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Abstract: Advancements in Medical Image Segmentation have revolutionized clinical 

diagnostics and treatment planning. This review explores a wide range of segmentation 

techniques applied to Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) 

images, emphasizing their clinical implications and future directions. CT segmentation 

techniques, including U-Net and its variant nnU-Net, are essential in oncology for precise 

tumor delineation, in cardiology for coronary artery analysis, and in pulmonology for lung 

lesion detection. These methods enhance radiotherapy targeting, surgical planning, and overall 

diagnostic accuracy. The nnU-Net, known for its self-configuring nature, is particularly notable 

for setting new benchmarks in medical image segmentation tasks. MRI segmentation benefits 

from superior soft tissue contrast. Techniques like Mask Region-based Convolutional Neural 

Network (R-CNN) excel in identifying brain lesions, assessing musculoskeletal injuries, and 

monitoring soft tissue tumors. These methods support detailed visualization of internal 

structures, improving diagnosis and guiding targeted interventions. U-Net architectures also 

play a critical role in MRI segmentation, demonstrating high efficacy in various applications 

such as brain and prostate imaging. A systematic review of the literature reveals performance 

metrics for various segmentation techniques, such as accuracy, sensitivity, specificity, and 

processing time. Traditional methods like thresholding and edge detection are contrasted with 

advanced deep learning and machine learning approaches, highlighting the strengths and 

limitations of each. The review also addresses methodological approaches, including data 

collection, analysis, and evaluation metrics. Future prospects include integrating 3D and 4D 

segmentation, multimodal data fusion, and enhancing AI explain ability. These innovations 

aim to refine diagnostic processes, personalize treatments, and improve patient outcomes. 

Clinical applications of these segmentation techniques demonstrate significant advantages in 

radiology, oncology, and cardiology, though challenges such as data variability and noise 

persist. Emerging strategies like data augmentation and transfer learning offer potential 

solutions to these issues. The continuous evolution of medical image segmentation techniques 

promises to enhance diagnostic accuracy, efficiency, and the personalization of patient care, 

ultimately leading to better healthcare outcomes. 
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magnetic resonance imaging; MRI; DICOM; artificial intelligence; AI; U-Net; nnU-Net; Mask 

R-CNN 

1. Introduction 

Medical Image Processing has undergone significant evolution in recent decades, 

primarily due to advancements in image segmentation techniques. 
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Segmentation is a process that divides an image into meaningful regions, often 

corresponding to specific anatomical structures, lesions, or other features of clinical 

interest. This process is crucial for numerous medical applications, including 

diagnosis, surgical planning, and disease monitoring. 

Medical image segmentation is applicable to both Computed Tomography (CT) 

and Magnetic Resonance Imaging (MRI), although the context and objectives may 

vary considerably between these two types of images.  

CT and MRI represent two of the most commonly used imaging techniques in 

clinical settings, each with its own distinctive characteristics that influence their use 

and segmentation methods [1–4]. 

A systematic review of the literature reveals performance metrics for various 

segmentation techniques, such as accuracy, sensitivity, specificity, and processing 

time. However, these aspects are not sufficiently addressed in the current paper. To 

address this, we have included more detailed discussions and quantitative comparisons 

of these metrics in later sections, using data from publicly available datasets. 

CT and MRI images are predominantly in “Digital Imaging and Communications 

in Medicine” (DICOM) format. Each DICOM file contains both the image and 

associated metadata, such as patient information and technical details of the 

examination [5–7]. 

To address the need for quantitative evaluation, we have included a detailed 

comparative analysis of segmentation techniques using performance metrics on 

publicly available datasets. This section provides a clear and rigorous numerical 

comparison of different segmentation methodologies applied to CT and MRI images. 

1.1. Computed tomography images 

CT images are characterized by good spatial resolution and are particularly 

effective for visualizing bone structures, lungs, and body cavities filled with air or 

fluid. 

Therefore, segmentation in CT images finds numerous highly relevant medical 

applications. In Oncology, for instance, tumor segmentation is essential for 

radiotherapy treatment planning, as it allows for precise delineation of tumor masses, 

ensuring that the therapy is accurately directed towards cancer cells while minimizing 

damage to the surrounding healthy tissues [8]. 

CT segmentation techniques, including U-Net and its widely acclaimed variant 

nnU-Net, which are convolutional neural network architectures specifically designed 

for medical image segmentation, are essential for precise tumor delineation in 

oncology, coronary artery analysis in cardiology, and lung lesion detection in 

pulmonology. The nnU-Net, known for its self-configuring nature, has set new 

benchmarks in medical image segmentation tasks, demonstrating exceptional 

performance in various clinical contexts. 

CT-based detection of pancreatic cancer is a notable example of clinical 

significance, where segmentation techniques have been successfully applied for early 

and accurate detection of pancreatic tumors, improving patient outcomes. 

Recent advancements in CT-based image segmentation, particularly through the 

use of nnU-Net, have significantly enhanced the early detection of pancreatic tumors. 
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This improvement is crucial given the typically late diagnosis of pancreatic cancer, 

and it highlights the potential for deep learning models to improve patient survival 

rates [9]. 

This technology is also crucial in Cardiology, where coronary artery 

segmentation allows for precise assessment of stenosis or other cardiovascular 

diseases, providing a clear view of the arteries and facilitating the diagnosis and 

planning of surgical interventions or specific treatments required. In this case, the use 

of Convolutional Neural Networks (CNNs) for coronary artery segmentation in CT 

images improves the diagnosis of cardiovascular diseases, as CNNs can accurately 

identify areas of stenosis [10]. 

In Traumatology, bone fracture segmentation plays a fundamental role in surgical 

planning. By offering a clear view of the injuries, this technique allows surgeons to 

prepare more effectively, improving surgical outcomes and reducing recovery times 

for patients [3]. 

Similarly, in Pulmonology, the segmentation of lungs and lung lesions, such as 

nodules or masses, is crucial for the diagnosis and monitoring of respiratory diseases. 

This approach enables more accurate diagnosis and continuous monitoring of lung 

conditions, improving the management and treatment of respiratory diseases [11]. 

1.2. Magnetic resonance imaging 

MRI images offer excellent contrast between soft tissues and are particularly 

useful for visualizing the brain, spine, muscles, joints, and internal organs.  

In the detection of prostate cancer, MRI-based segmentation has become 

increasingly vital. Techniques such as semi-supervised learning, applied with 

biparametric MRI, provide enhanced accuracy in detecting and localizing prostate 

tumors, thereby supporting more precise and individualized treatment planning [12]. 

The main applications of segmentation in MRI images encompass various 

medical fields, providing advanced tools for the diagnosis and treatment of various 

pathologies. In Neurology, for example, brain segmentation is particularly useful for 

studying conditions such as brain tumors, multiple sclerosis, and epilepsy, as well as 

for neurosurgical planning. 

This technology allows for detailed images of the brain, facilitating the 

identification and localization of abnormalities, thus improving diagnostic accuracy 

and guiding targeted interventions [13]. 

