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ABSTRACT 

The saprophytic white muscardine fungus Beauveria bassiana (Balsamo) Vuillemin is a potential biocontrol agent 

against varied insect pests, is a commercially available mycopesticide in many countries, and is extensively used for insect 

pest management. It produces several metabolites, such as antibacterial, antifungal, cytotoxic, and insecticidal compounds 

that protect against insect pests and plant pathogens, with dual-purpose crop protection, a new concept in plant disease 

management. This insect pathogen is also beneficial to plant endophytes that are antagonistic to plant diseases and 

promote rhizosphere colonizers and plant growth, inducing systemic resistance. The induced systemic responses of fungal 

endophytes enhance genes that are expressed in pathogenesis and increase the production of pathogenesis-related proteins 

and defense enzymes. The fungus infects the insects by degrading mechanically and chemically their cuticles. It promotes 

plant growth, provides systemic protection against pests and pathogens in sustainable agricultural crop production, and 

reduces the usage of chemical pesticides. 
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1. Introduction 
The Italian entomologist Agostino Bassi discovered the causal 

agent of the pebrine disease of silkworm white mummies[1]. He first 
suggested that a fungus caused this “white muscardine” disease, which 
later was named Beauveria bassiana (Balsamo) Vuillemin[2]. The 
cadavers are covered with the white powdery layer characteristic of 
white muscardine disease. This fungal disease is common during the 
rainy season and has a very high incidence during the winter. Most 
entomopathogenic fungi infect through the insect cuticle, involving 
adsorption, adhesion, germination, the development of appressorium, 
and penetration pegs. They produce enzymes (proteases, chitinases, 
esterases, and lipases), which digest the insect cuticle and reach the 
hemocoel, followed by suppressing the host’s immune response[3]. 
Beauveria bassiana is a natural pathogen for many insects and other 
invertebrates. Diseases caused by B. bassiana (white muscardine) and 
Metarhizium anisopliae (Metschnikoff) Sorokin (green) are common in 
silkworms and frequently appear during winter. Both fungi occur 
naturally in the soil and infect a wide range of soil insect species. They 
are best cultivated on Sabouraud agar with 2% glucose. B. bassiana is a 
most effective biological control agent against a wide range of insect 
families, including agricultural pests[4] such as aphids, thrips, whiteflies, 
weevils, locusts, scarabs, caterpillars, and other larvae, pupae, and 
adults[5]. Applied in the field, B. bassiana causes no harm to non-target 
insects, such as predators, parasitoids, pollinating insects, and useful 
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insects such as honey bees[6]. It is widely used as a myco-insecticide for the control of several insect pests as 
an alternative to synthetic chemical insecticides. It is widely used commercially as a biological control agent, 
both in agriculture and forestry[7]. The commercial products BotaniGard and Mycotrol are used widely in the 
US, the EU, Japan, Mexico, and other countries[8]. The most common commercial myco-insecticides and 
myco-acaricides are based on B, bassiana, M. anisopliae, B. brongniartii (Saccardo) Petch, and Isaria 
(Paecilomyces) fumosorosea Wise[8]. B. bassiana can be cultured in solid-state fermentation, and formulations 
of conidia are sprayed on plants as emulsions or wettable powders. It has shown antifungal ability against 
Rhizoctonia solani Kühn. B. bassiana, a facultative saprophyte, grows as a plant endophyte and interacts with 
plant roots worldwide[9]. It grows into plant leaves and becomes dormant there until consumed by insects. 
Entomopathogenic fungi can colonize plant tissues and serve as biopesticides and biostimulants that promote 
plant growth and trigger defense mechanisms. B.bassiana protects against insect pests and plant pathogens, 
but the mechanisms are not yet completely understood[10]. Plant diseases are directly affected by Beauveria sp. 
By mycoparasitism, competition, antibiosis, and indirect interaction by stimulating induced systemic resistance 
(ISR) as well as endophytic colonizing behaviour[11–14]. A recent study on endophytic strains of B. bassiana 
highlighted their ability to promote plant growth and provide systemic protection against pests and 
pathogens[15,16]. Endophytes have been identified in several commercially important plant species[17,18], and 
promote plant growth[19], beneficial rhizosphere colonizers[20], and can be used as biofertilizers[17]. Inoculating 
B. bassiana on numerous plants by various methods has demonstrated its colonizing capability[21]. It effectively 
controls pest and fungal diseases, triggering physiological mechanisms that promote nutrient uptake and plant 
growth and increase tolerance to abiotic stress and drought[15,16,22,23]. The positive effect of endophytic strains 
of B. bassiana on plant growth and yield is documented in several crops viz., coffee[24]

