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Abstract: Radiomics, a quantitative approach to medical imaging, employs computational 

methods to extract features from the images, revealing hidden characteristics of specific 

regions. This emerging field leverages advanced techniques to analyze a spectrum of features 

from modalities, including computed tomography (CT), magnetic resonance imaging (MRI), 

and positron emission tomography (PET) scans, aiming to decode tissue characteristics, 

disease progression, and treatment responses. The radiomics workflow integrates image 

acquisition, segmentation, feature selection, and data integration, utilizing advanced 

techniques such as deep learning, machine learning, and data mining. Radiomics 

demonstrates considerable potential in cancer detection and management, exhibiting high 

sensitivity and specificity in distinguishing between benign and malignant tumors and 

predicting outcomes. However, challenges such as imaging protocol variability, overfitting, 

and standardization requirements impede its broad clinical adoption. Innovations in multi-

modal radiomics, deep learning, and genomics integration strive to mitigate these constraints. 

This review elucidates radiomics’ capabilities, current applications, benefits, challenges, and 

future directions in oncology. 
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1. Introduction to radiomics 

Radiomics originates from ‘radio-’ (radiation or radiology) and ‘-omics,’ a 

suffix denoting comprehensive study in various fields like genomics, proteomics, 

and metabolomics [1]. Consequently, radiomics focuses on extracting numerous 

features from radiological images to find hidden features of specific regions. These 

features include shape, texture, and intensity patterns, which are not readily visible to 

the human eye [2]. By utilizing computational techniques, radiomics aims to 

transform standard medical images, such as computed tomography (CT) scans, 

magnetic resonance imaging (MRI), and positron emission tomography (PET) scans, 

into high-dimensional data that can be analyzed to extract valuable information 

about tissue characteristics, disease progression, and treatment response [3,4]. 

2. Principles of radiomics 

The workflow of radiomics is a series of consecutive but interconnected steps: 

(a) acquiring medical images; (b) identifying and segmenting regions of interest 

(ROI) or volumes of interest (VOI); (c) extraction of descriptive texture features 

from the ROIs or VOIs; (d) statistical selection of the parameters closely associated 
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with the clinical condition under study; and (e) data integration, standardization, 

classification, and mining processes [5]. 

2.1. Image acquisition and segmentation 

Medical imaging is essential in modern healthcare, offering crucial data for 

disease diagnosis, monitoring, and treatment evaluation. Each imaging modality 

presents distinct advantages and challenges, providing varying anatomical and 

physiological information influenced by acquisition protocols, artifacts, and noise. 

Choosing the appropriate imaging modality or a combination is vital in radiomics, 

aligning with the study’s objectives and the distinct characteristics of the targeted 

organ or tumor [6]. In the radiomics workflow, preprocessing often precedes 

contouring and segmentation, aiming to enhance image quality through advanced 

reconstruction techniques applied to raw data. Segmentation is a critical step where 

ROIs or VOIs are identified and delineated. Traditional manual contouring, typically 

performed by specialists, has been conventional. However, it may introduce 

variability and bias. While manual methods may suffice for smaller cohorts with 

experienced professionals, they become impractical for larger datasets due to cost 

and time constraints. Semi-automatic or automatic segmentation techniques enhance 

consistency and efficiency, thereby reducing variability and bias. This makes them 

particularly suitable for extensive studies [7]. 

2.2. Feature extraction and selection 

In this stage, a large number of quantitative features are extracted from medical 

images. These features can be categorized into different types, such as first-order 

statistics (e.g., mean, variance), second-order statistics (e.g., texture features), and 

higher-order statistics (e.g., fractal dimensions). These features capture various 

aspects of the underlying tissue properties and can provide insights into the tissue 

microenvironment and disease state [2,8]. With the abundance of extracted features, 

selecting the most relevant and informative ones for further analysis is crucial. 

Feature selection techniques, such as correlation analysis, mutual information, and 

recursive feature elimination, are employed to identify the most discriminative 

features that distinguish between tissue types or disease conditions [5,9]. 

2.3. Data integration, classification, and the data mining process 

In radiomics, once the most representative parameters of the studied object, like 

a tumor, are identified, the data are processed through integration, classification, and 

mining. Computational techniques, emulating human decision-making, have become 

pivotal across various research fields, particularly in medical imaging. Advanced 

algorithms, encompassing decision trees, deep learning, machine learning, and data 

mining, are increasingly employed to automate the classification of imaged tissues as 

healthy or abnormal. These techniques enhance the precision and efficiency of 

radiomics analysis, serving a wide range of research and clinical applications 

[10,11]. 
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3. Current applications of radiomics in cancer detection and 

management 

Addressing the complexities of intricate tumors requires a multifaceted 

approach, given the challenges in both diagnosis and treatment [12,13]. Radiomics 

has shown considerable promise in navigating these complexities. For instance, in a 

meta-analysis involving 8773 patients, MRI-based radiomics models exhibited a 

high sensitivity of 0.91 (95% CI: 0.89–0.92) and specificity of 0.84 (95% CI: 0.82–

0.86) in distinguishing between benign and malignant breast lesions [14]. 

