Interception and runoff of the high Andean forest in the “El Malmo” Protective Forest Reserve
Vol 3, Issue 2, 2020
VIEWS - 5016 (Abstract) 1047 (pdf)
Abstract
Tropical forests are globally important for their biodiversity and the ecosystem services, and they are key to the global water cycle. Anthropogenic changes and pressures affecting tropical forests affect the fundamental role of tropical forests in water supply. This study evaluates the relationship between the vegetation coverage in the high Andean forest of the “El Malmo” Protected Forest Reserve and the quality and quantity of intercepted runoff; the life zone analyzed comprises four types of cover: dense high Andean forest, low secondary vegetation, broadleaf plantation and mosaic of pasture with natural spaces. Eight setups (two per cover) were installed, each composed of a runoff plot and a precipitation meter under the canopy; data collection was carried out every eight days for 24 weeks. The results indicate that precipitation interception does not vary in each canopy, while surface runoff and its quality with respect to sediment are affected, which is mainly due to differences in soil physical conditions. The cover that allows the best dimensions of water quality and quantity is the dense high Andean forest. The influence of anthropic intervention in the area and the presence of invasive species negatively affect these variables. This work provides knowledge on the hydrological behavior of the reserve for forest management. It also generates information on the interception/runoff relationship in the forests of the Cundiboyacense region, which has not been available until now, becoming an starting point of comparison for further research in high Andean ecosystems.
Keywords
Full Text:
pdfReferences
1. Van der Zaag P, Savenije H. Water as an economic good: The value of pricing and the failure of markets. Netherlands: UNESCO-IHE Institute for Water Education; 2006. p. 28.
2. International Conference on Water and the Environment (ICWE). International conference on water and the environment: Development issues for the 21st century. Geneva: World Meteorological Organization; 1992.
3. Millennium Ecosystem Assessment. Ecosystems and human well-being: Synthesis. Washington: Island Press; 2005; p. 139.
4. Millennium Ecosystem Assessment. Ecosystems and human well-being: A framework for assessment. Washington: Island Press; 2005. p. 245.
5. Calder I, Aylward B. Forest and floods: Moving to an evidence-based approach to watershed and integrated flood management. Water International 2006; 3(1): 87–99.
6. Carvalho-Santos C, Pradiño Honrado J, Hein L. Hydrological services and the role offorest: Coneptualization and indicator-based with an illustraion at a regional scale. Ecological Complexity 2014; 20: 69–80. doi: 10.1016/j.ecocom.2014.09.001.
7. Brauman K, Daily G, Duarte T, et al. The nature and value of ecosystem Services: An overview highlighting hydrologic services. Annual Review of Environment and Resources 2007; 32: 67–98. doi: 10.1146/annurev.energy.32.031306.102758.
8. Tellez P. Simulación del ciclo hidrológico en tres tipos de uso del suelo de la Amazonía colombiana (Spanish) [Simulation of the hydrological cycle in three types of land use in the Colombian Amazon]. Bogotá: Universidad Nacional de Colombia; 2003. p. 124.
9. David J, Valente F, Gash J. Evaporation of intercepted rainfall. In: Andreson M (editor). Encyclopedia of hydrological sciences. Hoboken: John Wiley and Sons; 2005. p. 627–634.
10. Holder C. Rainfall interception and fog precipitation in a tropical montane cloud forest of Guatemala. Forest Ecology and Management 2004; 190: 373–384.
11. Institute of Hydrology, Meteorology and Environmental Studies of Colombia (IDEAM). Metodología del cálculo del Índice de Escases (Spanish) [Methodology for the calculation of the scarcity index]. Bogotá: Instituto de Hidrología, Meteorología y Estudios Ambientales; 2004. p. 37.
12. Livesley S, Baudinette B, Glover D. Rainfall interception and stem flow by eucalypt street trees—The impacts of canopy density and bark type. Urban Forestry & Urban Greening 2014; 13: 192–197. doi: 10.1016/j.ufug.2013.09.001.
13. Sánchez Nuñez D, Pinilla G, Mancera Pineda J. Efectos del uso del suelo en las propiedades edáficas y la escorrentía superficial en una cuenca de la Orinoquia Colombiana (Spanish) [Effects of land use on edaphic properties and surface runoff in a watershed of the Colombian Orinoquia]. Colombia Forestal 2015; 18(2): 255–272.
14. Neary D, Ice G, Jackson R. Linkages between forest soils and water quality and quantity. Forest Ecology and Management 2009; 258: 2269–2281.