, tomato[25], cotton[19], 
broad bean[26], soybean[27], maize[28], barley[29], grapevine[30], and tobacco[31]. 

2. Mode of action 
Entomopathogens are evidence of their large antagonistic potential against plant pathogens. Possible 

mechanisms of plant disease suppression of fungal entomopathogens by direct mechanisms such as 
mycoparasitism, competition, and antibiosis, indirect interaction by stimulating induced systemic resistance as 
well as promotion of plant growth[17]. The Mycoparasitic involves four major steps, chemotrophic growth, 
recognition, attachment, and cell wall degradation by the pathogen by enzymes, viz., chitinases, and β-1, 3 
glucanases followed by penetration by appressoria-like structures. The endophytic B. bassiana strain 11-98 
has been observed coiling around larger hyphae of Pythium myriotylum by hydrolyzing β-1,3 and β-1,4 
glucanases on chitin-based medium and has suggested its hyperparasitic activity against oomycetes fungi[32]. 
Fungal biocontrol entomopathogens compete for food and space endophytically in colonised plants as well as 
colonize the rhizosphere[33]. Colonization of grapevine plants by an endophytic strain of B. bassiana has 
reduced the incidence and severity of Plasmopara viticola causing downy mildew of grapes[12]. The 
antagonistic activity of entomopathogenic fungi against insects and plant diseases, in addition to their 
beneficial effect on nutrient uptake, would be highly beneficial to develop a method for their use in sustainable 
agriculture. The mechanism involved by fungal entomopathogens is the production of various secondary 
metabolites viz., antibiotics, bioactive volatile organic compounds, lytic agents, enzymes, as well as toxic 
substances conferring protection against disease-causing plant pathogens[17]. Production of various enzymes 
by entomopathogenic fungi governs various physiological processes such as morphogenesis, pathogenesis, 
parasitism, and growth regulation, as well as immunity and its antagonistic behaviour against a wide range of 
phytopathogens. The antagonistic ability of B. bassiana against Fusarium oxysporum causes tomato wilt[34], 
and Gaeumannomyces graminis var. tritici[35], causing take-all of wheat reduced by the production of 
hydrolytic enzymes mainly chitinases and β-glucanases. The protease enzyme (Pr1) activity has been widely 
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exploited against various groups of phytopathogenic fungi viz., R. solani and F. oxysporum on tomato due to 
its effective antifungal nature[11,32]. 

Entomopathogenic fungi direct action against insect pests, may induce systemic immunity in plants and 
disease resistance by directly activating defense mechanisms of the host plants. Induction of immunity is 
assessed by oxygen-reactive species in response to fungal and bacterial elicitors, and by examining defense 
gene expression by the treatment of entomopathogenic fungi[36]. Plant growth is enhanced as observed in 
colonized plants by entomopathogenic fungi to produce bioactive compounds[37,38]. Entomopathogenic fungi 
are important biocontrol agents that infect a wide range of arthropods and play an important role in reducing 
pests’ populations and of crop disease[39]. Beauveria bassiana can induce systemic immunity and disease 
resistance against several fungal and bacterial phytopathogens and promote plant growth. A wide diversity of 
entomopathogenic fungi that are abundant in agricultural plant species as endophytes, exchange nutrients from 
the healthy host plants without causing any visible symptoms[40]. Endophytic fungi play a dual role in the 
protection of host plants against pathogens and enhance plant growth[41–43]. Endophytic fungi have the potential 
to colonize and grow within plants systemically, and provide prolonged persistence and continuous 
protection[44,45]. The colonization of plant tissues by endophytes fungi reduces as well the damage caused by 
herbivores and fungal diseases[46,47]. 