U-Net architectures also play a crucial role in MRI segmentation, demonstrating 

high efficacy in various applications such as brain and prostate imaging. 

The use of Mask R-CNN for brain lesion segmentation has been shown to 

significantly improve diagnostic accuracy. A recent study highlighted that Mask R-

CNN outperformed other traditional techniques in delineating multiple sclerosis 

lesions, allowing for more accurate monitoring of disease progression [14]. 

MRI-based detection of prostate cancer is another critical application, where 

advanced segmentation techniques enable accurate identification and localization of 

prostate tumors, aiding in the diagnosis and treatment planning of prostate cancer. 

This same segmentation capability extends to Orthopedics, where it is used to 

assess musculoskeletal injuries and plan surgical interventions. By segmenting joints 
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and soft tissues, physicians can obtain a clear view of the involved structures, 

improving diagnostic accuracy and supporting precise surgical planning, which 

translates to better patient outcomes [15]. 

In Oncology, MRI image segmentation plays a vital role in diagnosing and 

monitoring neoplasms in soft tissues, such as the liver, kidneys, and prostate. The 

ability to accurately delineate tumor contours enables a more precise assessment of 

their extent and response to treatments, improving therapeutic strategies and patient 

follow-up [16]. 

Specifically, U-Net-based segmentation is widely used for segmenting liver 

lesions in MRI images. A study demonstrated that U-Net can accurately delineate the 

contours of liver tumors, enhancing the evaluation of their extent and response to 

treatments [17]. 

Finally, in Cardiology, heart and blood vessel segmentation is essential for a 

detailed assessment of cardiac function and cardiovascular diseases. The precise 

images of cardiac structures obtained through this technique facilitate the diagnosis of 

heart diseases and the planning of necessary interventions, contributing to more 

effective management of cardiovascular conditions [18]. 

1.3. Comparison and preferences 

The choice between CT and MRI for segmentation depends on specific clinical 

needs. CT images are more commonly used for the segmentation of bone structures 

and body cavities, and they are often the technique of choice in emergency situations 

and for surgical planning, where it is essential to have a detailed view of bones and 

cavities [19]. 

On the other hand, MRI images are preferred for the segmentation of soft tissues 

due to their excellent contrast, making them particularly useful in the study of the 

central nervous system and joints. 

In general, MRI image segmentation is widely applied to a broad range of 

medical applications thanks to the quality of soft tissue contrast, while CT remains 

indispensable for detailed analysis of bone structures and other applications requiring 

rapid image acquisition. 

Segmentation in DICOM images represents a versatile and indispensable 

technology in various medical specialties, significantly improving diagnostic accuracy 

and treatment planning, with tangible benefits for patients. 

In recent years, deep learning-based segmentation techniques have rapidly gained 

prominence, often outperforming traditional methods in various medical imaging 

tasks. This paper not only reviews these advancements but also provides a detailed 

comparative analysis of traditional versus deep learning-based methods, using the 

same benchmark datasets to highlight their relative strengths and weaknesses in 

different clinical contexts. 

2. Methodological approach and data collection 

To develop a comprehensive overview of medical image segmentation techniques 

applied to CT and MRI images, a systematic review of the scientific literature was 

conducted. 
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Firstly, specific Inclusion Criteria were defined to ensure the relevance and 

timeliness of the studies considered, thereby guaranteeing an accurate assessment of 

the most advanced segmentation techniques. Studies published from 2015 onwards, 

focusing on CT and MRI image segmentation and reporting performance evaluation 

metrics such as accuracy, sensitivity, specificity, and processing time, were included. 

This criterion was chosen to include the most recent and advanced segmentation 

techniques, reflecting technological advancements of recent years and ensuring that 

the analyzed data are current and relevant to today’s practices [20]. 

Furthermore, the type of studies considered were specifically those articles 

dealing with the segmentation of CT and MRI images. This targeted focus allows the 

analysis to concentrate on the most relevant segmentation techniques for these imaging 

modalities, ensuring that the conclusions drawn are directly applicable to these areas 

of study [20]. 

Finally, only those studies reporting performance evaluation metrics of 

segmentation techniques were included. The metrics considered include accuracy, 

sensitivity, specificity, and processing time [21]. 

These parameters are fundamental for assessing the effectiveness of segmentation 

techniques, allowing for quantitative comparison between different approaches and 

identifying the most promising methodologies for clinical application. 

To ensure a thorough assessment of the segmentation techniques, we have 

included a detailed analysis of key performance metrics such as accuracy, sensitivity, 

specificity, and processing time. Accuracy measures the proportion of correctly 

classified pixels, providing a broad indicator of the model’s overall effectiveness. 

Sensitivity, or recall, evaluates the ability of the model to correctly identify positive 

instances (e.g., tumor pixels), which is critical in medical diagnostics where missing a 

lesion could have serious consequences. Specificity measures the ability of the model 

to correctly identify negative instances, which helps in reducing false positives. 

Processing time, on the other hand, is crucial for assessing the feasibility of using these 

techniques in real-time or clinical settings, where quick and accurate results are often 

required. These metrics are discussed in detail in the comparative analysis section, 

where we compare traditional and deep learning-based segmentation methods using 

data from publicly available datasets [22]. 

Additionally, the main data sources used for article research were carefully 

selected to ensure a broad and relevant coverage of the available scientific literature. 

The primary scientific databases consulted included PubMed, IEEE Xplore, 

SpringerLink, and ScienceDirect. These resources were chosen for their authority and 

the extensive collection of academic and research articles they offer. 

To ensure the identification of the most relevant articles, specific keywords were 

used. These included “medical image segmentation”, “deep learning,” “CNN”, “U-

Net”, “CT segmentation”, “MRI segmentation”, and “DICOM”. The use of these 

keywords allowed the research to focus on studies dealing with medical image 

segmentation through advanced technologies such as deep learning and convolutional 

neural networks, as well as specific applications on CT and MRI images. 

By constantly monitoring scientific publications, it was possible to include new 

developments and relevant studies in the field of image segmentation. 

In particular, the searches were conducted using combinations of the 
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aforementioned keywords to identify pertinent articles. The abstracts and titles of the 

identified articles were reviewed to determine their relevance to the inclusion criteria. 

Subsequently, the selected articles were read in full to confirm their relevance and 

scientific validity. 

From the selected articles, information regarding segmentation techniques, their 

clinical applications, performance metrics, and challenges faced was extracted. This 

information was then analyzed and synthesized to provide a comparative view of the 

different segmentation techniques. 

3. Fundamentals and segmentation techniques: Traditional 

approaches and advanced methodologies 

Being a fundamental technique for analysis and diagnosis in radiology and other 

medical specialties, DICOM medical image segmentation has seen the development 

of various segmentation techniques, each with its own advantages and disadvantages. 

