary tropical deciduous forest in the Central Depression, Chiapas, Mexico

Mercedes Concepción Gordillo Ruiz, Miguel Ángel Pérez Farrera, Miguel Ángel Castillo Santiago

Article ID: 1549
Vol 3, Issue 2, 2020

VIEWS - 395 (Abstract) 273 (pdf)

Abstract


Tropical deciduous forest is highly threatened and transformed by agricultural activities in Chiapas; however, little is known about its successional dynamics and regeneration potential. The objective of this research was to evaluate the regenerative capacity of secondary forests through changes in richness, diversity, composition, and structure in a forest reserve in the Central Depression of Chiapas. Twenty sampling units (SU) of 1,000 m2 were established in forests with different ages of abandonment (C10, C19, C35 and >C40, representing 10 years, 19 years, 35 years and 40 years, respectively), in which all individuals ≥5 cm normal diameter (ND) were measured. Attributes of structure and diversity were compared in each condition by analysis of variance and Tukey mean comparison test (p < 0.05) and floristic composition by ordination and classification analysis. A total of 142 species grouped in 96 genera and 41 families were recorded. Leguminosae was the family with the most species and individuals. The species with the highest relative abundances were Montanoa tomentosa (5.1%) and Tecoma stans (5%). Significant differences (p < 0.05) were found in cumulative richness, diversity (Shannon-Weiner H’ and 1D), density of individuals (ind ha-1), maximum height (m), basal area (m2 ha-1) and aboveground biomass (Mg ha-1). The multivariate analysis of variance procedure with permutations indicated significant differences (p < 0.05) in species composition between early (C10 and C19) and later (C35–C40) conditions. It was concluded that the structure and floristic composition of the secondary forest is recovering slowly (low resilience), so it is necessary to implement activities conducive to its conservation in the short term.


Keywords


Tree Community; Disturbance; Diversity; Floristic Similarity; Ecological Succession; Resilience

Full Text:

pdf


References


1. Rzedowski J. El endemismo en la flora fanerogámica mexicana: Una apreciación analítica preliminar (Spanish) [Endemism in the Mexican phanerogamic flora: A preliminary analytical appraisal]. Acta Botanica Mexicana 1991; 15: 47–64.

2. Trejo I, Dirzo R. Deforestation and seasonally dry tropical forest: A national and local analysis in Mexico. Biological Conservation 2000; 94(2): 133–142.

3. Pérez-Farrera MA, Espinosa EM. Depresión Central-Comalapa, Chiapas (Spanish) [Central Depression-Comalapa, Chiapas]. In: Ceballos G, Martínez L, García A, et al. (editors). Diversidad, amenazas y áreas prioritarias para la conservación de las selvas secas del Pacífico de México (Ciencia y Tecnologia) (Spanish) [Diversity, threats and priority areas for the conservation of the dry forests of the Mexican Pacific (Science and Technology)]. Mexico: Fondo de Cultura Económica; 2010. p. 543–547.

4. Rzedowski J, Calderon G. Data for the assessment of phanergamic flora of tropical deciduous forests of Mexico. Acta Botánica Mexicana 2013; 102: 1–23.

5. Quesada M, Sanchez-Azofeifa GA, Álvarez-Anorve M, et al. Succession and management of tropical dry forest in the Americas: Review and new perspectives. Forest Ecology Management 2009; 258(6): 1014–1024.

6. William-Linera G, Álvarez-Aquino C, Hernández-Ascención E, et al. Early successional sites and the recovery of vegetation structure and tree species of the tropical dry forest in Veracruz, Mexico. New Forests 2011; 42(1): 131–148.

7. Guariguata M, Ostertag R. Neotropical secondary forest succession: Changes in structural and functional characteristics. Forest Ecology and Management 2001; 148(1–3): 185–2006.

8. Vieira DLM, Scariot A. Principles of natural regeneration of tropical dry forests for restoration. Restoration Ecology 2006; 14(1): 11–20.