Beauveria bassiana endophytic colonization in tomato and cotton plants has increased resistance against 
the plant pathogens Rhizoctonia solani and Pythium myriotylum, and has had activity against insect pests and 
bacterial pathogens[10,11,48]. These entomopathogenic fungi induce photosynthesis and energy metabolism as 
responses to stress, which enhance plant growth and stimulate disease resistance[49]. Plant growth has been 
enhanced when colonized by the entomopathogenic fungi B. bassiana, B. brongniartii, and M. brunneum, from 
the production of bioactive compounds[10]. Living plants exhibit various mechanisms of defense against 
parasites and pathogens, age-related resistance, organ-specific resistance, and induced resistance, a resistance 
triggered by the activation of genetically programmed pathways in plants to diminish the effect of consecutive 
pathogen attacks[50]. Plants display two types of induced resistance, systemic acquired resistance (SAR), and 
induced systemic resistance (ISR). In comparison to SAR acting by protein accumulation and the salicylic acid 
pathway, ISR relies on pathways regulated by jasmonate and ethylene[51]. Entomopathogenic fungi act as 
endophytes to improve nutrient uptake and plant growth[52,53]. Entomopathogenic fungi were shown to form 
mycorrhiza-like interactions in response to biotic and abiotic stress and absorption of water and nutrients[53]. 
Bean seeds treated with conidial suspensions of B. bassiana and M. robertsii have produced improved plant 
growth, more leaves and greater fresh and dry root weight in comparison to the control[54]. B. bassiana-treated 
plants evidence an influence in metabolism by increasing the level of total alkaloids[55]. Iron availability has 
improved in the presence of endophytic B. bassiana and M. brunneum, leading to an increase in leaf 
chlorophyll content and the length of roots[56]. Analysis of B. bassiana infected grapevine tissue has found 
significantly increased calcium and magnesium[57]. Entomopathogenic fungi also support plants to improve 
their resistance to disease and survival under stress conditions[58], as seen with biocontrol agents B. bassiana 
and M. anisopliae activity against Myzus persicae and Botrytis cinerea[59]. B. bassiana produces secondary 
metabolites such as beauvericin, bassianolides, oosporein, cyclosporin A, and oxalic acid and have cytotoxic, 
antibacterial, and antifungal activities[17]. B. bassiana effect is also induced through volatile compounds in 
melon and cotton[60]. Entomopathogenic fungi used as insect pathogens colonize endophytically a wide array 
of host plant tissues and subsequently confer benefits such as plant growth enhancement and suppression of 
disease pathogens as found for B. bassiana. Plant growth mediated by the endophytic colonization by diverse 
fungal genera of entomopathogens has resulted from inoculated seed treatment, foliar spray, and root 
drench[19,26,61–63]. B. bassiana has been reported to suppress the soil-borne pathogens caused by damping off by 
Rhizoctonia solani and Pythium myriotylum in tomato[33]. and cotton[11]; bacterial blight caused by 
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Xanthomonas axonopodis pv. malvacearum in cotton[11], the Zucchini yellow mosaic virus in squash[23], downy 
mildew caused by Plasmopara viticola in grapevines[12], and sheath blight caused by Rhizoctonia solani in 
rice[64]. 

