Climatic water balance of mesophilic montane forest in the Huasteca region
Vol 3, Issue 1, 2020
VIEWS - 3651 (Abstract) 476 (pdf)
Abstract
We worked in areas of mesophilic mountain forest in the states of Puebla, Hidalgo and Veracruz, located within the Huasteca region. By its nature, the mountain mesophyll forest is a good water catcher. But its forest cover has decreased as a consequence of anthropogenic activities, negatively impacting water catchment. The temporal evolution (1979–2015) of the humidity index of the areas where mountain mesophyll forest exists was associated with the changes in its cover from 1997 to 2016. The results show that from 1979 to 2004, the humidity index decreased as a consequence of more than 29% deforestation. From 2005 to 2016, the deforestation rate did not exceed 1% and the humidity index presented an increasing trend. The conservation of this ecosystem is recommended as a priority to improve the amount of water in the region.
Keywords
Full Text:
pdfReferences
1. Villaseñor JL. El bosque húmedo de montaña en México y sus plantas vasculares: Catálogo florístico-taxonómico (Spanish) [The montane rainforest in Mexico and its vascular plants: A floristic-taxonomic catalog]. México, D.F.: Universidad Nacional Autónoma de México; 2010. p. 42.
2. García-De la Cruz Y, Olivares-López LA, Ramos-Prado JM. Tree structure and composition of a fragment of cloud forest in Veracruz state. Revista Chapingo Serie Ciencias Forestales y del Ambiente 2013; 19(1): 91–101.
3. Instituto Nacional de Estadística y Geografía. Uso del suelo y vegetación, escala 1:250000, serie VI (Spanish) [Land use and vegetation, scale 1:250000, series VI]. Aguascalientes, Mexico: INEGI; 2016.
4. Álvarez-Zúñiga E, Sánchez-González A, López-Mata L, et al. Composition and abundance of Pteridophytes in a cloud forest of Tlanchinol municipality, Hidalgo, Mexico. Botanical Sciences 2012; 90(2): 163–177.
5. Gamfeldt L, Snãll T, Bagchi R, et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Communications 2013; 4(1): 1–8.
6. Galicia L, Zarco-Arista AE. Multiple ecosystem services, possible trade-offs and synergies in a temperate forest ecosystem in Mexico: A review. International Journal of Biodiversity Science, Ecosystems Services & Management 2013; 10: 275–288.
7. Toledo Aceves T. El bosque mesófilo de montaña en México: Amenazas y oportunidades para su conservación y manejo sustentable (Spanish) [The mountain mesophyll forest in Mexico: Threats and opportunities for its conservation and sustainable management]. México: CONABIO; 2010. p. 197.
8. Ungar ED, Rotenberg E, Raz-Yaseef N, et al. Transpiration and annual water balance of Aleppo pine in a semiarid region: implications for forest management. Forest Ecology and Management 2013; 298: 39–51.
9. Suryatmojo H, Fujimoto M, Yamakawa Y. Water balance changes in the tropical rainforest with intensive forest management system. International Journal of Sustainable Future for Human Security J-SustaiN 2013; 1: 56–62.
10. Del Campo AD, Fernandes TJ, Molina AJ. Hydrology-oriented (adaptive) silviculture in a semiarid pine plantation: How much can be modified the water cycle through forest management? European Journal of Forest Research 2014; 133: 879–894.
11. Zavaleta HE, Cruz-Jiménez H, Márquez-Ramírez J. Potential water infiltration of rain from the retention of a forest planting. Foresta Veracruzana 2012; 14(1): 23–28.
12. Williams-Linera G, Vizcaíno-Bravo Q. Cloud forests on rock outcrop and volcanic soil differ in indicator tree species in Veracruz, Mexico. Revista Mexicana de Biodiversidad 2016; 87: 1265–1274.
13. Gual-Díaz M, Rendón-Correa A. México’s mountain mesophyll forests. Agroproductividad 2017; 10(1): 3–9.
14. Alvarez-Aquino C, Williams-Linera G, Newton AC. Experimental native tree seedling establishment for the restoration of a Mexican cloud forest. Restoration Ecology 2004; 12: 412–418.
15. Cayuela L, Golicher DJ, Benayas JMR, et al. Fragmentation, disturbance and tree diversity conservation in tropical montane forests. Journal of Applied Ecology 2006; 43: 1172–1181.
16. González-Espinosa M, Meave JA, Ramírez-Marcial N, et al. Cloud forests of Mexico: conservation and restoration of their tree component. Ecosistemas 2012; 21(1–2): 36–54.
17. Williams-Linera G, Manson RH, Vera EI. La fragmentación del bosque mesófilo de montaña y patrones de uso del suelo en la región oeste de Xalapa, Veracruz, México (Spanish) [Fragmentation of mountain mesophyll forest and land use patterns in the western region of Xalapa, Veracruz, Mexico]. Madera y Bosques 2002; 8(1): 73–89.
18. Bautista-Cruz A, Del Castillo RF. Soil changes during secondary succession in a tropical montane cloud forest area. Soil Science Society of America Journal 2005; 69: 906–914.
19. Williams-Linera G. El bosque de niebla del centro de Veracruz: ecología, historia y destino en tiempos de fragmentación y cambio climático (Spanish) [The cloud forest of central Veracruz: ecology, history and destiny in times of fragmentation and climate change]. México: CONABIO; 2007. p. 208.