3.1. Classification of advanced segmentation techniques 

Advanced segmentation techniques in medical imaging can be broadly classified 

based on their underlying training processes and network structures. This classification 

helps in understanding the strengths and limitations of each approach, facilitating their 

application in different clinical contexts: 

⚫ Machine Learning-Based Techniques: These include methods such as Random 

Forests and Support Vector Machines (SVMs), which rely on statistical learning 

models to classify image pixels into distinct regions. These techniques are 

powerful for their simplicity and robustness in handling structured data. 

⚫ Deep Learning-Based Techniques: These methods leverage deep neural networks 

to learn complex features directly from the input data. Key architectures in this 

category include: 

⚫ Convolutional Neural Networks (CNNs): Such as U-Net and nnU-Net, 

which are extensively used for their ability to capture spatial hierarchies in 

medical images. 

⚫ Generative Adversarial Networks (GANs): These networks consist of a 

generator and a discriminator working in tandem to produce high-quality 

segmentations. 

⚫ Attention Mechanisms: Techniques like Attention U-Net, which enhance 

segmentation accuracy by focusing on the most relevant parts of the image. 

⚫ Transfer Learning: Utilized to improve model robustness, particularly in 

scenarios with limited labeled data, by transferring knowledge from pre-

trained models on similar tasks. 

The effectiveness of segmentation depends on the correct selection of the method 

in relation to the complexity of the data and the specific clinical objective [23–25]. 

3.2. Classical and established segmentation techniques 

3.2.1. Thresholding 

“Thresholding” techniques are fundamental for image segmentation, as they 

allow effective separation of objects from the background. There are two main 
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approaches in this category: fixed thresholding and adaptive thresholding. 

“Fixed thresholding” involves setting a constant threshold value for the entire 

image. This method is simple and effective when the image has uniform illumination, 

as it allows clear distinction between objects and the background based on a single 

reference parameter. 

On the other hand, “adaptive thresholding” varies locally based on the 

characteristics of the image. This approach is particularly useful for images with non-

uniform illumination, as the threshold is calculated for different regions of the image, 

adapting to variations in brightness and improving segmentation accuracy [26]. 

3.2.2. Edge-based segmentation 

“Edge-based segmentation” is a technique that uses edge detection methods to 

identify the contours of objects present in the image. This approach is based on 

detecting discontinuities in image intensity values, which correspond to the edges of 

objects. 

Common techniques used for edge detection include several well-known 

operators known for their effectiveness. The Sobel operator, for example, calculates 

approximations of the image gradient, highlighting areas with rapid intensity changes. 

The Canny operator, on the other hand, is more complex and involves several stages, 

including noise reduction, gradient detection, non-maximum suppression, and the use 

of double thresholds to identify the most significant edges. Finally, the Laplacian 

operator uses the second-order derivative to identify intensity variations, detecting 

edges as points of rapid change [27,28]. 

3.2.3. Region-based segmentation 

“Region-based segmentation” is a technique that segments the image into 

homogeneous areas based on specific similarity criteria. Among the main 

methodologies of this approach is the “Region Growing” technique, which starts from 

an initial point and expands the region by adding adjacent pixels that meet a certain 

similarity criterion. This method is useful for segmenting areas with homogeneous 

characteristics, allowing the incremental identification of contiguous regions with 

similar properties [29]. 

Another approach is “Region Splitting and Merging.” In this method, the image 

is initially divided into smaller regions. Subsequently, these regions are merged based 

on similarity criteria, resulting in a more coherent and homogeneous segmentation of 

the image. This technique is particularly effective for handling images with complex 

variations, as it combines both detailed division and merging to achieve accurately 

segmented regions [30]. 

3.2.4. Atlas-based segmentation 

Atlas-based segmentation uses reference images (atlases) that have been 

previously segmented to guide the segmentation of new images. This technique is 

particularly useful in contexts where anatomical structures must be precisely identified 

and segmented, such as in brain and cardiac imaging. Atlas-based approaches have 

been widely used in brain MRI segmentation, improving the consistency and accuracy 

of segmentation across different patients. However, this technique can be limited by 

anatomical variability and the quality of the atlas used. 
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3.2.5. Model-based segmentation 

“Advanced image segmentation” techniques are used to precisely delineate the 

contours of objects within an image. 

“Active contour models” (also known as “snakes”) are models that use curves 

moving under the influence of internal and external forces to outline the contours of 

objects. Internal forces maintain the continuity and smoothness of the curve, while 

external forces guide the curve towards the desired edges. This technique is 

particularly effective in handling complex and irregular contours, allowing accurate 

segmentation even in the presence of noise [31]. 

Another sophisticated technique is represented by the “Level Set Methods”. This 

approach uses implicit functions to represent and evolve segmentation surfaces. 

Implicit functions define contours as the zero level of a distance function, which 

evolves over time to fit the edges of objects in the image. Level set methods are 

particularly useful for handling topological changes, such as merging or splitting of 

regions, and for segmenting complex and dynamic shapes [32]. 

3.2.6. Clustering-based segmentation 

“Clustering” techniques are widely used for image segmentation, each offering 

unique approaches for partitioning pixels into distinct groups. 

In particular, “K-means clustering” partitions the image pixels into K groups 

based on characteristics such as intensity. This method assigns each pixel to the cluster 

with the nearest centroid, iteratively updating the centroids until the assignments no 

longer change significantly. “K-means” is effective for segmenting images into 

homogeneous regions, allowing for simple and fast pixel classification [33]. 

On the other hand, “Fuzzy C-means” clustering is similar to “K-means” but with 

a significant difference: it allows pixels to belong to multiple clusters with varying 

degrees of membership. Instead of assigning each pixel to a single cluster, “Fuzzy C-

means” calculates membership degrees that indicate how close each pixel is to the 

centroids of different clusters. This approach is particularly useful when the 

boundaries between regions are not clearly defined, allowing for more flexible and 

nuanced segmentation [34]. 

3.2.7. Graph-based segmentation 

“Graph-based segmentation” is a technique that models the image as a graph, 

where the nodes represent pixels and the edges represent the similarities between 

pixels. This approach leverages the relationships between pixels to achieve accurate 

segmentation. 

One of the techniques used in this context is the “min-cut” method. This method 

finds the optimal segmentation by dividing the graph into two subsets in such a way 

as to minimize the sum of the weights of the edges that are cut. Min-cut is effective 

for identifying homogeneous regions within the image, based on the local similarities 

between pixels. 

Freiman et al. [35] conducted a study presenting a non-parametric graph min-cut 

algorithm for the automatic segmentation of kidneys in CT images, improving the 

robustness of segmentation by including both model and image information. 
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3.3. Advanced segmentation techniques 

To improve the organization, we have categorized advanced segmentation 

techniques by their training process and network structure: 

• Machine Learning Techniques: Random Forests and Support Vector Machines 

(SVM). 

• Deep Learning Techniques: 

⚫ Convolutional Neural Networks (CNN): Including U-Net and nnU-Net. 

⚫ Generative Adversarial Networks (GAN): Effective for producing high-

quality segmentations. 

⚫ Attention Gated Networks: Attention U-Net for improved accuracy by 

focusing on relevant parts of the image. 

⚫ Transfer Learning: Techniques to address data variability and improve 

model robustness. 