3. Formulations 
Formulation of microbial pesticides for the control of plant pathogens and insect pests is important in 

sustainable agriculture crop production. Several biopesticides are registered and can manage insect pests. B, 
bassiana is commercially available and widely used against insect pests. It can control the damping-off of 
tomatoes caused by Rhizoctonia solani and can protect against cotton seedling disease by soil-borne fungal 
pathogens. The development of biopesticides can control both plant pathogens and insect pests for plant 
protection in agriculture. The formulations of B. bassiana on shelf-life and entomopathogenic activity are 
introduced as a biocontrol agent of insect pests. The fungal entomopathogens are a potential bio-control agent 
that requires mass production of infective spores by solid-substrate, liquid culture and solid-state fermentation 
for conidia and blastospores at an adequate pH, temperature, nitrogen, carbohydrates, oxygen and carbon 
dioxide for fungal growth[65]. During the fermentation process, blastospores are produced and the aerial spores 
are produced on the conidiogenous cells of the infected insects. Solid-substrate fermentation involves the mass 
production of conidia on an agar-based medium or natural substrate, viz., barley, rice, wheat, sorghum for B. 
bassiana, and maize for B. brongniartii[65]. The formulations are commonly used as granules, wettable 
powders, dust as solid formulations and water-disposable powders, liquids (suspension concentrates) or oils 
(emulsifiable) as liquid formulations[66]. Carriers use paraffin oil, mineral oil and vegetable oils for M. 
anisopliae and B. bassiana spore adhesion, germination, penetration, shelf life and efficacy in field 
conditions[67]. Granular-based formulations of B. bassiana contain clay minerals (attapulgite, bentonite) as 
inert carriers for uniform spread and persistence[68]. The formulations are commonly used as dipping plant 
roots into spore suspension for soil-borne pathogens, foliar spray of liquid suspension with spreading agent, 
soil treatment with a granular form of fungal spore and vectors for indirect transfer[69]. Entomopathogenic fungi 
formulation of B. bassiana is BotaniGard, Naturalis-L, Mycotrol, Bio-Power, Beauvericin, Boverol, Betal, 
Ostrinol, Beevicide, and Racer-BB for management of various biotic stresses.  

4. Induction of resistance in plants 
Entomopathogenic fungi act as insect control agents, either through a plant-mediated response or by 

exerting a direct insecticidal effect. In a recent study, entomopathogenic fungi, often considered insect 
pathogens, play extra roles in nature, such as endophytes, plant disease antagonism, plant growth promotion, 
rhizosphere colonization, and management of diverse abiotic stresses[70]. Beauveria bassiana can be a 
colonizing endophyte in a broad range of host plants and promotes their growth and defense[71,72]. Endophytic 
fungi can improve growth and plant resistance to herbivores, pathogens, and various abiotic stresses that affect 
populations of pests and natural enemies[73,74]. Beauveria bassiana has been found to endophyte colonization 
diverse plants, viz., maize (Zea mays L.), Poaceae, potato (Solanum tuberosum L.), Solanaceae, soybean 
(Glycine max L.), Fabaceae, faba beans (Vicia faba L.), Fabaceae, and tomato (Solanum lycopersicum L.), 
Solanaceae, with positive effects on plant growth[52]. The growth-promoting effect of B. bassiana in tomatoes 
has resulted from increased nutrient bioavailability, production of iron siderophores, and phosphate 
solubilization[71]. The defense responses have been classified as either pattern-triggered, or effect-triggered 
immunity[75]. Pattern-triggered immunity is the sensing of pathogen-associated molecular patterns by the plant, 
triggering a defense response, such as callose deposition and induction of salicylic acid (SA), jasmonic acid 
(JA) or ethylene (ET) pathways[76]. Beauveria bassiana has been shown to induce plant defense responses in 
date palm (Phoenix dactylifera L.), Arecaceae, and grapevine (Vitis vinifera L.), Vitaceae[77]. Root colonization 
by B. bassiana strains caused strain-specific changes in the expression of genes encoding pathogenesis-related 
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proteins, phytoalexins, jasmonate, and salicylic acid pathways[78]. Fungal entomopathogens stimulate the 
production of various defense-related enzymes against phytopathogens viz., phenylalanine ammonia-lyase 
(PAL), peroxidases (POX), phenylperoxidse (PPO), catalase, chitinase and phenolic compounds. B. bassiana 
strain can control tomato damping off disease through the production of defense-related enzymes viz., 
phenylalanine ammonia-lyase (PAL), peroxidases (POX) and phenol compounds[13]. The ISR stimulation by 
fungal entomopathogens is an important biocontrol mechanism leading to the reduction of disease symptoms 
by the production of bioactive secondary metabolites[79]. B. bassiana strain 11–98 has inoculated cotton 
seedlings that resulted in a significant reduction in disease severity for bacterial blight (Xanthomonas 
campestris pv. malvacearum) through induction of resistance systemic in cotton[32]. Fungal entomopathogens, 
viz, B. bassiana and Lecanicillium spp. have caused greater accumulation of induced proteins related to 
photosynthesis and energy metabolism-enhancing plant growth, as well as stimulated disease resistance in 
plants[49]. 