9. Lebrija-Trejos E, Meave JA, Poorter L, et al. Pathways, mechanisms and predictability of vegetation change during tropical dry forest succession. Perspective of Plant Ecology 2010; 12(4): 267–275.

10. Villalobos SM. Patrones, procesos y mecanismos de la comunidad regenerativa de un bosque tropical caducifolio en un gradiente sucesional (Spanish) [Patterns, processes and mechanisms of the regenerative community of a tropical deciduous forest in a successional gradient] [PhD thesis]. Morelia, Mexico: Universidad Nacional Autónoma de México; 2012.

11. Norden N, Angarita AH, Bongers F, et al. Succesional dynamics in Neotropical forest are as uncertain as they are predictable. PNAS 2015; 112(26): 8013–8018.

12. Lebrija-Trejos E, Bongers F, Pérez-García EA, et al. Successional change and resilience of a very dry tropical deciduous forest following shifting agriculture. Biotropica 2008; 40(4): 422–431.

13. Derroire G, Balvanera P, Castellanos-Castro C, et al. Resilience of tropical dry forests—A meta-analysis of changes in species diversity and composition during secondary succession. Oikos 2016; 125(10): 1386–1397.

14. Ewel J. Differences between wet and dry successional tropical ecosystems. International Journal of Tropical Geology, Geography and Ecology 1977; 1(2): 103–117.

15. Murphy PG, Lugo AE. Structure and biomass of a subtropical dry forest in Puerto Rico. Biotropica 1986; 18(2): 89–96.

16. Sheil D, Burslem DF. Disturbing hypotheses in tropical forests. Trends Ecology Evolution 2003; 18(1): 18–26.

17. Kalacska M, Sánchez-Azofeita GA, Calvo-Alvarado JC, et al. Species composition, similarity and diversity in three successional stages of a seasonally dry tropical forest. Forest Ecology and Management 2004; 200(1–3): 227–247.

18. Leirana-Alcocer JL, Hernández-Betancourt S, Salinas-Peba L, et al. Changes in the structure and composition of the vegetation relative to the years of abandonment of agricultural land in the tropical dry forest of the Dzilam reservation, Yucatan, Mexico. Polibotánica 2009; 27: 53–70.

19. Becknell JM, Kucek LK, Powers JS. Aboveground biomass in mature and secondary seasonally dry tropical forests: A literature review and global synthesis. Forest Ecology and Management 2012; 276: 88–95.

20. Chazdon RL, Letcher SG, Van Breugel M, et al. Rates of change in tree communities of secondary Neotropical forests following major disturbances. Philosophical Transactions of the Royal Society B: Biological Sciences 2007; 362(1478): 273–289.

21. Poorter L, Bongers F, Aide TM, et al. Biomass resilience of Neotropical secondary forests. Nature 2016; 530(7589): 211–214.

22. Miranda F. La vegetación de Chiapas: Primera parte (Spanish) [The vegetation of Chiapas: Part One.]. Mexico: Gobierno del Estado de Chiapas; 1952.

23. López-Toledo JF, Váldez-Hernández JI, Pérez-Farrera MA, et al. Tree composition and structure of a seasonally dry tropical forest at la sepultura biosphere reserve, Chiapas. Revista Mexicana de Ciencias Forestales 2012; 5(12): 44–55.

24. Reyes-Garcia A, Sousa M. Depresión Central de Chiapas, la selva baja caducifolia (Spanish) [Central Depression of Chiapas, the low deciduous forest]. Mexico: Universidad Nacional Autónoma de México/Instituto de Biología; 1997.

25. Ceballos G, Martínez AL, García E, et al. Diversidad, amenazas y áreas prioritarias para la conservación de las selvas secas del Pacífico de México (Spanish) [Diversity, threats and priority areas for the conservation of the dry forests of the Pacific of Mexico]. Mexico: Conabio/Fondo de Cultura Económica; 2010.

26. Espinosa-Jiménez JA, López-Cruz A, Pérez-Farrera MA, et al. A floristic study of La Chacona-Juan Crispin ravine and adjacent zones, Central Depression of Chiapas, Mexico. Botanical Sciences 2014; 92(2): 205–241.

