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ABSTRACT
In this work, a mixture of ZnO and CeO2 powders are subjected to a milling procedure to monitor the mechanical

alloying processes. ZnO-CeO2 powders have been milled during 10 to 60 hours, and have been characterized by X-ray
diffraction (XRD), UV-Vis absorption, Raman and photoluminescence spectroscopies, in order to study the present
phases, the tensional state of material and particle sizes. The evolution of the phases present with the time of milling,
and the possible changes in the lattice parameter will help us to estimate the efficiency of the grinding process for
obtaining Ce doped ZnO.
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1. Introduction
Mechanical alloying is a technique generally used in synthesis of metals and metal alloys to produce powder

samples or in the form of micro or nanoparticles by cold welding, fracture, and double welding[1,2]. This technique was
discovered in the decade of the 60´s, when John S. Benjamin[2—5], at the INCO laboratories, worked to achieve the
hardening of nickel-based and aluminium-based alloys, by dispersion of oxides and by precipitation of the phase γ '.
Since then, mechanical alloy has expanded its field of application to a wide variety of alloys[2]. Its use in the processing
of ceramic materials[1] is less widespread but offers multiple advantages in various systems of technological interest and
industrial applications[1]. The basic objective is to reduce the particle size to facilitate the dopant incorporation into the
host lattice[1,2]. For this, the mixture of powders of the host and dopant materials is subjected to high-energy collisions[6].
The interaction between the grinding balls and the powder particles can be characterized by processes such as cold
welding, particle fragmentation and plastic deformation, until a powder is produced in which each particle is
constituted by the percentage composition of the initial mix. In this way, the continuous and repeated welds produce the
transformation of the material within the structure in solid state[6].

The mechanical alloying process usually includes a ductile component that acts as a support or matrix of the other
components[2]. In this sense, the mixtures can be classified according to the ductility of the materials that intervene in
three groups: ductile-ductile, ductile-fragile and fragile-fragile. In the case of ceramic materials, the process is more
complex given the low ductility of most of this type of materials. However, some fine powder with a minimum of
agglomerated particles, allows the precursors to create a dense baked ceramic[3]. In our case, as both starting materials
are ceramic (ZnO and CeO2), we can expect fragile-fragile behaviour. For the alloy to take place, it will be necessary for
the majority component (ZnO) to have the necessary degree of ductility for the alloy to take place. On the other hand,
diffusion processes enhanced by the mechanical treatment could also favour the dopant incorporation.

A group II-VI semiconductor material, ZnO, has been selected for the study, with great potential in various
technological applications, such as gas sensors, light emitting devices (visible), blue lasers, solar cells, etc. It belongs to
the group of metallic oxides, and is also characterized by its good photocatalytic properties, in particular when it is
doped with cerium, whose oxide is precisely the material chosen as a dopant[1,2].

2. Experimental
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Starting materials are commercially available ZnO and CeO2 powders from Sigma-Aldrich (purity of 99.9%) and
D’Hemio-Laboratories (chemically pure), respectively. The amount of CeO2 in the mixture is 5 wt.%. The powder
mixture is introduced in a centrifugal ball mill (Retsch S100 with grind jar and balls made of agate) and subjected to a
milling process at 180 rpm during 10, 20, 40 and 60 h. Initially, 5 g of the mixture are introduced, and 1 g of the milled
material is collected at the indicated milling times. The process has been carried out in atmospheric environment.

After performing the milling, the material has been characterized mainly using X-ray diffraction (XRD) and
UV-Vis absorption. XRD analysis has been done by means of a Philips X’Pert PRO diffractometer using Cu K
radiation, with a step in 2θ of 0.05º. UV-Vis absorption studies have been performed in a Shimadzu UV-1603
spectrometer. The ZnO-CeO2 powders were dispersed in ethanol to measure the absorption spectra in the range of 300 –
650 nm. Additional Raman spectroscopy and photoluminescence measurements have been carried out in a confocal
microscope Horiba JobinYvon LABRAM-HR to support the observations obtained with XRD and UV-Vis absorption.
For measuring Raman spectra, the 633 nm line of a He-Ne laser is used, whereas for the photoluminescence the
wavelength used to excite the sample is 325 nm, from a He-Cd laser. A Thorlabs LMU-40x-NUV objective (0.5 NA) is
used to both focus the laser on the powders and collect the signal. The aim of this characterization is to determine if
there is incorporation of Ce in the ZnO lattice.