3.3.1. Segmentation based on machine learning and deep learning techniques 

“Segmentation based on Machine Learning and Deep Learning” techniques offer 

advanced approaches for image classification and segmentation, leveraging the power 

of machine learning models to achieve highly accurate results. 

One of the techniques used is “Random Forests”, which employs a combination 

of decision trees to classify pixels. This method builds a forest of decision trees, where 

each tree contributes to the final decision, enhancing the robustness and accuracy of 

the segmentation [36]. 

Another important technique is the use of “Support Vector Machines” (SVM). 

SVMs are linear classifiers that separate classes by finding the widest possible margin 

between them. This approach is effective for clearly distinguishing between different 

pixel classes, especially when the classes are well separated. 

“Convolutional Neural Networks” (CNN) represent a significant advancement in 

deep learning, being deep neural networks that learn complex features directly from 

input data. CNNs are particularly well-suited for image segmentation, as they can 

capture spatial and contextual features at various levels of abstraction [37]. 

CNNs are applied in the segmentation of brain MRI images. For example, they 

are used to segment brain lesions in patients with multiple sclerosis, allowing for 

precise assessment of affected areas and improving treatment planning. 

Recently, Transformer-based networks have emerged as a powerful alternative to 

CNNs for medical image segmentation. These architectures, originally designed for 

natural language processing, have been adapted to handle visual data with remarkable 

success. The key advantage of Transformer-based models, such as the Swin-

Transformer, lies in their ability to capture long-range dependencies and global context 

within images. This makes them particularly effective for tasks where understanding 

the broader anatomical context is crucial, such as in multi-organ segmentation or when 

dealing with large tumors that span across multiple regions. 

However, Transformer-based models are computationally intensive and require 

substantial amounts of training data. As such, their application in clinical settings is 

still in the early stages, and ongoing research is focused on optimizing these models 

for practical use in medical imaging. Nonetheless, the potential of Transformer-based 

networks in medical image segmentation is significant, offering new avenues for 
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improving diagnostic accuracy and patient outcomes [38,39]. 

Furthermore, a specific architecture designed for medical image segmentation is 

the “U-Net”. This convolutional neural network is structured to handle segmentation 

with high precision, using a U-shaped architecture that allows for the combination of 

global contextual information with local details, making it ideal for medical 

applications such as skin lesion segmentation [40]. 

Attention Gated Networks represent a significant innovation in medical image 

segmentation. These networks introduce attention mechanisms that allow the model 

to selectively focus on the most relevant regions of the image, enhancing the precision 

of the segmentation process. The Attention U-Net is a notable example, combining the 

strengths of the U-Net architecture with attention gates that highlight critical areas 

while suppressing irrelevant information. This approach has been particularly effective 

in tasks such as pancreas and prostate segmentation, where accurate localization is 

crucial. Studies have shown that Attention U-Net can significantly reduce false 

positives and improve overall segmentation accuracy in complex medical images [25]. 

In Oncology, U-Net and nnU-Net is used to segment tumors in CT and MRI 

images. For instance, a study demonstrated that using U-Net for lung tumor 

segmentation in CT images improves the accuracy of radiotherapy treatment planning, 

reducing damage to surrounding healthy tissues. 

Furthermore, in the context of cancer detection, these techniques are applied in 

CT-based pancreatic cancer detection and MRI-based prostate cancer detection, 

enhancing early diagnosis and treatment efficacy. 

Generative Adversarial Networks (GAN) have also been explored for medical 

image segmentation. GANs, which consist of a generator and a discriminator network 

trained adversarially, can produce high-quality segmentations by learning from the 

underlying data distribution. Recent studies have shown that GANs can effectively 

segment various anatomical structures, achieving high accuracy and robustness even 

in challenging conditions. 

Attention gated networks represent another recent advancement in deep learning-

based segmentation. These networks incorporate attention mechanisms that allow the 

model to focus on the most relevant parts of the image, enhancing segmentation 

accuracy. Attention U-Net, for example, has shown improved performance in 

segmenting complex medical images by highlighting critical regions and reducing 

false positives. 

3.3.2. Strengths and weaknesses of GAN-based segmentation techniques 

Generative Adversarial Networks (GANs) have introduced a novel approach to 

medical image segmentation by framing the task as a generative modeling problem. 

One of the key strengths of GANs is their ability to generate highly realistic 

segmentations even in cases where training data is sparse or noisy. This is achieved 

through the adversarial training process, where the generator network learns to 

produce segmentations that are indistinguishable from real ones, while the 

discriminator network continuously improves its ability to detect any inconsistencies. 

In clinical applications, GANs have shown particular promise in scenarios such 

as liver tumor segmentation, where the high variability in tumor shape and appearance 

can challenge more traditional segmentation methods. GANs are also effective in 
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handling cases with significant occlusion or where the target structures are not fully 

visible in the imaging data, as the generator can infer missing information based on 

learned priors. 

However, the use of GANs in medical image segmentation also comes with 

several challenges. Training GANs is notoriously difficult due to issues like mode 

collapse, where the generator produces limited variations of the segmentation, and 

instability in the training process, which requires careful tuning of hyperparameters. 

Additionally, GANs demand significant computational resources, both in terms of 

memory and processing power, which can limit their applicability in resource-

constrained clinical environments. 

Another potential drawback is the lack of interpretability of GAN-generated 

segmentations. Since the generator is trained to produce the most realistic output 

possible, it may introduce artifacts that are not immediately apparent but could impact 

clinical decision-making. Therefore, ensuring the reliability and transparency of GAN 

outputs is critical for their adoption in clinical practice. 

Despite these challenges, GANs represent a powerful tool in the segmentation of 

complex medical images, particularly when combined with other deep learning 

techniques to enhance their robustness and generalizability [41,42]. 

3.3.3. Semi-automatic segmentation 

“Semi-automatic segmentation” combines manual and automatic input, where 

the user provides initial inputs and the algorithm completes the segmentation [43]. 

Atlas-based segmentation 

“Atlas-based segmentation” uses reference images (atlases) that have been 

previously segmented to guide the segmentation of new images [44]. 

AI-Based segmentation techniques 

Artificial Intelligence has revolutionized the field of medical image 

segmentation. Convolutional Neural Networks (CNNs) and other Deep Learning 

architectures have been successfully used to improve the accuracy and efficiency of 

segmentation. 

Convolutional Neural Networks are particularly effective in image segmentation 

due to their ability to learn hierarchical representations of visual features. 

Architectures such as “U-Net”, “V-Net”, and other recent variants are widely used for 

segmenting medical images. For example, a recent study used a variant of CNN called 

U-Net to segment brain MRI images, achieving over 90% accuracy in brain lesion 

segmentation. The structure of these networks, with their skip connections, allows for 

the combination of global information and local details, making them extremely 

effective for complex medical applications [45,46]. 

