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ABSTRACT 
This paper explains the benefits of using mathematical optimization to construct high performance reservoir 

operating rules and the related water rationing (deficit sharing) policies. The principal idea of the proposed approach is 
to generate perfect solutions obtained from an LP-based optimization model with the assumed foreknowledge of inflows 
represented with historical natural flows that are matched in the model with the current or projected levels of water 
demands. Water demands may include a mix of on-stream (e.g., e-flow targets or hydro power) and off-stream demands 
(irrigation or industry). The paper demonstrates the benefits of the proposed methodology by developing and testing short 
term operating rules on the Barna reservoir in Narmada River Basin in India. It shows that it is possible to achieve 
simulated results that follow the proposed rules and differ by only 2.5% in terms of the mean annual deficits from the best 
possible performance obtained using mathematical optimization with full foreknowledge of inflows. 
Keywords: mathematical optimization; reservoir operation; rule curves; water demand management 

1. Introduction 
A large number of papers related to river basin management 

models has been published in the last three decades, with reservoir 
operation as the principal focal point of investigation. Previous 
comprehensive literature review papers such as those compiled 
originally by Wurbs[1] and Labadie[2]. Each of those papers included a 
review of more than 50 different models. More recent review papers 
such as the one from Rani and Moreira[3], provide an overview of more 
recent developments on a conceptual basis, such as the emergence of 
multi-objective and stochastic optimization procedures. Multi-
objective optimization is often pursued by academics, while generating 
limited interest among practitioners, as there seems to be no clear 
guidelines on how reservoir operators could use the multitude of the 
resulting pareto-optimal solutions. The open-source models based on 
the development environments such as the Python programming 
language by Tomlinson et al.[4], may seem appealing to the researchers 
who are familiar with such tools, however most practitioners need user 
friendly tools that can be mastered with a minimum of learning effort, 
and without requiring any expertise in various programming languages. 

Dobson et al.[5] outline the importance of multiple time step 
optimization (MTO) as a useful feature capable of developing valuable 
optimal reservoir operation for each simulated year. They also believe 
that such solutions provide good training data for machine learning 
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algorithms (MLA). This claim has been investigated by Ilich and Basistha[6], who found that it is much better 
to make an informed guess about the incoming runoff using MLAs and solve the reservoir operation as an 
optimization problem that minimizes downstream flood damage or deficits in dry years, as opposed to trying 
to achieve the same by generating informed guesses of suitable reservoir outflows, which has been an on-going 
trend among researchers for in the last two decades, as attested for example by Koutsoyiannis and Economou[7]. 
A similar approach of “guessing the best outflows” was developed by Bhaskar and Withlach[8] using the results 
of mathematical optimization as input into regression models, where the target reservoir releases were 
estimated based on the current storage levels, inflows and water demands. These efforts were aimed to replace 
the rigid nature of the rule curves, a concept initially proposed by Revelle et al.[9] that is still the most common 
approach used in practice by reservoir operators. Other efforts to create operating rules by learning from perfect 
solutions obtained using optimization over lengthy input data series have been published in the past by 
Turgeon[10]. There is still no widespread agreement on how to deduce operating rules from these solutions. 
Rule curves have traditionally been developed by simulation models using the trial-and-error approach, ending 
in a fixed curve shape for all years. The fixed shape may work well in normal years where reservoirs are filled 
during the high flow seasons, but it creates problems when modeling back-to-back dry years where water 
rationing policies have to be combined with the development of time-dependent reservoir storage zones. A 
trial-and-error simulation approach for finding the best shape of these multiple zones and the best rationing 
policy becomes cumbersome, especially for systems with multiple reservoirs. This paper proposes a way to 
statistically analyze the MTO solutions that can provide a quick way to develop and test new operating rules 
that can be easy to understand and follow. Section 2 includes a description of the MTO solution concept; 
Section 3 provides an algorithm that develops the MTO solutions to develop reservoir operating zones and 
water rationing policies; Section 4 provides a numerical example of this algorithm using the data from an 
existing system in India, while Sections 5 and 6 provide conclusions and references. 

