In-situ and ex-situ hatching of olive ridley turtles in Cox’s Bazar Coast for conservation

Md. Simul Bhuyan, Md. Tarikul Islam

Article ID: 11665
Vol 8, Issue 1, 2025

VIEWS - 7 (Abstract)

Abstract


The remarkable mass nesting behavior of the olive ridley turtle (Lepidochelys olivacea) is well-known. In the present study, the hatching success of L. olivacea at Sonarpara beach was investigated, for the nesting periods 2023–2024. In the in-situ hatchery, the hatching percentage was recorded high (80%). A total of 73 eggs were hatched out of 91 eggs after 52 days of incubation. In the ex-situ hatchery, the hatching percentage was recorded low (74%). A total of 1070 eggs were hatched out of 1445 after 45–66 days of incubation. A significant difference in hatching percentage was found between the two hatching methods (p < 0.05). Temperature and humidity are the most influential parameters that regulate the hatching of olive ridley. In terms of in-situ study, the surface sand temperature ranged from 36 ℃–42 ℃, while the air temperature was recorded between 34 ℃–37 ℃. In the ex-situ hatchery, the surface sand temperature ranged between 19.2 ℃–34.3 ℃. In the in-situ hatchery, the average sand humidity was recorded 79.9%, and air humidity was recorded 83.68%. The average sand humidity was recorded 73.7% in the ex-situ hatchery, and air humidity was recorded 72.9%. The hatching percentage was recorded high when sand humidity was high in the in-situ hatchery and the hatching rate was found low when the sand humidity was recorded low in the ex-situ hatchery. The present findings designate that there is a positive relation between sand humidity and hatching success. This study also suggests intensifying long-term scientific studies along the whole coast to conserve this vulnerable turtle.


Keywords


olive ridley; hatching; incubation; temperature; conservation

Full Text:

PDF


References


1.       Jelicich RM, Berón P, Copello S, et al. Marine Megafauna Sea Turtles, Seabirds and Marine Mammals. In: Marine Biology: A Functional Approach to the Oceans and their Organisms. CRC Press; 2022.

2.       Tavares DC, Moura JF, Acevedo-Trejos E, et al. Traits Shared by Marine Megafauna and Their Relationships With Ecosystem Functions and Services. Frontiers in Marine Science. 2019; 6. doi: 10.3389/fmars.2019.00262

3.       Hammerschlag N, Schmitz OJ, Flecker AS, et al. Ecosystem Function and Services of Aquatic Predators in the Anthropocene. Trends in Ecology & Evolution. 2019; 34(4): 369-383. doi: 10.1016/j.tree.2019.01.005

4.       Plot V, de Thoisy B, Georges J. Dispersal and dive patterns during the post-nesting migration of olive ridley turtles from French Guiana. Endangered Species Research. 2015; 26(3): 221-234. doi: 10.3354/esr00625

5.       Plotkin P. Nomadic behaviour of the highly migratory olive ridley sea turtle Lepidochelys olivacea in the eastern tropical Pacific Ocean. Endangered Species Research. 2010; 13(1): 33-40. doi: 10.3354/esr00314

6.       NOAA Fisheries. Olive Ridley Turtle. Available online: https://www.fisheries.noaa.gov/species/olive-ridley-turtle (accessed on 2 April 2025).

7.       Davenport J. Sea Turtles in the Anthropocene. Biology and Environment: Proceedings of the Royal Irish Academy. 2024; 124(2-3): 103-129. doi: 10.1353/bae.2024.a945751

8.       Vinicius D, Renan M, Dos Santos D, Jaqueline C. Pivotal temperature and hatchling sex ratio of olive ridley sea turtles Lepidochelys olivacea from the South Atlantic coast of Brazil. Herpetological Conservation and Biology. 2018; 13(2): 488-496.

9.       Mohanty-Hejmadi P, Behra M, Dimond MT. Temperature dependent sex differentiation in the olive ridley Lepidochelys olivacea and its implications for conservation. In: Proceedings of the Symposium on endangered marine animals and marine parks; 1985.

10.     Wibbels T. Critical Approaches to Sex Determination in Sea Turtles. The Biology of Sea Turtles. 2003; 2: 103-134.