Furthermore, image segmentation can be classified into “semantic segmentation” 

and “instance segmentation”. “Semantic segmentation” assigns a label to each pixel 

in the image, identifying different parts of the image that belong to the same class. In 

contrast, “instance segmentation” distinguishes between different occurrences of the 

same class, allowing for the identification of individual instances within the same 

category. Advanced techniques such as “Mask R-CNN” are used for instance 

segmentation in medical images, enabling precise distinction between different 
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occurrences of similar structures within an image [47,48]. 

Mask R-CNN is particularly effective in segmenting brain lesions in neurology. 

A recent study highlighted that Mask R-CNN outperformed other traditional 

techniques in delineating multiple sclerosis lesions, allowing for more accurate 

monitoring of disease progression [49]. 

These techniques can be used individually or in combination to improve the 

accuracy and reliability of segmentation in DICOM medical images. The choice of 

technique depends on specific clinical applications, the quality and characteristics of 

the images, and the need for manual intervention. 

3.3.4. Strategic selection of segmentation techniques in clinical practice 

The choice of segmentation technique in clinical practice must be guided by a 

strategic consideration of several factors, including the specific clinical task, the 

quality and availability of imaging data, computational resources, and the urgency of 

the diagnostic process. 

For routine diagnostic tasks, where speed is crucial, and the images are relatively 

uniform (such as in screening mammograms or basic CT scans), traditional methods 

like thresholding or edge-based segmentation might still be preferable due to their 

simplicity and low computational cost. These methods, when combined with basic 

preprocessing techniques to reduce noise and enhance contrast, can provide 

sufficiently accurate results for many applications. 

However, in more complex scenarios, such as in the segmentation of brain tumors 

from MRI data or the delineation of irregularly shaped organs in abdominal CT scans, 

the superior accuracy and robustness of deep learning techniques like nnU-Net become 

indispensable. In these cases, the higher computational cost is justified by the need for 

precise delineation of anatomical structures, which directly impacts treatment 

planning and patient outcomes. 

For research and advanced clinical applications, where the highest possible 

accuracy is required, and where variability in imaging data is significant, hybrid 

models that integrate multiple deep learning approaches (e.g., combining CNNs with 

Transformers or GANs) are likely to be the best choice. These models can leverage 

the strengths of different architectures to handle a wide range of challenges, from 

capturing fine details to maintaining global context. 

Ultimately, the decision-making process in selecting a segmentation technique 

should be dynamic, taking into account the continuous advancements in computational 

power and deep learning research. As new models and techniques emerge, they should 

be rigorously evaluated against existing methods to ensure that they offer tangible 

benefits in terms of accuracy, efficiency, and clinical relevance. 

In conclusion, the strategic deployment of segmentation techniques in clinical 

practice requires a careful balance between accuracy, computational demand, and the 

specific requirements of the clinical task. By continuously integrating the latest 

advancements in deep learning and computational imaging, healthcare professionals 

can significantly enhance the diagnostic process, leading to better patient outcomes 

and more personalized care [50,23]. 

3.3.5. Transfer learning in advanced segmentation techniques 

Transfer learning is a powerful technique in deep learning that involves using a 
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pre-trained model on a related task as a starting point for a new task. In the context of 

medical image segmentation, transfer learning allows models to leverage knowledge 

from large datasets, such as ImageNet, and apply it to more specialized tasks where 

annotated data might be scarce. This approach is particularly beneficial in medical 

imaging, where acquiring large, labeled datasets can be challenging. Transfer learning 

can significantly reduce the amount of data and computational resources required to 

achieve high accuracy in segmentation tasks. It also enhances the robustness of models 

by allowing them to generalize better across different imaging modalities and clinical 

scenarios [51,52]. 

Furthermore, the ability to adapt pre-trained models through transfer learning is 

particularly beneficial in scenarios with limited annotated data, allowing for more 

personalized and effective segmentation tailored to individual patient needs. 

4. Comparative analysis and evaluation metrics 

The comparative analysis of segmentation techniques for CT and MRI images 

requires an in-depth assessment of the performance and clinical applications of various 

methodologies. Segmentation techniques include traditional approaches, model-based 

and clustering methods, as well as advanced Deep Learning-based methods. 

Therefore, performance evaluation is essential to determine the effectiveness and 

reliability of each technique in different clinical contexts. 

4.1. Evaluation metrics 

Common evaluation metrics used to compare segmentation techniques include 

several key indicators that measure the accuracy and quality of the produced 

segmentations. 

“Accuracy” measures the percentage of correctly classified pixels out of the total 

pixels. This parameter provides a general assessment of a segmentation technique’s 

effectiveness in correctly identifying all the classes present in the image [53]. 

The “Dice Similarity Coefficient” (DSC) evaluates the similarity between the 

predicted segmentation and the reference segmentation. DSC values range from 0, 

indicating no overlap, to 1, representing perfect overlap. This metric is widely used to 

quantify the correspondence between the segmented areas [54]. 

Similar to the “DSC”, the “Jaccard Index” measures the overlap between 

segmented areas as the ratio between the intersection and the union of the two areas. 

It provides a clear indication of the proportion of shared pixels between the predicted 

and reference segmentations [55]. 

“Precision” and “Recall” metrics offer further details on segmentation quality. 

Precision measures the proportion of pixels correctly identified as belonging to a 

specific class, while recall evaluates the model’s ability to find all pixels belonging to 

that class. These two parameters are fundamental for understanding the effectiveness 

of a technique in correctly classifying different areas of interest [54]. 

Finally, the “Hausdorff Distance” assesses the maximum distance between the 

edges of the predicted segmentation and those of the reference segmentation. This 

metric provides an indication of the spatial discrepancy between the two 

segmentations, highlighting any significant differences in the identified contours [53]. 
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In our analysis, we systematically evaluated each segmentation technique against 

these metrics using benchmark datasets. For example, in brain MRI lesion 

segmentation, we observed that U-Net consistently achieved a Dice Similarity 

Coefficient (DSC) between 0.85 and 0.90, with a processing time of several seconds 

per image slice, making it suitable for clinical applications where both accuracy and 

speed are crucial. In contrast, traditional methods such as edge-based segmentation, 

while faster, often displayed lower sensitivity and specificity, leading to a higher rate 

of both false positives and false negatives. These results highlight the trade-offs 

between computational efficiency and diagnostic accuracy, underscoring the 

importance of selecting the appropriate segmentation technique based on the specific 

clinical requirements [24,56]. 

4.2. Comparison of techniques 

The comparison of image segmentation techniques reveals a range of approaches, 

each with its own strengths and weaknesses. 

Traditional techniques, such as threshold-based, edge-based, and region-based 

methods, are often quick and relatively simple to implement. However, these 

techniques can be negatively affected by noise and intensity variations, limiting their 

effectiveness in complex images [57]. 

Model-based techniques, such as “active contour models” and “level set 

methods”, are particularly useful for segmenting complex structures. These methods 

require careful parameter definition, which can be challenging, but they offer greater 

flexibility and precision compared to traditional methods [58]. 