2. Multiple time step optimization 
River basin planning has traditionally been based on the use of long time series of runoff estimates, 

usually based on the reconstructed historical natural flow records, and the current or projected levels of water 
demands. The purpose of using computer models was to provide insight into the best system performance, 
which can be developed using advanced knowledge of inflows and the use of mathematical optimization. 
Although this approach has been known for some time, having been used in studies such as the one related to 
the creation of the California Water Management Plan as part of the CALVIN[11] project, it is still not widely 
accepted, owing primarily to the inertia of the practitioners who are used to using the simulation models. 
However, creation of short-term operating rules relies on the conjunctive use of multiple step optimization in 
combination with the deficit sharing constraint, which is rarely used among practitioners. Justification for this 
approach is simultaneous optimization of water supply and water use is demonstrated by Ilich et al.[12], 
especially as it pertains to irrigation, since irrigation is usually the largest water user. The approach is briefly 
outlined below. 

Very few commercially available models such as the RiverWare as reported by Zagona et al.[13], OASIS[14] 
and WEB.BM[15] are capable of solving optimization for multiple time steps simultaneously, with the 
WEB.BM being the only one publicly available as a web application. The solution process is explained in 
Figure 1, where the dashed lines represent the carry over storage between three consecutive time steps, while 
the elements within each of the three rectangles represent an example of all river basin components for one 
time step. Initial storage at the start of the first time step is depicted with Vini, while Qt (t = 1, 3) represents 
inflow in time step t. Any finite number of time steps can be solved simultaneously using this approach. The 
optimization problem can be posed as maximization of benefits. The objective function is applicable for all 
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time steps and for all stakeholders in a river basin, which explains the double summation over both time and 
space: 

𝑂𝑂𝑂𝑂𝑂𝑂.𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑀𝑀𝑀𝑀𝑀𝑀��𝑌𝑌𝑖𝑖,𝑡𝑡𝑃𝑃𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑚𝑚

𝑡𝑡=1

 (1) 

where the allocated flows are represented by Yi,t, target water demands are Di,t (Yi,t ≤ Di,t), while Pi represents 
the pricing vector that attaches the value of water to each water user i. 

 
Figure 1. Multiple time step solution network for 3 consecutive time steps. 

The constraints to optimization include the mass balance, maximum outflow from storage reservoirs 
(based on the storage spillway curve with assumed maximum opening), net evaporation on reservoirs (which 
are a function of storage that determines the water surface area), and a number of other constraints that may 
be related to existing system configuration, such as the constraints related to hydro power plant capacities or 
irrigation return flows. Additional constraints that ensure equal deficit sharing in time during dry years when 
deficits are inevitable ensure simultaneous derivation of the optimal reservoir rule curve as well as the optimal 
amount of demand hedging (water rationing), as depicted in Figure 2. 

𝑌𝑌𝑡𝑡
𝐷𝐷𝑡𝑡

=
𝑌𝑌𝑡𝑡+1
𝐷𝐷𝑡𝑡+1

    𝑡𝑡=0,𝑇𝑇 (2) 

The above constraint prevents the model from premature emptying of storage during dry years, while 
simultaneously allocating minimal deficits evenly over the entire irrigation season[16,17]. This constraint ensures 
equal relative deficits for all time steps within an irrigation season, as shown in Figure 2. Without it, any other 
distribution of deficits throughout the season would seem equally optimal based on the objective function (1), 
while the actual differences in their output are drastic, which could often result in crop failure if large deficits 
persist for a month or longer. 

 
Figure 2. Simultaneous optimization of rule curve and demand hedging. 
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The optimal rule curve and its corresponding water supply pattern shown in Figure 2 were obtained by 
conducting an optimization run over the entire hydrologic year with the constraints defined in Equation (2). 
As a result of having insufficient water supply, the model derived a reduction in water supply such that the 
deficits were evenly distributed throughout the entire year. Having the ability to provide optimal reservoir 
trajectory over the entire irrigation season along with the optimal level of water use for the given hydrological 
conditions for each simulated year forms the basis of developing an algorithm that can be used to quickly 
assess the reservoir operating rules for a typical range of hydrologic conditions. 

The ultimate goal of using a comprehensive river basin model is to learn how to use the multiple time 
step optimal (MTO) solutions to create the reservoir operating zones and demand management policies. To 
define sound reservoir operating rules, we first need to define the concepts of irrigation failure, which is closely 
associated with the conditions that correspond to crop failure. Typically, a 10% deficit in supply will not cause 
crop failure. Irrigation failure is associated with sufficiently long cutoff in water supply that will result in the 
crop reaching the wilting point. Consequently, irrigators want to manage storage such that they minimize 
variations in supply from one 10-daily period to the next. Hence, for all practical intense are purposes, avoiding 
zero supply in any irrigation canal for any 10-daily period can be considered as the ultimate goal of sound 
reservoir operation. Irrigators’ success should be determined in terms of the farmers’ ability to simultaneously 
manage both the available storage and water demands. When farmers feel that the forthcoming irrigation 
season will be drier than usual, and these feelings are accompanied by observations of the available storage 
levels being significantly below expectations, they typically follow a policy of reducing the irrigated area, so 
as to safeguard successful crop yield with reduced water supply. The approach in this paper is aimed to propose 
a scientific method to determine water rationing policies at the beginning of an irrigation season, rather than 
relying on the gut feelings of the farmers, which is the current modus operandi. 