3. Results and discussion
Initially, XRD measurements have been performed on the powders of the separated materials (ZnO and CeO2)

milled during the same times (10, 20, 40, 60 h) as the mixture. The recorded diffractograms are shown in Figure
1(a)-(b). For ZnO (Figure 1(a)) all the peaks are associated with the wurtzite phase of this material (ICDD card no.
01-079-5604). In the case of CeO2, the peaks found can be ascribed to cubic phases of CeO2 (ICDD card no.
04-013-4458, marked with asterisks ‘*’ in Fig 1(b)) and Ce2O3 (ICDD card no. 04-015-1518, marked with dollars ‘$’ in
Fig 1(b)).

Figure 1; XRD spectra measured on: (a) pure ZnO milled for 10, 20, 40 and 60 h; (b) cerium oxide milled for 10, 20, 40 and 60

h. (c) Shift of (002) peak of pure ZnO for different milling times. (d) Shift of (100) peak of pure ZnO for different milling times. (e)

Shift of pure CeO2 peak for different milling times.
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In the case of ZnO, a change in the position of the peaks is noticed. This effect is presented, for the (002) and (100)
reflections, in Figure 1(c)-(d). It is seen that, for the lower milling times (10 - 20 h) the peaks are shifted towards higher
angles respect to the values in the ICDD card. This is related to a decrease in the lattice parameters, an indication of the
presence of residual compression stress. For longer milling times (40 h) and especially for 60 h, a relaxation of the
residual stresses is produced, evidenced by the tendency of the peaks to return to the unstressed position. This relaxation
could be related to a self annealing occurred at the longest milling times, hence the larger amount of deposited energy.
In table I are shown the lattice parameters, calculated from the position of the peaks using Bragg’s law and the plane
spacing for hexagonal crystal lattice:

2dhkl sin θ = nλ (1)
1
dhkl
2 = 4

3
h2+hk+k2

a2
+ l2

c2
(2)

Where dhkl is the plane spacing for (hkl) planes, θ is the angle of the diffracted peak, λ is the wavelength used to
measure the diffraction, and ‘a’ and ‘c’ are the lattice parameters. In table I is again clearly visible the decrease in the
dimension of both parameters a and c of the wurtzite structure for milling times of 10 and 20 h, and the increase of these
parameters for 40 and 60 h.

a parameter c parameter

Peak (100) position
Calculated value for

a

Peak (002)

position

Calculated value

for c

ZnO

ICDD 01-079-5604
31.782º 0.32484 nm 34.430º 0.52053 nm

Milled 10 h 31.9088º 0.32358 nm 34.5651º 0.51856 nm
Milled 20 h 31.9398º 0.32328 nm 34.5925º 0.51816 nm
Milled 40 h 31.9058º 0.32361 nm 34.5563º 0.51869 nm
Milled 60 h 31.8323º 0.32434 nm 34.4870º 0.51970 nm

Table 1. Pure ZnO lattice parameters calculated from diffraction peaks position

Changes in the diffraction peaks of CeO2 are less pronounced (Figure 2(c)-(d)). For 10, 20 and 40 h milling times,
there is no shift of the peaks from the unstressed position. It is just for 60 h when a slight shift towards higher angles is
noticed, indication of compression stress induced in the crystal lattice. The minor effect in this case would be related to
the higher hardness of ceria.