27. Sánchez-Molina D. Estructura y composición florística de la subcuenca del río Sabinal, Chiapas, México (Spanish) [Structure and floristic composition of the Sabinal river sub-basin, Chiapas, Mexico] [PhD thesis]. Chiapas, Mexico: Universidad de Ciencias y Artes de Chiapas; 2014.

28. Rocha-Loredo AC, Ramírez-Marcial N, González-Espinosa M. Tree species richness and diversity of the seasonally dry forest in Central Depression of Chiapas. Boletín de la Sociedad Botánica de México 2010; 87: 89–103.

29. García E. Modificaciones al sistema de clasificación climática de Köppen (Spanish) [Modifications to the Köppen climate classification system]. Mexico: Instituto de Geografia y Universidad Nacional Autónoma de México; 2004.

30. López EJG. Estimación de tormentas y avenidas para el diseño de las obras de protección del Río Sabinal (Spanish)[Storm and flood estimation for the design of the Sabinal River protection works] [Master’s thesis]. Chiapas, Mexico: Universidad Autónoma de Chiapas; 2006.

31. The National Institute of Statistics, Geography and Informatics. Carta edafológica Escala 1:250,000. Catálogo de símbolos. Mexico: INEGI; 1985.

32. Secretaria de Medio Ambiente y Vivienda. Programa de ordenamiento ecológico territorial de la subcuenca del Río Sabinal (Spanish) [Ecological land use planning program for the Sabinal River sub-basin]. Mexico: SEMAVI; 2009.

33. Colwell RK. EstimateS v. 8.2.0. Statistical estimation of species richness and shared species from samples. USA: University Connecticut; 2009.

34. Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 2016; 181(1): 1–20.

35. Brower JE, Zar JH, Ende CN. Field and laboratory methods for general ecology. 4th ed. Boston, USA: WCB-McGraw-Hill; 1998.

36. Magurran AE. Measuring biological diversity. UK: Blackwell Publishing; 2004.

37. Jost L. Entropy and diversity. Oikos 2006; 113(2): 110–116.

38. Chao A, Ma KH, Hsieh TC, et al. User’s guide for online program SpadeR: Species richness prediction and diversity estimation in R (SpadeR). Taiwan: National Tsing Hua University; 2016. p. 88.

39. Mueller-Dombois D, Ellemberg H. Aims and methods of vegetation ecology. 2nd ed. New Jersey, USA: Blackburn Press; 2002.

40. Martínez-Yrizar A, Sarukhan J, Pérez-Jiménez A, et al. Above-ground phytomass of a tropical deciduous forest on the coast of Jalisco, Mexico. Journal of Tropical Ecology 1992; 8(1): 87–96.

41. World Agroforestry. Tree functional attribute and ecological database. Nairobi, Kenya: ICRAF.

42. Gardner TA, Barlow J, Chazdon R, et al. Prospects for tropical forest biodiversity in a human-modified world. Ecology Letters 2008; 12(2): 561–582.

43. Minchin PR. An evaluation of relative robustness of techniques for ecological ordinations. Vegetatio 1987; 69(1/3): 89–107.

44. McArdle BH, Anderson MJ. Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology 2001; 82(1): 290–297.

45. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: GBIF.

46. Dupuy JM, Hernández-Stefanoni JL, HernándezJuárez RA, et al. Patterns and correlates of tropical dry forest structure and composition in a highly replicated chronosequence in Yucatan, Mexico. Biotropica 2012; 44(2): 151–162.

47. Beltrán-Rodríguez L, Valdez-Hernández JJ, Luna-Cavazos M, et al. Structure and tree diversity of secondary dry tropical forests in the Sierra de Huautla Biosphere Reserve, Morelos. Revista Mexicana de Biodiversidad 2018; 89(1): 108–122.

48. Vargas G, Werden LK, Powers JS. Explaining legume success in tropical dry forests based on seed germination niches: A new hypothesis. Biotropica 2015; 47(3): 277–280.

49.