15. Rodríguez A, Sepúlveda I, Camargo García J, et al. Pérdidas de suelo y nutrientes bajo diferentes coberturas vegetales en la zona Andina de Colombia (Spanish) [Soil and nutrient losses under different vegetation covers in the Andean zone of Colombia]. Acta Agronomica 2009; 58(3): 160–166.
16. Henriquez C, Azócar G, Aguayo M. Cambio de uso del suelo y escorrentía superficial: aplicación de un modelo de simulación espacial en Los Ángeles, VIII Región del Biobío, Chile (Spanish) [Land use change and surface runoff: Application of a spatial simulation model in Los Angeles, 8th District, Biobio, Chile]. Revista de Geografia Norte Grande 2006; 36: 61–74.
17. Herrera Y. Diagnóstico y concertación del Plan de Manejo de la Reserva Forestal Protectora El Malmo (Spanish) [Diagnosis and agreement of the Management Plan of the El Malmo Protected Forest Reserve]. Tunja: Corpoboyacá; 2005. p. 94.
18. Trujillo L, Vargas Rios O. Caracterización del borde de un relicto de bosque altoandino dominado por Chusquea Scandens y evaluación del efecto de disturbios experimentales sobre la regeneración natural en la Reserva Forestal Municipal de Cogua (Cundinamarca, Colombia) (Spanish) [Characterization of the edge of a high Andean forest relics dominated by Chusquea Scandens and evaluation of the effect of experimental disturbances on natural regeneration in the Municipal Forest Reserve of Cogua (Cundinamarca, Colombia)]. Acta Biológica Colombiana 2004; 9(2): 86–88.
19. Montenegro A, Vargas Ríos O. Caracterización de bordes de bosque altoandino e implicaciones para la restauración ecológica en la Reserva Forestal de Cogua (Colombia) (Spanish) [Characterization of high Andean forest edges and implications for ecological restoration in the Cogua Forest Reserve (Colombia)]. Revista de Biología Tropical 2008; 56(3): 1543–1556.
20. Cantillo Higuera E, Lozada Silva A, Pinzón Gonzalez J. Caracterización sucesional para la restauración de la Reserva Forestal Cárpatos, Guasca, Cundinamarca (Spanish) [Successional characterization for the restoration of the Cárpatos Forest Reserve, Guasca, Cundinamarca]. Colombia Forestal 2009; 12(1): 103–118.
21. Lowe S, Browne M, Boudjelas S, et al. 100 of the world’s worst invasive alien species: A selection from the global invasive species database. New Zealand: Fondation D’Entreprise Total; 2000. p. 12.
22. Arán D, García-Duro J, Reyes O, et al. Fire and invasive species: Modifications in the germination potential of Acacia melanoxylon, Conyza canadensis and Eucalyptus globulus. Forest Ecology and Management 2013; 302: 7–13. doi: 10.1016/j.foreco.2013.02.030.
23. Regional Autonomous Corporation of Boyacá-Corpoboyacá. Especies vegetales viveros Corpoboyaca (Spanish) [Plant species nurseries Corpoboyaca]. 2016. Available from: http://www.corpoboyaca.gov.co/cms/wp-content/uploads/2016/01/capitulo_i_descripcion_de_las_especies_vegetales_producidas_en_los_viveros_de_la_corporacion_autonoma_regional_de_boyaca-_corpoboyaca.pdf.
24. Cabrejo F, González G. Caracterización de la vegetación del bosque Altoandino del transecto Barón Germania de la Reserva Forestal “El Malmo” Tunja, Boyacá (Spanish) [Characterization of the vegetation of the High Andean forest of the Baron Germania transect of the Forest Reserve “El Malmo” Tunja, Boyacá]. Tunja: Universidad Pedagógica y Tecnológica de Colombia; 2002. p. 130.
25. Institute of Hydrology, Meteorology and Environmental Studies of Colombia (IDEAM). Leyenda Nacional de Coberturas de la Tierra. Metodología CORINE Land Cover adaptada para Colombia Escala 1:100.000 (Spanish) [National land cover legend. CORINE Land cover methodology adapted for Colombia scale 1:100,000]. Bogotá: Institute of Hydrology, Meteorology and Environmental Studies; 2010; p. 199.
26. ESRI. ArcGIS Desktop. Version 10.3.1. Redlans: Environmental System Research Institute; 2015.
27. IBM. IBM SPSS Statistics for Windows. Version 23. Armonk: International Business Machines Corporation.
28. León Peláez J, Gonzalez Hernandez M, Gallardo Lancho J. Distribución del Agua Lluvia en Tres Bosques Altoandinos de la Cordillera Central de Antioquia, Colombia (Spanish) [Rainwater distribution in three high Andean forests of the Central Cordillera of Antioquia, Colombia]. Revista Facultad Nacional de Agronomía Medellín 2010; 63(1): 5319–5336.