Multiple time steps optimization is an approach that is well reviewed by Dobson et al.[5], where dynamic 
programming (DP), originally proposed by Bellman[18] is frequently cited as the solution engine. However, 
outside of academia, there are no well-known and widely used models among water resources practitioners 
that rely on dynamic programming. In addition to a recognized problem with dynamic programming known 
as “the curse of dimensionality”, DP also has reduced accuracy compared to LP, since dynamic programming 
requires discretization of each decision variable into a finite number of defined states, one of which is then 
selected for the final solution by the DP algorithm, which affects the final accuracy of the solutions. Popular 
models that have achieved widespread use among practitioners such as MODSIM by Labadie et al.[19], WEAP 
by Yates[20], REALM by the State of Victoria[21] or RiverWare[13] all rely on the use of LP solvers. In addition 
to the above, it is not clear how dynamic programming would include the model constraint defined by Equation 
(2), while this implementation is relatively straight forward within the LP modelling framework. 

Since the WEB.BM optimization model can determine the best possible combination of water supply and 
demand management, the success of the proposed short term operating rules resulting from this study should 
be determined in terms of the deviation of a simulated model solution from the solution developed using the 
MTO approach. The simulation follows simple storage and demand management rules. The closer the 
simulated solution comes to the MTO solution that is based on perfect foreknowledge of the hydrologic 
conditions, the higher the success of the proposed operating rules. The operating rules are based on knowing 
only the starting storage level and having water demand forecasts for a single time step, thus mimicking the 
operators’ short-term decisions which are typically based on those two input data parameters. 

3. Development of reservoir operating rules 
While MTO solutions provide valuable insights into reservoir operation when inflows are known, there 

is no widely accepted methodology how to use these solutions to create reservoir operating rules that are easy 
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to understand and follow. This paper investigates one possible approach of using MTO solutions for 
development of reservoir operating rules, with a note that this field is still an active area of research, especially 
in view of the fact that the MTO procedure can be used with stochastic hydrologic input for lengthy series of 
1000 or more years of hypothetical inflows. The work presented here is easy to understand and replicate by 
the practitioners. It should be noted that the length of the hydrological input is important for the algorithm 
presented here. In general, the longer the input data series, the more reliable the results of the application. The 
numerical example presented in this paper relied on the use of 46 years historical natural flow series. The 
algorithm consists of the following steps shown in generic terms in the block diagram in Figure 3, and 
explained in more detail in the numerical example in Section 4. 

 
Figure 3. Algorithm for development of reservoir operating rules bas on MTO solutions. 

There are several ways to conduct Step 2. This paper presents one approach based on sorting out the 
simulated years on the basis of the lowest storage level reached in each simulated year. This approach takes 
into account the total available water supply for each simulated years, which has two components—left over 
storage from the previous year and the runoff in the current year. Given the steady water demands assumed in 
each year, the lowest simulated water level reached in each year can be understood as a relevant statistic 
obtained from the MTO results that can rank all simulated years from the driest to the wettest. This enables 
selection of the representative sub-groups for dry, median and wet years. Step 3 involves the use of simple 
statistics applied on the selected model solutions that belong to the sub-groups defined in Step 2, which 
provided suggested operating zones and water rationing policies. Analyzing MTO solutions for the purpose of 
constructing reservoir operating rules is an active area of research, and the approach proposed in this paper is 
certainly not the only one. However, it does merit attention due to its simplicity and due to the quality of the 
results presented in the numerical example in Section 4. 

4. Numerical example 
Narmada River Basin is one of the major river basins in India. It is a westward flowing basin show in 

Figure 4, with over 28 billion m3 of storage distributed among four large reservoirs and a number of smaller 
reservoirs. The Barna reservoir is a medium size reservoir with live storage of 540 million m3. 
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Figure 4. Location of Narmada River Basin. 

The Barna reservoir is located in the upper portion of Narmada Basin, draining its outflows into the 
Narmada River along with the Bargi and Tawa reservoirs as shown in Figure 5. 

 
Figure 5. Location of Barna reservoir. 