Once, the effect of the milling process in both materials has been studied separately, the results obtained for the
mixture 95 wt.% ZnO + 5 wt.% CeO2 can be analysed. Firstly, it is observed that the diffraction peaks for the mixture
are shifted towards lower angles, in comparison with the position of the peaks of milled ZnO. As an example, in figure
2 (a)-(b), are presented the shifts of some peaks (corresponding to (002) and (101) reflections) for 10 h and 40 h milling
times. As it has been done for pure ZnO, the values for ‘a’ and ‘c’ are the lattice parameters can be calculated for the
mixture, and the results are shown in table II. Comparison of lattice parameters for ZnO and ZnO+CeO2 is presented in
figure 2(c)-(d), where it is visible that the ZnO lattice parameters are less compressed in the mixture for milling times of
10, 20 and 40 h. This effect is consistent with the incorporation of Ce in the ZnO lattice, occupying Zn positions, since
Ce ionic radius is bigger that than of Zn (Ce(3+) = 101 pm and Ce(4+) = 87 pm versus Zn(2+) = 60 pm) []. Then, the
incorporation of Ce will produce an expansion of the ZnO lattice [] that will compete with the compression that is being
produced in the milling process. In other words, there is a competition between the incorporation of Ce (which will
produce an increase of the lattice parameter) and the compression (decrease of lattice parameter) induced by the milling
process. Although cerium oxide related peaks are still present in the diffractograms, this is an indication that a portion of
cerium in the mixture has been incorporated to the ZnO lattice.

The presence of Cerium in the milling process also affects the relaxation of the ZnO lattice observed for longer
milling times. As can be seen in Figure 2 (c)-(d), for 60 h, the lattice parameters show more compression (compared
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with the unstressed lattice) for the ZnO-CeO2 mixture, opposite from the behaviour observed for 10, 20, and 40 h. Then,
Ce incorporation stops the ZnO to relax the stresses induced in the milling, again likely due to the stress induced by the
difference in radii.

Figure 2; Comparison of (002) and (101) ZnO diffraction peaks in pure and Ce doped material: (a) milled for 10 h; (b) milled

for 40 h. Evolution of ZnO (c) c parameter and (d) a parameter with milling time.
a parameter c parameter

Peak (100) position Calculated value for a Peak (002)
position Calculated value for c

ZnO
ICDD 01-079-5604 31.782º 0.32484 nm 34.430º 0.52053 nm

Milled 10 h + CeO2 31.8175º 0.32449 nm 34.4690º 0.51996 nm

Milled 20 h + CeO2 31.8739º 0.32393 nm 34.5263º 0.51913 nm

Milled 40 h + CeO2 31.8301º 0.32436 nm 34.4808º 0.51979 nm

Milled 60 h + CeO2 31.8677º 0.32399 nm 34.5185º 0.51924 nm

Table 2. Doped ZnO lattice parameters calculated from diffraction peaks position

Finally, a Williamson-Hall analysis[5] has been performed. In this model, the broadening of the diffraction peaks is
considered to come from the small crystallite size and the presence of non-uniform micro-strain[6]. Then, this analysis
connects the width of the diffraction peaks (βhkl) with the residual strain (ε) and the crystalline size (D) as follows:




 sen
D
k

hkl 4·cos 
(3)

Where k is an empirical constant with a typical value of 0.94[11]. Preforming a linear regression of the data from the
diffraction peaks, we can the estimate the values of D and ε. Although some discrepancies are found in several
diffraction peaks, the general tendency fits well to the linear behaviour, and let us conclude that the crystallite size is
similar for both milled ZnO and ZnO+CeO2, in the range of 30 – 35 nm, for all the milling times. On the other hand, the
strain for ZnO is around -7 × 10-4 (compressive), whereas for ZnO+CeO2 is around -6 × 10-4. In agreement with the
discussion above, Ce incorporation (which produces an expansion of ZnO lattice) is competing with compression stress
induced in the milling process.
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The observations from XRD measurements are in agreement with the Raman spectra (Figure 3). For the sake of
clarity, we will focus on the spectra for pure and doped ZnO milled for 60 h. In the Raman spectra recorded on milled
ZnO (Figure 3(a)) peaks are detected at 100 (E2(low)), 205 (multiple-phonon mode), 333 (E2(high)- E2(low)), 382
(A1(TO)), 410 (E1(TO)), 439 (E2(high)), 538 (multiple-phonon mode), 584 (E1(LO)), 665 (multiple-phonon mode),
1100 (multiple-phonon mode) and 1150 cm-1 (multiple-phonon mode), ascribed to the expected Raman modes in ZnO [].
These peaks also appear in the spectra of the doped mixture (Figure 3(b), along with some extra peaks located at 452
and 564 cm-1, which can be associated to CeO2 (F2g mode and defect-induced (D) mode, respectively)[]. As pointed out
in the XRD analysis, CeO2 peaks are detected along with the ZnO ones, showing that not all the cerium is incorporated
to the ZnO lattice. However, in the Raman spectra there are some evidences of incorporation of Ce. First, the Raman
modes show a slight increase in width, associated with the disorder in the lattice induced by the incorporation of the
dopant. Moreover, a change in the relative intensity of the E2(high) and E2(low) modes is clearly observed. E2(high) is
mostly related to the oxygen vibration in the ZnO crystal lattice, whereas E2(low) is originated from the the Zn
sublattice vibrations[12]. The decrease of the relative intensity of the E2(low) and increase in width indicates the
incorporation of Ce in Zn position.