29. Kaurichev I. Prácticas de edafología (Spanish) [Practice of soil science]. Moscow: Mir; 1984. p. 279.
30. Rios N, Cardenas A, Andrade H, et al. Escorrentía superficial e infiltración en sistemas ganaderos convencionales y silvopastoriles en el trópico subhúmedo de Nicaragua y Costa Rica (Spanish) [Surface runoff and infiltration in conventional and silvopastoral livestock systems in the subhumid tropics of Nicaragua and Costa Rica]. Agroforestería en las Américas 2006; 45: 66–71.
31. Institute of Hydrology, Meteorology and Environmental Studies of Colombia (IDEAM). Hoja metodológica del indicador Índice de calidad del agua (Versión 1.00) (Spanish) [Methodological sheet of the water quality index indicator (Version 1.00)]. In IDEAM, Sistema de Indicadores Ambientales de Colombia. Bogotá: Instituto de Hidrología, Meteorología y Estudios Ambientales; 2011. p. 10.
32. Sarmiento Y, Torres N. Restauración en explotaciones de minas caliza (Spanish) [Restoration in limestone mining operations]. Revista Luna Azul 2008; 27: 75–84.
33. Levia D, Carlyle-Moses D, Tanaka T. Forest hydrology and biogeochemestry, synthesis of past research and future directions. New York: Springer; 2011. p. 740.
34. Álvaro W, Díaz M, Zabala J. Flórula de la Reserva Forestal Protectora El Malmo (Spanish) [Flora of the El Malmo Protected Forest Reserve]. Tunja: Universidad Pedagógica y Tecnológica de Colombia; 2006. p. 88.
35. Bruijnzeel L, Hamilton L. Decision time for cloud forest. Netherlands: UNESCO; 2000. p. 41.
36. Van Stan II J, Pypker T. A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation. Science of the Total Environment 2015; 536: 813–824. doi: 10.1016/j.scitotenv.2015.07.134.
37. Obregon A, Gehrig-Downie C, Gradstein R, et al. Canopy level fog occurrence in a tropical lowland forest of French Guiana as a prerequisite for high epiphyte diversity. Agricultural and Forest Meteorology 2011; 151: 290–300. doi: 10.1016/j.agrformet.2010.11.003.
38. Ataroff M, Naranjo M. Interception of water by pastures of Pennisetum clandestinum Hochst. ex Chiov. and Melinis minutiflora Beauv. Agricultural and Forest Meteorology 2009; 149: 1616–1620.
39. Villegas J. Análisis del conocimiento en la relación aguasuelo-vegetación para el Departamento de Antioquia (Spanish) [Analysis of knowledge in the water-soil-vegetation relationship for the Department of Antioquia]. Revista EIA 2004; 1: 73–79.
40. Ministry of Agriculture and Rural-Minagriculture Development. Boletín Agroclimático Febrero de 2016 (Spanish) [Agroclimatic Bulletin February 2016]. Colombia: Institute of Hydrology, Meteorology and Environmental Studies; 2016. Available from: http://www.ideam.gov.co/web/tiempo-y-clima/boletin-agroclimatico/-/document_library_display/o7HBhnNMuqY0/view/552413.
41. Bruijnzeel L. Deforestation and dry season flow in the tropics: A closer look. Journal of Tropical Forest Science 1989; 1(3): 229–243.
42. Krishnaswamy J, Bonell M, Venkatesh B, et al. The groundwater recharge response and hydrologic services of tropical humid forest ecosystems to use and reforestation: Support for the “infiltration-evapotranspiration trade-off hypothesis”. Journal of Hydrology 2013; 498: 191–209.
43. Ogden F, Crouch T, Stallard R, et al. Effect of land cover and use on dry season river runoff, runoff efficiency, and peak storm runoff in the seasonal tropics of Central Panama. Water Resources Research 2013; 49: 8443–8462.
44. Sun F, Lu Y, Wang J, et al. Soil moisture dynamics of typical ecosystems in response to precipitation: A monitoring-based analysis of hydrological service in the Qilian Mountains. Catena 2015; 129: 63–75. doi: 10.1016/j. catena.2015.03.001.
45. Marín-Castro B, Geissert D, Negrete-Yankelevich S, et al. Spatial distribution of hydraulic conductivity in soils of secondary tropical montane cloud forests and shade coffee agroecosystems. Geoderma 2016; 283: 57–67.