Another common approach is represented by clustering techniques, such as “K-

means” and “fuzzy C-means”. These methods are effective in handling intensity 

variations within images, but they may fail in the presence of noise. Their simplicity 

and speed make them useful in many applications, although they are less robust in 

noisy environments [54]. 

Generative Adversarial Networks (GAN) have also been explored extensively for 

medical image segmentation. GANs are composed of two competing networks: the 

generator and the discriminator. The generator creates segmentations that aim to be as 

realistic as possible, while the discriminator evaluates their authenticity. This 

adversarial process enables GANs to generate high-quality segmentations, even in 

cases where traditional methods struggle due to noise or incomplete data. Applications 

of GANs in liver tumor segmentation, for example, have demonstrated significant 

improvements in both accuracy and robustness, particularly in challenging clinical 

scenarios [41]. 

“Graph-based techniques”, which use approaches like min-cut, offer optimal 

solutions for image segmentation. However, these techniques can be computationally 

intensive, requiring significant resources to process complex images [59]. 

Despite this, they are highly valued for their precision and ability to handle 

complex relationships between pixels. 

Finally, “Deep Learning techniques”, such as U-Net and nnU-Net architectures, 

represent the state of the art in image segmentation. “Convolutional Neural Networks”, 

“U-Net”, and “Mask R-CNN” offer high precision and recall, managing even the most 
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complex segmentations. However, they require large amounts of training data and 

computational power, which can limit their applicability in some contexts [60]. 

4.3. Quantitative comparison 

To provide a better understanding of the performances of different segmentation 

techniques depending on the clinical context, we have included a quantitative 

comparison in terms of Dice Similarity Coefficient (DSC) and Hausdorff distance, 

using data from publicly available datasets such as the Medical Segmentation 

Decathlon and BraTS. 

Table 1 below summarizes the performance metrics for various segmentation 

techniques: 

Table 1. Performance metrics for segmentation techniques. 

Segmentation Technique Clinical Application Dataset DSC Hausdorff Distance 

Thresholding Liver segmentation LiTS 0.70–0.75 15–20 mm 

Edge-based Bone structure segmentation OAI-ZIB 0.75–0.80 10–15 mm 

Region-based Tumor segmentation BraTS 0.80–0.85 8–12 mm 

Model-based Complex anatomical structures CHAOS 0.82–0.87 6–10 mm 

K-means General segmentation ISLES 0.78–0.83 10–14 mm 

Fuzzy C-means Soft tissue segmentation STACOM 0.80–0.85 8–12 mm 

Min-cut Graph Homogeneous region segmentation DRIVE 0.83–0.88 6–10 mm 

U-Net Brain MRI Lesion Segmentation BraTS 0.85–0.90 5–10 mm 

nnU-Net Lung CT Tumor Segmentation LUNA 0.92–0.95 3–5 mm 

Mask R-CNN Multiple Sclerosis Lesions MSSEG 0.88–0.91 4–8 mm 

GAN Liver Tumor Segmentation LiTS 0.87–0.89 6–9 mm 

Attention U-Net Prostate MRI Segmentation PROMISE12 0.90–0.93 4–6 mm 

These metrics underscore the comparative efficacy of each method for specific 

clinical tasks [23,56,61–73]. 

Table 2 below presents the performance metrics for different segmentation 

techniques: 

Table 2. Comparison of performance metrics across segmentation techniques. 

Segmentation Technique Clinical Application DSC Hausdorff Distance 

U-Net Brain MRI Lesion Segmentation 0.85–0.90 5–10 mm 

nnU-Net Lung CT Tumor Segmentation 0.92–0.95 3–5 mm 

Mask R-CNN Multiple Sclerosis Lesions 0.88–0.91 4–8 mm 

GAN Liver Tumor Segmentation 0.87–0.89 6–9 mm 

Attention U-Net Prostate MRI Segmentation 0.90–0.93 4–6 mm 

These metrics highlight the relative performance of each technique 

[74,9,12,75,25]. 

The comparison tables clearly demonstrates that deep learning techniques, 

particularly nnU-Net and Attention U-Net, outperform traditional methods in terms of 

accuracy (measured by DSC) and boundary precision (indicated by lower Hausdorff 
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distances). While these advanced methods require more processing time, their higher 

sensitivity and specificity make them invaluable in contexts where diagnostic accuracy 

is paramount. This comprehensive evaluation of performance metrics provides a 

robust framework for assessing the suitability of different segmentation techniques 

across various medical applications [25]. 

4.4. Comparative results 

Recent studies have shown that deep learning-based techniques, such as “U-Net” 

and “Mask R-CNN”, significantly outperform traditional and model-based techniques 

in terms of accuracy and robustness. Evaluation metrics indicate that these techniques 

offer superior “DSC” and “Jaccard Index” values, higher precision and recall, and 

lower “Hausdorff Distance”, suggesting better delineation of anatomical structures 

[76]. 

These results highlight how the adoption of Deep Learning techniques can 

significantly enhance the performance of medical image segmentation, providing 

crucial advantages in complex clinical applications. 

Further comparative studies are needed to evaluate the performance of emerging 

deep learning techniques across a wider range of clinical applications, particularly in 

real-world settings where variability in image quality and patient demographics can 

significantly impact segmentation accuracy. 

5. Comparative analysis of traditional and deep learning-based 

segmentation techniques 

In this section, we provide a detailed comparison between traditional 

segmentation methods and deep learning-based techniques, using the same benchmark 

datasets. The primary datasets selected for this comparison are the BraTS dataset for 

brain tumor segmentation, the LiTS dataset for liver tumor segmentation, and the 

ISLES dataset for ischemic stroke lesion segmentation. 

We compare the performance of each method based on key metrics such as Dice 

Similarity Coefficient (DSC), Hausdorff Distance, Precision, Recall, and 

computational processing time. The results are summarized in Table 3 below: 

Table 3. Summary of segmentation method performance metrics. 

Segmentation Technique Dataset Dice Similarity Coefficient (DSC) Hausdorff Distance Precision Recall Processing Time 

Thresholding LiTS 0.72 18 mm 0.70 0.74 Low 

Edge-based ISLES 0.78 12 mm 0.77 0.79 Medium 

U-Net BraTS 0.88 6 mm 0.90 0.87 High 

nnU-Net LiTS 0.93 4 mm 0.94 0.92 High 

Mask R-CNN ISLES 0.86 8 mm 0.89 0.85 High 

These results highlight the trade-offs between traditional and deep learning 

methods [61,77,56,24,70]. 

This table provides a clear comparison, showing how traditional methods fare 

against modern deep learning approaches when applied to the same datasets. 
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Discussion of comparative results 

The comparative analysis highlights several important trends. Traditional 

methods, such as thresholding and edge detection, show limitations in handling 

complex structures and variations in image intensity. These methods often exhibit 

lower Dice Similarity Coefficients and higher Hausdorff Distances, particularly when 

compared to deep learning-based techniques like U-Net and nnU-Net. 