20. Foster P. The potential negative impacts of global climate change on tropical montane cloud forests. Earth Science Reviews 2001; 55: 73–106.
21. Monterroso-Rivas A, Gómez-Díaz J, Tinoco-Rueda J. Cloud forest and climate change scenarios: An assessment in Hidalgo, Mexico. Revista Chapingo. Serie Ciencias Forestales y del Ambiente 2013; 19(1): 29–43.
22. Manson RH. Los servicios hidrológicos y la conservación de los bosques de México (Spanish) [Hydrological services and the conservation of Mexico’s forests]. Madera y Bosques 2004; 10(1): 3–20.
23. Martínez ML, Pérez-Maqueo O, Vázquez G, et al. Effects of land use change on biodiversity and ecosystem services in tropical montane cloud forests of Mexico. Forest Ecology and Management 2009; 258: 1856–1863.
24. Muñoz-Villers LE, McDonnell JJ. Runoff generation in a steep, tropical montane cloud forest catchment on permeable volcanic substrate. Water Resources Research 2012; 48: 1–17.
25. Ruíz-Álvarez O, Arteaga-Ramírez R, Vázquez-Peña MA, et al. Water balance and climatic classification of the state of Tabasco, Mexico. Universidad y Ciencia 2012; 28(1): 1–14.
26. Sentelhas PC, Dos Santos DL, Machado RE. Water deficit and water surplus maps for Brazil, based on FAO Penman-Monteith potential evapotranspiration. Ambiente e Agua-An Interdisciplinary Journal of Applied Science 2008; 3: 28–42.
27. Malamos N, Barouchas PE, Tsirogiannis IL, et al. Estimation of monthly FAO Penman-Monteith evapotranspiration in GIS environment, through a geometry independent algorithm. Agriculture and Agricultural Science Procedia 2015; 4: 290–299.
28. CLImate COMputing Project [Internet]. Ensenada, B.C. Mexico: CLICOM; 2018 [accessed 2018 Feb 17]. Available from: http://clicom-mex.cicese.mx/mapa.html.
29. Rolim GS, Sentelhas PC, Barbieri V. Spreadshets in excelTM environment to calculation of water balance: Normal, sequential, culture, and POTENTIAL, real productivity. Revista Brasileira de Agrometeorologia 1998; 6(1): 133–137.
30. Santillán GE, Dávila-Vázquez G, De Anda SJ. Assessment of hydric balance through climatic variables, in the Cazones River Basin, Veracruz, Mexico. Revista Ambiente & Água 2013; 8(3): 104–117.
31. Instituto Nacional de Ecología e Instituto Nacional de Estadística (INE-INEGI). Uso del suelo y vegetación, escala 1:250000, serie I (Spanish) [Land use and vegetation, scale 1:250000, series I]. CDMX, Mexico: Instituto Nacional de Ecología e Instituto Nacional de Estadística, Geografía e Informática; 1997.
32. Instituto Nacional de Estadística y Geografía (INEGI). Uso del suelo y vegetación, escala 1:250000, serie II (Spanish) [Land use and vegetation, scale 1:250000, series II]. Aguascalientes, México: Instituto Nacional de Estadística y Geografía; 2001.
33. Instituto Nacional de Estadística y Geografía (INEGI). Uso del suelo y vegetación, escala 1:250000, serie III (Spanish) [Land use and vegetation, scale 1:250000, series III]. Aguascalientes, México: Instituto Nacional de Estadística y Geografía; 2005.
34. Instituto Nacional de Estadística y Geografía (INEGI). Uso del suelo y vegetación, escala 1:250000, serie IV (Spanish) [Land use and vegetation, scale 1:250000, series IV]. Aguascalientes, México: Instituto Nacional de Estadística y Geografía; 2009.
35. Instituto Nacional de Estadística y Geografía (INEGI). Uso del suelo y vegetación, escala 1:250000, serie V (Spanish) [Land use and vegetation, scale 1:250000, series V]. Aguascalientes, México: Instituto Nacional de Estadística y Geografía; 2013.
36. Santillán-Fernández A, Santoyo-Cortés VH, García-Chávez LR, et al. Influence of drought and irrigation on sugarcane yields in different agroecoregions in Mexico. Agricultural Systems 2016; 143: 126–135.
37. SMN CONAGUA. Monitor de sequía en México (Spanish) [Drought monitor in Mexico]. CDMX, Mexico: Comisión Nacional del Agua; 2018.
38. CONABIO. Climas (Spanish) [Climate]. CDMX, Mexico: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad; 2017.
39. Cruz-Martínez A, Pedroza-Sandoval A, Trejo-Calzada R, et al. Rain water harvesting and soil moisture retention in the establishment of buffel grass (Cenchrus ciliaris L.). Revista Mexicana de Ciencias Pecuarias 2016; 7(2): 159–172.
40. CONAFOR. Restauración de ecosistemas forestales: Guía básica para comunicadores (Spanish) [Restoration of forest ecosystems: Basic guide for communicators]. National Forestry Commission. Zapopan, Jalisco, México: Comisión Nacional Foresta; 2009. p. 69.
DOI: https://doi.org/10.24294/nrcr.v3i1.1542
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Alberto Santillán-Fernández, Samantha Zurisadai Cruz-Ramírez, Abimael Calva-Castillo, Arely del Rocío Ireta-Paredes, Jaime Bautista-Ortega
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.