It should be noted that modelled irrigation demand was based on the average 10-daily withdrawals into 
the irrigation canal. As is usually the case this requirement covers domestic and stock water demand in addition 
to irrigation, and fills multiple smaller storage ponds on the village level, so the water demand pattern is similar 
from year to year. Historical inflows into the reservoir from 1972 onward were available from previous studies. 

4.1. Initial MTO solution 
In addition to the Barna irrigation demand, an all-time minimum e-flow target for downstream river 

channel of 2.5 m3/s has been set up in the model. A perfect trajectory of reservoir levels resulting from the 
MTO optimization for all simulated years is provided in Figure 6. 



 

7 

 
Figure 6. Barna reservoir levels obtained using MTO optimization. 

We can distinguish 8 very dry years in which the storage has reached the dead storage zone of 327 m, and 
several dry years of medium severity with the lowest levels reaching 335 and 340 m. One interesting finding 
for all severely dry years is that they did not manage to refill the reservoir to the full supply level. Associated 
with each dry storage zone is the Barna irrigation performance, which will typically exhibit higher deficits in 
drier years, especially if the starting storage on 1 July was lower than usual. The same water demands were 
used in each year, indicating the average water demands that were provided historically in the most recent 
years as a representative of the current water demand levels. 

4.2. Statistical analyses of the MTO solution 
The storage levels and obtained from the MTO solutions were grouped based on the severity of deficits 

and the magnitude of drawdown required during the simulation. The driest years caused the highest deficits 
and the drawdown that typically reached the top of the dead storage zone. The three typical groups are 
identified by their overall annual deficits and the simulated years in the first two columns of Table 1 below. 
The remaining columns in this table show the storage levels at the end of the 10-day periods in July and August. 
Only two months are presented here for brevity, while the model has produced the storage levels for all 36 
periods of a 10-daily time step simulation. 

Table 1. Storage levels from MTO solution for selected years. 

Very dry years      

Deficit Year 10-July 20-July 31-July 10-August 20-August 31-August 

25.00% 1976 334.97 336.48 337.21 339.65 340.33 341.41 

13.11% 1979 341.77 342.12 342.35 343.79 345.40 345.83 

12.24% 1982 338.33 338.60 338.85 339.40 341.48 343.78 

25.00% 1987 338.39 338.60 338.78 339.15 339.18 341.57 

40.83% 1988 332.55 335.77 336.70 340.81 341.24 342.86 
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Table 1. (Continued). 

Very dry years      

Deficit Year 10-July 20-July 31-July 10-August 20-August 31-August 

45.27% 1989 332.22 333.35 334.21 337.34 339.45 341.56 

12.54% 1996 337.50 337.83 341.68 342.41 342.77 343.64 

17.73% 2002 333.14 333.21 333.58 335.45 339.00 341.53 

        

- Average 336.11 336.99 337.92 339.75 341.10 342.77 

- Standard deviation 3.43 2.96 3.16 2.65 2.17 1.58 

Moderately dry years       

 Year 10-July 20-July 31-July 10-August 20-August 31-August 

25.00% 1975 337.21 337.74 339.04 339.20 342.26 344.18 

5.00% 1977 336.79 337.90 339.67 341.11 342.62 344.31 

5.00% 1981 340.93 342.38 342.82 344.61 345.97 346.14 

5.00% 1985 339.39 339.64 340.66 342.76 344.60 345.29 

0.00% 1992 338.09 338.40 340.49 342.01 344.33 346.12 

15.00% 2000 341.90 342.79 344.28 345.03 345.35 345.76 

15.00% 2001 335.27 339.32 341.90 342.54 344.53 345.56 

0.00% 2008 343.72 344.09 344.37 345.80 346.49 346.52 

        

- Average 339.16 340.28 341.65 342.88 344.52 345.48 

- Standard deviation 2.86 2.46 2.03 2.19 1.49 0.85 

Normal and wet years      

 Year 10-July 20-July 31-July 10-August 20-August 31-August 

12% 1973 340.24 342.57 343.83 344.17 345.35 348.00 

5% 1978 341.21 342.81 343.55 344.19 346.01 347.79 

0% 1991 340.21 340.44 342.32 343.48 345.06 348.00 

5% 1995 338.64 339.45 342.26 343.84 346.11 347.28 

0% 2004 342.94 343.05 343.65 344.74 345.83 347.84 

        

- Average 340.65 341.66 343.12 344.08 345.67 347.78 

- Standard deviation 1.58 1.62 0.77 0.47 0.45 0.30 

The statistical analyses of the selected sub-sets of the MTO solutions are limited to only the average and 
the standard deviation of the storage levels at the end of each 10-daily period. There is no widely accepted 
guideline on how these solutions should best be analyzed to provide guidelines for the development of the 
short-term operating rules. This topic remains open to future research. However, even at the most mundane 
level using the simplest statistics such as the average function, it is possible to obtain respectable results, based 
on the short-term operating rules which are represented by the operating zones in Figure 7 that are based on 
the average storage values obtained from Table 1 and the proposed water rationing policy, which is explained 
below. 
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Figure 7. Barna reservoir operating zones. 