50. Vázquez-Yanes C, Batis AI, Alcocer SM, et al. Árboles y arbustos nativos potencialmente valiosos para la restauración ecológica y la reforestación, Informe final-J084. (Spanish) [Ecological land use planning program for the Sabinal River sub-basinNative trees and shrubs potentially valuable for ecological restoration and reforestation, Final Report-J084]. Mexico: Conabio/Instituto de Ecología/UNAM; 1999.

51. Gelviz-Gelvez SM, Pavón HN. Diversity of shrub species in a semiarid zone of central Mexico. Ciencias Forestales y Medio Ambiente 2013; 19(3): 223–335.

52. Almazán-Núnez RC, Arizmendi AM, Eguiarte LE, et al. Changes in composition, diversity and structure of woody plants in successional stages of tropical dry forest in southwest Mexico. Revista Mexicana de Biodiversidad 2012; 83(4): 1096–1109.

53. Mora F, Martínez-Ramos M, Ibarra-Manríquez G, et al. Testing chronosequences through dynamic approaches: Time and site effects on tropical Dry Forest succession. Biotropica 2015; 47(1): 38–48.

54. López-Jiménez L, Durán-García R, Dupuy-Rda JM. Recovery of structure, diversity and composition of a tropical semievergreen forest in Yucatan, Mexico. Madera y Bosques 2019; 25(1): 1–16.

55. Connell JH. Diversity in tropical rain forests and coral reefs. Spence 1978; 199(4335): 1302–1310.

56. Hammond DS. Post-dispersal seed and seedling mortality of tropical dry forest trees after shifting agriculture, Chiapas, Mexico. Journal of Tropical Ecology 1995; 11(2): 295–313.

57. Trejo I. Distribución y diversidad de selvas bajas de México: Relaciones con el clima y el suelo (Spanish) [Distribution and diversity of lowland forests in Mexico: Relationships with climate and soil] [PhD thesis]. D.F., Mexico: Universidad Autónoma de México; 1998.

58. Read L, Lawrence D. Recovery of biomass following shifting cultivation in dry tropical forest of the Yucatan. Ecological Applications 2003; 13(1): 85–97.

59. Rozendaal MA, Chazdon RL, Arreola-Villa F, et al. Demographic drivers of aboveground biomass dynamics during secondary succession in Neotropical dry and wet forests. Ecosystems 2016; 20(2): 340–353.

60. Marin-Spiotta E, Cusak C, Ostertag R, et al. Trends in above and belowground carbon with forest regrowth after agricultural abandonment in the Neotropics. In: Randall WM (editor). Post-agricultural succession in the Neotropics. USA: Springer; 2007. p. 22–72.

61. Cordero J. Árboles de Centroamérica: un manual para extensionistas (Spanish) [Trees of Central America: A manual for extensionists]. UK: Bib. Orton IICA/CATIE; 2003.

62. Hilje B, Calvo-Alvarado J, Jiménez-Rodríguez C, et al. Tree species composition, breeding systems, and pollination and dispersal syndromes in three forest successional stages in a tropical dry forest in Mesoamerica. Tropical Conservation Science 2015; 8(1): 76–94.

63. Bongers F, Poorter L, Hawthorne WD, et al. The intermediate disturbance hypothesis applies to tropical forests, but disturbance contributes little to tree diversity. Ecology Letters 2009; 12(8): 1–8.

64. Vargas MF, Escobar S, Del Ángel R. Áreas naturales protegidas de México con decretos federales (Spanish) [Protected natural areas of Mexico with federal decrees]. D.F., México: Instituto Nacional de Ecología-SEMARNAP; 2000.

65. Rüger N, Williams-Linera G, Kissling WD, et al. Long-term impacts of fuelwood extraction on a tropical montane cloud forest. Ecosystems 2008; 11: 868–881.




DOI: https://doi.org/10.24294/nrcr.v3i2.1549

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Mercedes Concepción Gordillo Ruiz, Miguel Ángel Pérez Farrera, Miguel Ángel Castillo Santiago

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.