11.     Merchant-Larios H, Ruiz-Ramirez S, Moreno-Mendoza N, et al. Correlation among Thermosensitive Period, Estradiol Response, and Gonad Differentiation in the Sea Turtle Lepidochelys olivacea. General and Comparative Endocrinology. 1997; 107(3): 373-385. doi: 10.1006/gcen.1997.6946

12.     Maldonado LCT, Larios HM. Molecular aspects of sex determination in turtles and tortoises (Spanish). CIENCIA ergo-sum, Revista Científica Multidisciplinaria de Prospectiva. 2006; 13(2): 176-182.

13.     Sandoval Espinoza S. Sex ratio in Olive Ridley Turtle Lepidochelys olivacea hatchlings in hatcheries in the Mexican Pacific [PhD thesis] (Spanish). Centro Interdisciplinario de Ciencias Marinas (CICIMAR) of the Instituto Politécnico Nacional (IPN) in Mexico; 2011.

14.     Bomfim A da C, Farias DSD de, Silva FJ de L, et al. Long-term monitoring of marine turtle nests in northeastern Brazil. Biota Neotropica. 2021; 21(3). doi: 10.1590/1676-0611-bn-2020-1159

15.     Faddilah TN, Hasan Z, Arief MCW, et al. A Study on Characteristics of Semi-Natural Hatchery Habitat for Olive Ridley Sea Turtle Lepidochelys olivacea (Eschscholtz, 1829) Conservation: A Case Study of Batu Hiu Beach, Pangandaran, West Java, Indonesia. Omni-Akuatika. 2024; 20(2): 86. doi: 10.20884/1.oa.2024.20.2.1146

16.     Ríos-Huerta DR, González-Hernández M, Hart CE, et al. Evaluation of 2 ex situ incubation methods for sea turtle eggs considering nest temperature, hatching success, and hatchling quality (Spanish). Ciencias Marinas. 2021; 47(4). doi: 10.7773/cm.v47i4.3225

17.     Morales-Mérida BA, Contreras-Mérida MR, Cortés-Gómez A, et al. Performance of the sea turtle Lepidochelys olivacea hatchlings from a hatchery on the Pacific coast of Guatemala. BioRxiv; 2021.

18.     Budiantoro A, Retnaningdyah C, Hakim L, Leksono AS. The Characteristics of olive ridley sea turtle (Lepidochelys olivacea) nesting beaches and hatcheries in Bantul, Yogyakarta, Indonesia. Biodiversitas Journal of Biological Diversity. 2019; 20(11). doi: 10.13057/biodiv/d201103

19.     Hart CE, Ley-QuiÑonez C, Maldonado-Gasca A, et al. Nesting characteristics of olive ridley turtles (Lepidochelys olivacea) on El Naranjo Beach, Nayarit, Mexico. Herpetological Conservation and Biology. 2014; 9(2): 524-534.

20.     Maulany RI, Booth DT, Baxter GS. Emergence Success and Sex Ratio of Natural and Relocated Nests of Olive Ridley Turtles from Alas Purwo National Park, East Java, Indonesia. Copeia. 2012; 2012(4): 738-747. doi: 10.1643/ch-12-088

21.     Maulany RI, Booth DT, Baxter GS. The effect of incubation temperature on hatchling quality in the olive ridley turtle, Lepidochelys olivacea, from Alas Purwo National Park, East Java, Indonesia: implications for hatchery management. Marine Biology. 2012; 159(12): 2651-2661. doi: 10.1007/s00227-012-2022-6

22.     Valverde R, Wingard S, Gómez F, et al. Field lethal incubation temperature of olive ridley sea turtle Lepidochelys olivacea embryos at a mass nesting rookery. Endangered Species Research. 2010; 12(1): 77-86. doi: 10.3354/esr00296

23.     Arzola-González JF. Humidity and temperature in natural and artificial nests of olive ridley turtle Lepidochelys olivacea (Eschssholtz 1829). Revista de biología marina y oceanografía. 2007; 42(3). doi: 10.4067/s0718-19572007000300017

24.     Garcıía A, Ceballos G, Adaya R. Intensive beach management as an improved sea turtle conservation strategy in Mexico. Biological Conservation. 2003; 111(2): 253-261. doi: 10.1016/S0006-3207(02)00300-2

25.     López-Castro MC, Carmona R, Nichols WJ. Nesting characteristics of the olive ridley turtle (Lepidochelys olivacea) in Cabo Pulmo, southern Baja California. Marine Biology. 2004; 145: 811-820.