The above zones define the following operating policy: 

1) For water levels between 348 m and the Average (blue) line in the above graph, the model will provide 
100% of target water demand; 

2) For water levels below the Moderately Dry (red line) and the Average levels (blue line), reduce water 
demand to 80% of the ideal target; 

3) For water levels between Moderately Dry (red line) and Severely Dry (green line), reduce water 
demand to 65% of the ideal target; and, 

4) For water levels below Severely Dry (green line), reduce water demand to 50% of the ideal target. 

The results of the above policy are presented in the next subsection. 

4.3. Comparison of MTO solution with the solution obtained using the proposed operating 
rules 

The proposed rules managed to generate a solution that is reasonably close to the solution obtained using 
the MTO procedure. Note that the differences in individual years are also caused by different storage levels at 
the start of the year in the two simulations. Different starting storage at the beginning of the dry season explain 
why some years such as 1973, 1995 and 1999 have higher deficits in the MTO run than in the rule-based 
simulation. On average, however, the rule-based simulation that follows the above deficit reduction policy in 
combination with reservoir operating zones provides a solution which is remarkably close to the MTO solution 
based on the assumed foreknowledge of inflows for the whole year ahead, yielding the average deficits of 
9.75% over all simulated years, while the overall average of deficits in the MTO simulation was only 2.5% 
lower at 7.25%, as demonstrated in Figure 8. E-flow targets are also maintained in both simulations, with no 
failures to maintain 2.5 m3/s at all in the MTO run, while the Rule-based simulation has only three weeks 
where water deliveries are slightly below 2.5 m3/s. It is instructive to compare the storage levels from the MTO 
optimization solution and the solution based on the application of the zoning operating rules, which is shown 
in Figure 9. 
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Figure 8. Comparison of annual irrigation deficits from the MTO solution and rule-based simulation. 

 
Figure 9. Comparison of Barna reservoir levels from MTO solution and the proposed rules. 

It should be self-evident that the closer the rule-based simulated levels are to the MTO results, the better 
the rules. In this sense, the MTO solutions provide both the benchmark for testing the proposed operating rules, 
as well as the foundational database for the development of the same rules (assuming sufficient number of 
years of inflow series was available in a given study). The above approach can therefore be useful when 
defining the shape and sizes of reservoir operating zones, reducing the reliance on the judgement of the modeler, 
which is currently prevalent in the industry. 

When there is more than enough water, as in the last 6 simulated years, the MTO and the rule-based 
simulation results are identical, as they both correspond to the results that would be obtained from the Standard 
Operating Policy (SOP) which provides water on an “as needed” basis. However, such policy would tend to 
result in a premature emptying of storage in dry years. The important distinction is that the two solutions 
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provided in this work (both the MTO and the rule-based solution) always maintain a minimum of 50% of target 
demand in each simulated week, and follow a reasonable water rationing policy in dry years, thus safeguarding 
the irrigators from crop failure, which has been the principal objective of the proposed operating rules.  

5. Conclusions and recommendations 
This paper demonstrates a methodology to create short-term reservoir operating rules and water use 

rationing policies based on analyzing the results of long-term optimization based on perfect foreknowledge of 
inflows. The approach holds out a promise to generate efficient reservoir operating rules in complex multi-
reservoir multi-purpose systems were sufficient and reliable input data are available. The study was based on 
the use of the WEB.BM model which can be used either as a planning or an operational tool that can take into 
account hydrologic channel routing as constraints built into the optimization process[15]. The results of this 
study demonstrate a potential to achieve outstanding results based on comparing the model output with the 
results of the MTO run, which can be used as a benchmark to gauge the quality of the proposed operating rules. 
Future studies can focus on more comprehensive statistical analyses of the model output and possible use of 
stochastic inflows series that have similar relevant statistics as the historic series, thus providing lengthy 
statistical sample of MTO solution for further investigation and analyses. 
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