46. Ruiz Suescún O, Acosta Jaramillo J, León Pelaez J. Escorrentía superficial en bosques montanos naturales y plantados de Piedras Blancas, Antioquia (Spanish) [Surface runoff in natural and planted montane forests of Piedras Blancas, Antioquia (Colombia)]. Revista Facultad Nacional de Agronomía Medellín 2005; 58(1): 2635–2649.
47. Córcega E, Silva, O. Evaluación de la intercepción de lluvia, escorrentía y erosión hídrica en bosques de laderas subhúmedo-secas (Spanish) [Evaluation of rainfall interception, runoff and water erosion in sub-humid-dry slope forests] [Internet]. 2011. Available from: http://www.sian.inia.gob.ve/repositorio/congresos/CVCS19/.
48. Karlen D, Mausbach M, Doran J, et al. Soil quality: A concept, definition, and framework for evaluation. Soil Science Society of America Journal 1997; 61: 4–10.
49. Álvarez-Herrera J, Fernández J. Evaluación de la erosión de un Inceptisol de Tunja con diferentes coberturas al impacto de lluvias simuladas (Spanish) [Erosion evaluation of an Inceptisol of Tunja with different coverages to the impact of simulated rainfall]. Ingeniería e Investigación 2009; 29(3): 86–91.
50. De Souza A, Fonseca D, Libório R, et al. Influence of riparian vegetation and forest structure on the water quality of rural low-order streams in SE Brazil. Forest Ecology and Management 2013; 298: 12–18. doi: 10.1016/j.foreco.2013.02.022.
51. Singh S, Mishra A. Spatiotemporal analysis of the effects of forest covers on stream water quality in Western Ghats of peninsular India. Journal of Hydrology 2014; 519: 214–224.
52. Gutiérrez Acevedo E, Cortés Pérez F, Gómez Albarrán N. Compost como inductor de la sucesión vegetal en un área afectada por minería a cielo abierto en la microcuenca del río La Vega, Tunja, Boyacá (Spanish) [Compost as an inducer of plant succession in an area affected by open-pit mining in the micro-watershed of La Vega river, Tunja, Boyacá]. Colombia Forestal 2015; 18(2): 241–254.
53. Lei H, Peng Z, Yigang H, Yang, Z. Vegetation and soil restoration in refuse dumps from open pit coal mines. Ecological Engineering 2016; 94: 638–646.
54. Nepstad D, Bezerra T, Tepper D, et al. Cómo abordar los motores agrícolas de la deforestación en Colombia (Spanish) [Addressing the agricultural driving force of deforestation in Colombia]. San Francisco: Earth Inovation Institute; 2013. p. 107.
55. Armenteras D, Rodríguez Erazo N. Dinámicas y causas de deforestación en bosques de Latino América: Una revisión desde 1990 (Spanish) [Dynamics and causes of deforestation in Latin American forests: A review since 1990]. Colombia Forestal 2014; 17(2): 233–246.
56. Karevia P, Tallis H, Ricketts T, et al. Natural capital, theory and practice of mapping ecosystem services. New York: Oxford University Press; 2011. p. 392.
57. Quin Y, Gartner T, Minnemeyer S, et al. Global forest watch water metadata document. Washington: World Resources Institute; 2016. p. 36.
58. Borkey P, Cassar A, Meadors L, et al. Freshwater ecosystem services. In: Ecosystems and human well-being: Policy responses. Washington: Island Press; 2005. p. 215–252.
59. Decree 953. Ministerio de Ambiente y Desarrollo Sostenible 17 de Mayo de 2013 (Spanish) [Ministry of Environment and Sustainable Development May 17, 2013].
60. Blanco J, Wunder S, Navarrete F. La Experiencia Colombiana en Esquemas de Pagos por Servicios Ambientales (Spanish) [The Colombian experience in payments for environmental services schemes]. In: Ortega S (editor). Reconocimiento de los servicios ambientales: Una oportunidad para la gestión de los recursos naturales en Colombia. Bogotá: Minambiente, UASPNN, WWF, CI, TNC; 2008. p. 109–170.
61. Karlen D, Ditzler C, Andrews S. Soil quality: Why and how? Geoderma 2003; 114: 145–156.
62. Food and Agriculture Organization (FAO). Soil is a non-renewable resource. Rome: FAO. 2015. Available from: http://www.fao.org/3/a-i4373s.pdf.
DOI: https://doi.org/10.24294/nrcr.v3i2.1546
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Albaluz Ramos Franco, Dolors Armenteras Pascual
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.