Furthermore, a meta-analysis focusing on lymph node metastasis (LNM) detection in 

colorectal cancer highlighted the efficacy of radiomics in guiding surgical 

interventions. The analysis yielded a pooled area under the curve (AUC) of 0.814 

(95% CI: 0.78–0.85), with sensitivity and specificity values of 0.77 (95% CI: 0.69–

0.84) and 0.73 (95% CI: 0.67–0.78), respectively. Remarkably, these radiomics 

models significantly outperformed radiologists (p < 0.001), emphasizing their 

potential as valuable tools in clinical decision-making and patient care [15]. 

Additionally, Radiomics features have been utilized to characterize tumors based on 

their molecular and histological properties. This enables the identification of distinct 

tumor subtypes, which can have implications for treatment planning and 

personalized medicine [16]. 

Radiomics-based biomarkers play a crucial role in monitoring treatment 

response and evaluating tumor progression or regression across challenging 

malignancies like lung cancer, glioma, and breast cancer, particularly in the context 

of immunotherapy [17,18]. These biomarkers provide quantitative metrics that 

complement conventional imaging assessments and can serve as early indicators of 

treatment efficacy or resistance. Furthermore, radiomics analysis aids in predicting 

patient outcomes such as survival and recurrence. In a prospective study focusing on 

locally advanced breast cancer (LABC), pre-treatment quantitative ultrasound 

(QUS)-radiomics identified a higher risk of disease recurrence before initiating 

treatment. These predictive models help clinicians strategize patients according to 

risk profiles, enabling tailored treatment strategies for improved clinical outcomes 

[19]. 

4. Advantages and challenges of radiomics in cancer detection 

Radiomics offers several advantages over traditional imaging analysis methods 

in cancer detection. It leverages existing medical images, eliminating the need for 

invasive procedures or additional imaging scans. This reduces patient discomfort, 

risk of complications, and healthcare costs associated with repeated imaging 

examinations. Furthermore, by capturing detailed information about tumor 

heterogeneity and the microenvironment, radiomics significantly enhances 

personalized medicine approaches [20]. This capability allows clinicians to tailor 

treatment plans based on individual patient characteristics, leading to more effective 

and targeted therapies. Radiomics provides a framework for analyzing medical 

images, enabling objective and reproducible assessment of tumor characteristics and 

treatment response. Consequently, this improves the consistency and reliability of 
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diagnostic and prognostic evaluations across various healthcare settings [21]. The 

radiomics approach has recently emerged as a non-invasive diagnostic tool, 

providing clinicians with a new perspective on disease management, particularly in 

surgical oncology. Consequently, there has been a surge in research papers exploring 

the applicability of radiomics in different cancers [15]. To visualize the current trend 

of radiomics applications across various malignancies, we created a bibliometric 

network map with the help of the PubMed database searching radiomics and 

neoplasms medical subject headings and VOSviewer software Figure 1. 

 

Figure 1. The bibliometrics network map illustrates the evolution and interconnections of radiomics-related studies in 

malignancies over the past decade, using bubble size to indicate publication frequency and color to represent a 

chronological progression based on the PubMed database. 

Despite its potential, radiomics faces several challenges and limitations that 

must be addressed for widespread clinical adoption. Notably, variability in imaging 

protocols, equipment, and acquisition parameters can influence radiomics features 

and compromise their reproducibility and generalizability [22,23]. Moreover, 

standardization of imaging protocols and feature extraction methods is essential to 

ensure consistency and reliability of radiomics analyses across different institutions 

and platforms. Overfitting is a common issue in radiomics modeling, where the 

predictive model performs well on the training data but fails to generalize to new, 

unseen data. Robust feature selection, regularization techniques, and validation 

strategies are required to mitigate overfitting and improve the generalizability of 

radiomics models [15,22]. Recent advances in radiomics have focused on addressing 

its limitations and harnessing its full potential through innovative approaches and 

technologies such as multi-modal radiomics, deep learning approaches, and 
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integration with genomics and proteomics [24,25]. However, the suboptimal quality 

in reporting current radiomics studies, as assessed based on the RQS by studies, 

suggests a generally low standard, with an overall average score of approximately 

50% [15]. These findings indicate that the results from current studies may lack 

reproducibility, limiting the widespread implementation of radiomics in clinical 

applications. Moreover, radiomics studies in the future require large-scale 

multicenter studies; prospective validation and integration into clinical practice 

guidelines are needed to demonstrate the clinical utility, cost-effectiveness, and 

impact on patient outcomes. 

5. Conclusion 

In the dynamic landscape of oncology, radiomics emerges as a transformative 

approach, integrating advanced computational techniques with multi-modal imaging 

data to reshape cancer detection and management. While radiomics offers 

remarkable opportunities for personalized medicine and early detection, it faces 

inherent challenges. Continued research, large-scale studies, and integration into 

clinical guidelines are imperative to validate radiomics’ clinical utility, enhance 

reproducibility, and realize its impact on improving patient outcomes in oncology. 

Conflict of interest: The authors declare no conflict of interest. 
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