26.     Mohanty AK, Singh SK, Sahu G, Panigrahy RC. Hatchlings of olive ridley (Lepidochelys olivacea) sea turtle in Rushikulya rookery, Orissa coast. ResearchGate; 2004.

27.     Malarvizhi A, Mohan PM. Nesting Biology and Site Selection of Olive Ridley—A Coherence of Nature. Open Journal of Marine Science. 2023; 13(02): 29-39. doi: 10.4236/ojms.2023.132003

28.     da Silva ACCD, de Castilhos JC, Lopez GG, et al. Nesting biology and conservation of the olive ridley sea turtle (Lepidochelys olivacea) in Brazil, 1991/1992 to 2002/2003. Journal of the Marine Biological Association of the United Kingdom. 2007; 87(4): 1047-1056. doi: 10.1017/s0025315407056378

29.     Calvianto A, Pemayun TJO, Adnyana IBW. Hatching Success of Olive Ridley Sea Turtles (Lepidochelys olivacea) in Artificial Hatchery in Turtle Conservation and Education Center (Tcec) Serangan. International Journal of Life Sciences Research. 2019; 7: 78-86.

30.     Morales Mérida A, Helier A, Cortés-Gómez AA, et al. Hatching Success Rather Than Temperature-Dependent Sex Determination as the Main Driver of Olive Ridley (Lepidochelys olivacea) Nesting Activity in the Pacific Coast of Central America. Animals. 2021; 11(11): 3168. doi: 10.3390/ani11113168

31.     Acero L. Some Nesting Determinants of Olive Ridley sea turtles (Lepidochelys olivacea) in San Narciso Zambales Philippines: A Preliminary Study. IOP Conference Series: Earth and Environmental Science. 2020; 563(1): 012004. doi: 10.1088/1755-1315/563/1/012004

32.     Sea turtles of India. A comprehensive field guide to research, monitoring and conservation. Dakshin Foundation, Bangalore and Madras Crocodile Bank Trust, Mamallapuram, India; 2011.

33.     Morales-Mérida BA, Morales-Cabrera A, Chúa C, et al. Olive Ridley Sea Turtle Incubation in Natural Conditions Is Possible on Guatemalan Beaches. Sustainability. 2023; 15(19): 14196. doi: 10.3390/su151914196

34.     Howard R, Bell I, Pike D. Thermal tolerances of sea turtle embryos: current understanding and future directions. Endangered Species Research. 2014; 26(1): 75-86. doi: 10.3354/esr00636

35.     Howard R, Bell I, Pike DA. Tropical flatback turtle embryos (Natator depressus) are resilient to the heat of climate change. Journal of Experimental Biology. 2015; 218(20): 3330-3335.

36.     Laloë JO, Cozens J, Renom B, et al. Effects of rising temperature on the viability of an important sea turtle rookery. Nature Climate Change. 2014; 4(6): 513-518. doi: 10.1038/nclimate2236

37.     Ariano-Sánchez D, Nesthus A, Rosell F, et al. Developed black beaches - too hot to emerge? Factors affecting sand temperatures at nesting grounds of olive ridley sea turtles (Lepidochelys olivacea). Climate Change Ecology. 2023; 5: 100074. doi: 10.1016/j.ecochg.2023.100074

38.     Flores-Aguirre C, Díaz-Hernández V, Arenas Moreno D, et al. Effect of moisture, temperature, and maternal influence on the hatching, phenotype, and performance of hawksbill turtles Eretmochelys imbricata. Endangered Species Research. 2023; 50: 217-234. doi: 10.3354/esr01229

39.     Matthews B, Gatto C, Reina R. Effects of moisture during incubation on green sea turtle (Chelonia mydas) development, morphology and performance. Endangered Species Research. 2021; 46: 253-268. doi: 10.3354/esr01159

40.     Bennett AM, Steiner J, Carstairs S, et al. A question of scale: Replication and the effective evaluation of conservation interventions. Favaro B, ed. FACETS. 2017; 2(2): 892-909. doi: 10.1139/facets-2017-0010




DOI: https://doi.org/10.24294/nrcr11665

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Author(s)

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.