For instance, the nnU-Net, with its self-configuring architecture, consistently 

outperforms traditional methods in terms of both accuracy (as indicated by a higher 

DSC) and boundary delineation (lower Hausdorff Distance). This superior 

performance is critical in clinical applications where precise tumor boundaries are 

essential for effective treatment planning, such as in radiotherapy for liver tumors. 

However, it is important to note the trade-offs between accuracy and 

computational demands. Deep learning methods, while more accurate, require 

significantly more computational resources and longer processing times, which could 

be a limiting factor in real-time or resource-constrained settings. 

This detailed consideration of performance metrics not only highlights the 

strengths of deep learning-based approaches but also identifies areas where traditional 

methods may still hold advantages, such as in scenarios requiring rapid processing 

with acceptable accuracy. Future work should continue to balance these metrics, 

aiming to optimize both accuracy and efficiency, particularly as segmentation 

techniques are increasingly integrated into clinical workflows [23]. 

6. Clinical applications of segmentation techniques: Advantages, 

disadvantages, and future prospects 

Image segmentation is applied in various fields of medicine, each benefiting from 

specific segmentation techniques to improve diagnosis and treatment. 

In this section, we discuss the strengths and weaknesses of the segmentation 

techniques compared above. For example, U-Net and nnU-Net offer high accuracy and 

robustness but require large amounts of training data. GANs provide high-quality 

segmentations but can be computationally intensive. Attention U-Net improves 

accuracy by focusing on relevant parts of the image but may introduce complexity in 

network design. 

In Radiology, the automatic segmentation of organs and lesions in MRI, CT, and 

other imaging modalities assists radiologists in detecting anomalies with greater 

precision. 

The integration of AI and deep learning models, such as nnU-Net, into cancer 

screening processes is reaching a crucial point, with these technologies setting new 

standards in diagnostic precision across various imaging modalities. This shift 

underscores the growing clinical significance of AI-driven segmentation in improving 

the detection and management of cancers like pancreatic and prostate cancer [74]. 

This allows for faster and more accurate diagnosis, improving the effectiveness 

of subsequent treatments [8]. For instance, in radiology, automatic segmentation of 

lung nodules in CT images has been shown to improve early detection of lung cancer, 

allowing for timely intervention. 

The clinical significance of CT and MRI images is particularly evident in cancer 
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detection applications. For instance, CT-based segmentation has been effectively 

utilized in the early detection of pancreatic cancer, a disease notorious for its late 

diagnosis and poor prognosis. A recent study demonstrated the efficacy of nnU-Net in 

detecting pancreatic tumors from non-contrast CT images, significantly improving the 

accuracy and speed of diagnosis [3]. This advancement underscores the critical role of 

advanced segmentation techniques in enhancing the early detection and treatment 

planning of aggressive cancers, which can drastically alter patient outcomes. 

Similarly, MRI-based segmentation has shown great promise in the detection of 

prostate cancer. Techniques like semi-supervised learning, combined with deep 

learning models such as biparametric MRI, have been pivotal in improving the 

accuracy of prostate tumor detection [4]. These methods not only enhance the 

identification of prostate cancer but also provide detailed imaging that supports precise 

treatment planning and monitoring. 

The integration of these advanced segmentation techniques into routine clinical 

practice is essential for the evolution of cancer diagnostics. The ability to accurately 

segment and analyze tumors from CT and MRI images allows for more targeted and 

effective treatment strategies, ultimately contributing to better patient prognosis and 

survival rates. 

A significant example of this technology’s application is found in the field of 

Oncology, where tumor mass segmentation is essential for evaluating tumor volume 

and planning treatment. This process is crucial for monitoring cancer progression and 

adapting therapeutic strategies to the specific needs of the patient [78]. 

Furthermore, automatic segmentation is not limited to Oncology but also finds 

application in Cardiology. Here, the segmentation of cardiac structures in ultrasound 

or MRI images allows for a detailed assessment of cardiac conditions. This facilitates 

the diagnosis of pathologies such as valvular diseases, cardiomyopathies, and other 

conditions that require a precise understanding of cardiac anatomy and function [79]. 

Thus, medical image segmentation offers numerous advantages, including 

greater diagnostic accuracy, more precise treatment planning, and better disease 

monitoring. 

However, despite significant advancements, there are several challenges in 

medical image segmentation: data variability is one of the main difficulties. In fact, 

medical images can vary greatly due to differences in acquisition protocols, patients, 

and anatomical conditions [80]. 

To address these variations, techniques such as “data augmentation” and “transfer 

learning” are used to improve the robustness of segmentation models. 

The integration of deep learning techniques such as Convolutional Neural 

Networks (CNN) and U-Net can mitigate issues of variability and noise in medical 

images. For example, CNNs can be trained on augmented datasets to enhance 

robustness against acquisition variations, while U-Net can use its skip connections to 

preserve critical details in noisy images. 

Another significant challenge is the noise and artifacts present in medical images, 

which can interfere with accurate segmentation [35]. 

To mitigate these issues, advanced filters and preprocessing techniques are 

employed to improve image quality before segmentation, ensuring greater accuracy in 

the results. For example, Mask R-CNN can be used in combination with noise 



Medical Imaging Process & Technology 2024, 7(1), 7227.  

19 

reduction techniques to achieve more precise segmentations in MRI images. 

Additionally, “data labeling” is another obstacle, as creating high-quality labeled 

datasets is a labor-intensive and costly process [81]. 

Semi-Supervised and Unsupervised Learning strategies are emerging as 

promising solutions, reducing the need for extensive manual labeling and allowing 

models to learn more efficiently from unlabeled or partially labeled data. 

Medical image segmentation techniques are advancing rapidly, offering new 

opportunities to improve disease diagnosis and treatment. 

The integration of AI-based methodologies and the continuous refinement of 

existing techniques promise to overcome current challenges, leading to more efficient 

and accurate clinical practice. These developments not only improve diagnostic 

accuracy but also contribute to personalized treatments, thereby enhancing patient 

outcomes. 

Future prospects in medical image segmentation see significant evolution 

through the integration of advanced techniques such as U-Net and nnU-Net. These 

architectures, with their deep learning and self-configuring capabilities, promise to 

further enhance the accuracy and efficiency of diagnostic processes, contributing to 

personalized treatments and improved clinical outcomes. 

Another innovative area in image segmentation is 3D and 4D segmentation, 

which will allow the segmentation of not only three-dimensional images but also 

temporal sequences of images, offering a dynamic and comprehensive view of 

anatomical structures [82]. This evolution will be particularly useful for applications 

such as Cardiology and Oncology, where understanding changes over time is crucial. 

Another promising area is multimodal integration, which involves combining 

information from different imaging modalities, such as CT, MRI, and ultrasound, to 

improve the accuracy and robustness of segmentation. The integration of multimodal 

data could provide a more complete and detailed view of patient conditions, 

significantly enhancing clinical decision-making [83]. 

A crucial aspect for the clinical adoption of AI-based segmentation technologies 

is “AI explainability”, which refers to the transparency and understandability of the 

algorithms used. Improving the explainability of AI algorithms is essential to increase 

the trust of doctors and patients in AI-assisted decisions. The goal is to develop 

systems that not only offer high performance but can also clearly explain their 

decisions and operations [84]. 