5. Management of insect pests and diseases 
Fungal entomopathogens contribute to plant protection against various abiotic and biotic stresses, 

including plant diseases, by increasing nutrient uptake, enhancing plant growth, and production of 
phytohormones and iron-chelating compounds[80,81]. B. bassiana can colonize several plant species to manage 
pests and pathogens[11,18,82,83]. The antagonistic abilities of entomopathogenic fungi have been extensively 
deliberated in a wide array of seed, foliar as well as soil-borne plant pathogens. Entomopathogenic fungi act 
as insect pathogens, and have additional roles in plant disease management viz., endophytic, antagonism, 
rhizosphere colonization and plant growth promotion[12,26,59]. However, the mechanisms involved are not yet 
completely understood[10]. The potential of B. bassiana has recently drawn attention worldwide for its 
beneficial roles as a plant disease antagonist, beneficial rhizosphere colonizer, plant growth promoter and 
endophyte. B. bassiana harbours plant tissues from its endophytic ability without causing any visible 
symptoms[84]. Endophytic colonization by B. bassiana has reduced the severity of damping-off caused by R. 
solani and Pythium myriotylum. B.bassiana can colonise hosts systemically and be transmitted by seed, seed 
coats or rhizomes[85]. As a naturally occurring endophyte or established through artificial inoculation in 
agricultural and horticultural crops, including wheat, maize, sorghum, tomato, potato, bean, banana, pumpkin, 
cotton and jute[17]. The dual-purpose biocontrol abilities of B. bassiana against insect pests and plant 
pathogens[17], have indicated fungal interactions in the host plant[82,86]. Indirect mechanisms are growth 
promotion and vigour in plants through solubilization of essential macro and micronutrients, induction of 
systemic resistance by the endophyte colonization of the plant, and regulation of defence enzymes such as 
peroxidase, and phenol ammonia-lyase[32,62]. The entomopathogen fungus produces various metabolites such 
as antibiotics, enzymes, and bioactive volatile compounds[87]. These secondary metabolites show various 
insecticidal, antimicrobial, anticancer and antioxidant properties[88]. Endophytic B. bassiana pre-treatment of 
cotton seedlings resulted in lower severity of Xanthomonas bacterial blight disease[11]. The establishment of B. 
bassiana has been successful in squash, and protected it from the Zucchini yellow mosaic virus[18]. 
Entomopathogenic fungi are promising antagonists against various plant pathogens, viz., Rhizoctonia solani, 
Fusarium oxysporum, Pythium spp., Botrytis cinerea, Hemileiavastatrix, Sphaerotheca fuliginea, Phytopthora 
megasperma, Alternariaporri, Colletotrichum falcatum, Plasmopara viticola, Xanthomonas campestris pv. 
malvacaerum, etc.[10,12–14,59,89]. Beauveria is an effective bioagent against the codling moth, Colorado potato 
beetle, termites, American bollworm, and Helicoverpa armigera[90]. 

6. Conclusions 
The negative effects of synthetic chemical pesticides have prompted attention toward developing eco-

friendly pest management alternatives. Bio-pesticides are replacing synthetic compounds and are a component 
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of environment-friendly insect pests and disease management. The beneficial microorganisms are being 
successfully adopted in agriculture to promote plant growth and crop yield. Various insect-pathogenic 
endophyte fungi function as biocontrol agents and are now being considered in sustainable pest management. 
The potential of biopesticides as alternatives to chemical pesticides is based on evidence; most 
entomopathogenic fungi pesticides are relatively safe and represent alternatives to synthetic pesticides. It is 
necessary to conduct pathogenic/toxicity-related tests in non-target organisms as well as on vertebrates to avoid 
any kind of risk and ensure that precautionary measures during production and application are taken to avoid 
harmful reactions. Bioproducts based on fungal biocontrol agents are necessary because of the numerous 
advantages of these microorganisms. 
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