Figure 3; Raman spectra (λexc = 633 nm) recorded on: (a) ZnO milled for 60 h; (b) mixture ZnO+CeO2 milled for 60 h.
The effect of the incorporation of Ce in the ZnO crystal lattice is also observed in the UV-Vis absorption

measurements. In semiconductor materials, the absorption strength depends on the photon energy (hν) and the bandgap
(Eg) of the material as follows (as described by Davis and Mott[9]):

(���)1/� = � �� − �� (4)
Where α is the absorption coefficient and n is a number that depends on the nature of the electronic transition. For

ZnO, we would have direct allowed transitions, so n = ½. Following this model, if (���)2 is plotted versus the photon
energy hν (the so-called Tauc plot), the Eg value can be extracted from the X-axis interception of the linear region of
this plot (Figure 4(a)-(b)). In Figure 4(a) it is clearly visible that the milling process does not affect the Eg of pure ZnO
(Eg = 3.12 eV). However, when Ce is incorporated, there is a shift of Eg towards lower energies (Figure 4(b)). The
change in Eg with milling time for both pure and doped material is shown in Figure 4(d). Due to the low level of Ce
incorporation expected, the red-shift observed in the ZnO bandgap is associated with the introduction of shallow defect
levels near the edge of the conduction or valence bands.

From the measured absorption spectra, the Urbach energy (EU) can also be calculated. Where α varies
exponentially with photon energy, it is possible to assume that the spectral dependence of the absorption edge follows
the Urbach formula[10]:

� �� = �0�ʀ
��−�0
��

(5)

By plotting ln (�) versus the photon energy hν, the value of EU can be calculated from the slope of the linear
region. The obtained values are presented in Figure 4(c). For pure ZnO, there is an increase of the Urbach energy with
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the milling time, from 0.23 eV for the pristine material to 0.27 eV for 60 h milling. On the other hand, the increase of
Urbach energy is stronger for the Ce doped ZnO, reaching a value of 0.60 eV. Comparing both results, it is clear that,
although the milling process is introducing some degree of disorder in the ZnO crystal lattice, is the incorporation of Ce
which induces a higher disorder, confirming the inclusion of the dopant in the ZnO lattice.

Figure 4; Tauc plot of (a) pure ZnO and (b) Ce doped ZnO for different milling times. (c) Variation of Urbach energy (EU) with

milling times for pure (black squares) and doped (red circles) ZnO. (d) Variation of bandgap (Eg) with milling times for pure (black

squares) and doped (red circles) ZnO.

Finally, the PL measurements done on the mixture powders support the UV-Vis absorption results. Pure ZnO has
the near band edge emission (NBE) centered at 3.2 eV, whereas for doped ZnO it is centered at 3.0 eV. Also, the
NBE band is broader for the doped material. The smaller band gap in CeO2 (around 3.02 eV) could be responsible for
this shift and broadening of the near band edge emission.
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Figure 5; Photoluminescence (PL) spectra (λexc = 325 nm) recorded on: (a) ZnO milled for 10, 20, 40 and 60 h; (b) mixture

ZnO+CeO2 milled for 10, 20, 40 and 60 h.

4. Conclusions
This study opens a clear route to produce doped ZnO without the necessity of high energy attrition mills nor high

temperatures. We have studied the incorporation of Ce in ZnO by means of a mechanical processes. The
competition between the compressive stresses associated to deformation process and tensile strain induced by Ce
incorporation are responsible for the observed behaviour. Despite the brittleness of both ceramic materials, the
incorporation of Ce in the ZnO lattice is evident from the experiments. Fast diffusion paths associated to defects
induced during milling process could play an important role on the dopant incorporation.
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