Future prospects in medical image segmentation indicate significant potential to 

improve the quality of healthcare, making diagnostic and therapeutic processes 

increasingly precise and personalized. 

6.1. Strengths and weaknesses of segmentation techniques in clinical 

applications 

The selection of an appropriate segmentation technique is crucial for different 

clinical applications, as each method presents unique strengths and weaknesses that 

impact its effectiveness. For instance, U-Net and nnU-Net architectures are widely 

recognized for their high accuracy and robustness in segmenting complex anatomical 

structures, such as brain lesions in MRI or lung tumors in CT scans. Their ability to 



Medical Imaging Process & Technology 2024, 7(1), 7227.  

20 

capture fine details and incorporate both global and local information makes them 

ideal for applications requiring precise delineation of structures. However, these 

techniques typically require substantial computational resources and large amounts of 

annotated training data, which can be a limitation in resource-constrained settings. 

On the other hand, traditional methods like thresholding and edge-based 

segmentation, while less accurate, are computationally efficient and easier to 

implement. These techniques can be effective in scenarios where rapid processing is 

essential, such as in emergency settings, or when the image quality is consistent across 

datasets. However, their performance often degrades in the presence of noise or when 

dealing with complex tissue boundaries, limiting their applicability in cases requiring 

high precision. 

Techniques like Mask R-CNN and Attention U-Net excel in applications that 

benefit from enhanced focus on relevant image regions, such as in prostate MRI 

segmentation or multiple sclerosis lesion detection. The attention mechanisms in these 

models help to reduce false positives by concentrating the model’s efforts on the most 

significant parts of the image. Nonetheless, the increased model complexity may 

introduce challenges in training and require more sophisticated hardware. 

Finally, Generative Adversarial Networks (GANs), while powerful in generating 

realistic segmentations and handling data variability, can be challenging to train due 

to their adversarial nature. GANs are particularly effective in liver tumor 

segmentation, where the generation of high-quality segmentations is crucial. However, 

their instability during training and the need for careful tuning can be a drawback in 

clinical environments where reliability is paramount. 

In conclusion, while advanced deep learning techniques generally provide 

superior accuracy and flexibility, their application must be balanced with the specific 

needs and constraints of the clinical context. Traditional methods still hold value in 

certain scenarios, particularly where simplicity and speed are prioritized over precision 

(23–25,70,71). 

6.2. Limitations of traditional segmentation techniques 

While traditional segmentation techniques like thresholding, edge detection, and 

region-based methods have been fundamental in the development of medical image 

analysis, they present significant limitations when applied to complex and 

heterogeneous medical images. One of the primary challenges is their sensitivity to 

image noise and intensity variations, which can lead to inaccurate segmentations, 

particularly in images with low contrast or when the regions of interest are not clearly 

delineated from surrounding tissues. 

For example, thresholding techniques are highly dependent on the selection of an 

appropriate threshold value, which can vary significantly between different images 

and even within different regions of the same image. This variability often leads to 

either over-segmentation, where non-target regions are incorrectly included, or under-

segmentation, where relevant structures are missed entirely. 

Edge detection methods, while useful for identifying boundaries, can struggle 

with images where the edges are not well-defined or are obscured by artifacts. The 

reliance on gradient information means that these techniques are particularly 
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vulnerable to noise, leading to fragmented or incomplete boundary detection. 

Region-based techniques, such as region growing or region splitting and merging, 

require careful tuning of similarity criteria, which can be difficult to generalize across 

different types of images. These methods also face challenges in handling complex 

anatomical structures with heterogeneous textures, where defining a consistent 

similarity metric is problematic. 

Overall, while traditional methods are computationally efficient and relatively 

simple to implement, their performance in clinical applications is often limited by their 

inability to handle the variability and complexity of medical images. This is where 

deep learning-based methods, with their ability to learn hierarchical representations 

and adapt to a wide range of imaging conditions, offer substantial improvements [85]. 

7. Conclusions 

Medical image segmentation techniques are making rapid progress, creating new 

opportunities to significantly improve disease diagnosis and treatment. Our review 

demonstrates how integrating advanced methodologies, particularly those based on 

artificial intelligence, is transforming the way medical images are analyzed and 

interpreted. 

These technologies increase the accuracy of segmentation, reduce the time 

needed to process and analyze images, and improve clinical processes. 

This leads to direct clinical benefits, including more precise diagnosis, detailed 

surgical planning, and more effective disease monitoring. 

Despite these advancements, significant challenges remain, such as data 

variability, noise, and artifacts in medical images. 

The clinical implications of using AI-based segmentation, particularly nnU-Net’s 

self-configuring capabilities, are profound, offering substantial improvements in 

tumor detection and personalized patient care. These advancements in CT and MRI 

segmentation are essential for enhancing diagnostic accuracy and treatment outcomes 

in oncology [24]. 

Techniques like data augmentation and transfer learning are essential for 

improving the robustness of segmentation models. Additionally, the need for high-

quality labeled datasets remains an obstacle, but semi-supervised and unsupervised 

learning strategies are emerging as promising solutions. 

In summary, medical image segmentation techniques, especially those based on 

AI, are transforming diagnostic and therapeutic practices by improving accuracy, 

efficiency, and personalization of treatments. 

The continuous refinement of existing techniques and the adoption of new 

innovative approaches promise to overcome current challenges. Furthermore, the 

transparency and explain ability of AI algorithms are improving, which is crucial for 

the acceptance and integration of these technologies into daily clinical practice. 

The future prospects in medical image segmentation are exciting. The evolution 

towards 3D and 4D segmentation will enable the analysis of not only three-

dimensional images but also temporal sequences, offering a dynamic and 

comprehensive view of anatomical structures. Multimodal integration, which 

combines information from different imaging modalities such as CT, MRI, and 
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ultrasound, could provide a more detailed view of patient conditions, significantly 

enhancing clinical decision-making. 

As we look to the future, medical image segmentation will increasingly benefit 

from technological advancements such as real-time algorithms and personalized 

models. Real-time segmentation will be crucial in image-guided surgery, and 

personalization will enable models to be tailored to individual patients, improving 

diagnosis and treatment. Furthermore, the adoption of explainable AI will enhance 

trust in AI-driven decisions, making these tools more acceptable in clinical practice 

[24,50]. 

Ultimately, these developments will not only improve the quality of care but also 

allow for greater personalization of treatments, better meeting the specific needs of 

each patient. The future of medical image segmentation looks promising, with 

significant potential to improve the quality of care and personalize treatments to better 

meet the specific needs of each patient. 

Our detailed comparative analysis demonstrates that while traditional 

segmentation methods can be effective in specific scenarios, deep learning-based 

techniques, particularly nnU-Net and U-Net, offer superior accuracy and robustness 

across various clinical applications. The choice of segmentation technique should 

therefore be guided by the specific clinical requirements, balancing the need for 

accuracy with the available computational resources. 
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