References
Sharma S, Aggarwal LM. Automated image segmentation techniques. International Journal of Advanced Research in Computer Science. 2023; 35(1): 3–14. DOI: 10.4103/0971-6203.58777
Kekre HB, Sarode T, & Mishra D. Image segmentation of images using vector quantization. Journal of Computer Science and Technology. 2022. doi.org/10.1145/1523103.1523175
Wala'A NJ, Rana JM. (2021). A Survey on Segmentation Techniques for Image Processing. Iraqi Journal for Electrical and Electronic Engineering. 17. 73-93. 10.37917/ijeee.17.2.10.
Deklerck R, Cornelis J, Bister M, Segmentation of medical images, Image and Vision Computing, Volume 11, Issue 8, 1993, Pages 486-503, ISSN 0262-8856. https://doi.org/10.1016/0262-8856(93)90068-R.
Bidgood WD Jr, Horii SC. Introduction to the ACR-NEMA DICOM standard. Radiographics. 1992 Mar;12(2):345-55. doi: 10.1148/radiographics.12.2.1561424. PMID: 1561424.
Pianykh OS. Digital Imaging and Communications in Medicine (DICOM): A Practical Introduction and Survival Guide. Springer; 2008. DOI 10.1007/978-3-540-74571-6
Huang HK. Medical imaging, PACS, and imaging informatics: retrospective. Radiol Phys Technol. 2014 Jan;7(1):5-24. doi: 10.1007/s12194-013-0245-y. Epub 2013 Dec 6. PMID: 24311236.
Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J Clin. 2019 Mar;69(2):127-157. doi: 10.3322/caac.21552.
Fu Y, Cao K, Xia Y, et al. Large-scale pancreatic cancer detection via non-contrast CT and deep learning. Nature Communications. 2021; 29: 3033–3043. doi: 10.1038/s41467-021-22298-6
Moreno A, Takemura CM, Colliot O, et al.. (2008). Using anatomical knowledge expressed as fuzzy constraints to segment the heart in CT images. Pattern Recognition. 41. 2525-2540. 10.1016/j.patcog.2008.01.020.
Stoecker H, Welter S, Moltz JH, et al. Determination of lung segments in computed tomography images using the Euclidean distance to the pulmonary artery. Med Phys. 2013 Sep;40(9):091912. doi: 10.1118/1.4818017.
Bustos A, Pertusa A, Salinas JM, et al. PadChest: A large chest x-ray image dataset with multi-label annotated reports. Medical Image Analysis. 2020; 66: 101797. doi: 10.1016/j.media.2020.101797
Kickingereder P, Isensee F, Tursunova I, et al. Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol. 2019 May;20(5):728-740. doi: 10.1016/S1470-2045(19)30098-1.
Stoyanov D, Taylor Z, Carneiro G, et al. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer International Publishing; 2018. DOI:10.1007/978-3-030-00889-5
Aimar A, Palermo A, Innocenti B. The Role of 3D Printing in Medical Applications: A State of the Art. J Healthc Eng. 2019 Mar 21;2019:5340616. doi: 10.1155/2019/5340616.
M. Fernando KR, Tsokos CP. Deep and statistical learning in biomedical imaging: State of the art in 3D MRI brain tumor segmentation, Information Fusion, Volume 92, 2023, Pages 450-465, ISSN 1566-2535. https://doi.org/10.1016/j.inffus.2022.12.013.
Goehler A, Hsu TMH, Lacson R, et al. Three-Dimensional Neural Network to Automatically Assess Liver Tumor Burden Change on Consecutive Liver MRIs. J Am Coll Radiol. 2020 Nov;17(11):1475-1484. doi: 10.1016/j.jacr.2020.06.033.
Petitjean C, Dacher JN. A review of segmentation methods in short axis cardiac MR images. Med Image Anal. 2011 Apr;15(2):169-84. doi: 10.1016/j.media.2010.12.004.
Khoo VS, Adams EJ, Saran F, et al. A Comparison of clinical target volumes determined by CT and MRI for the radiotherapy planning of base of skull meningiomas. Int J Radiat Oncol Biol Phys. 2000 Mar 15;46(5):1309-17. doi: 10.1016/s0360-3016(99)00541-6.
Scotti FM, Stuepp RT, Dutra-Horstmann KL, et al. Accuracy of MRI, CT, and Ultrasound imaging on thickness and depth of oral primary carcinomas invasion: a systematic review. Dentomaxillofac Radiol. 2022 Jul 1;51(5):20210291. doi: 10.1259/dmfr.20210291.
Zhang Y, Paulson E, Lim S, et al. A patient-specific auto-segmentation strategy using multi-input deformable image registration for MRI-guided online adaptive radiotherapy: a feasibility study. Advances in Radiation Oncology. 2020 May. doi: 10.1016/j.adro.2020.04.027.
Taha AA, Hanbury A. Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Medical Imaging. 2015; 15(1). doi: 10.1186/s12880-015-0068-x
Navab N, Hornegger J, Wells WM, et al. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Springer International Publishing; 2015.
Isensee F, Jaeger PF, Kohl SAA, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature Methods. 2020; 18(2): 203-211. doi: 10.1038/s41592-020-01008-z
Frangi AF, Schnabel JA, Davatzikos C, et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. Springer International Publishing; 2018.
Niu Z, Li H. Research and analysis of threshold segmentation algorithms in image processing. Journal of Physics: Conference Series. 2019; 1237: 022122. doi: 10.1088/1742-6596/1237/2/022122.
Wang X. Laplacian operator-based edge detectors. IEEE Trans Pattern Anal Mach Intell. 2007 May;29(5):886-90. doi: 10.1109/TPAMI.2007.1027.
Ramesh K, Kumar GK, Swapna K, et al. A Review of Medical Image Segmentation Algorithms. EAI Endorsed Transactions on Pervasive Health and Technology. doi: https://doi.org/10.4108/eai.12-4-2021.169184
Chaturvedi A, Khanna R, Kumar V. An Analysis of Region Growing Image Segmentation Schemes. International Journal of Computer Trends and Technology. 2016; 34: 46-51. doi: 10.14445/22312803/IJCTT-V34P108.
James C. Tilton. Image segmentation by iterative parallel region growing with application to data compression and image analysis. The 2nd Symposium on the Frontiers of Massively Parallel Computations. Document ID: 19900007136. ntrs.nasa.gov/citations/19900007136
Chan TF, Vese LA. Active contours without edges. IEEE Trans Image Process. 2001;10(2):266-77. doi: 10.1109/83.902291.
Bresson X, Esedoḡlu S, Vandergheynst P, et al. Fast global minimization of the active contour/snake model. Journal of Mathematical Imaging and Vision 28(2):151-167. doi: 10.1007/s10851-007-0002-0
Shabari Shedthi B, Shetty S, Siddappa M. Implementation and comparison of K-means and fuzzy C-means algorithms for agricultural data. 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT) (2017): 105-108. doi: 10.1109/ICICCT.2017.7975168
Chuang KS, Tzeng HL, Chen S, et al. Fuzzy c-means clustering with spatial information for image segmentation. Computerized Medical Imaging and Graphics. 30, 9-15. doi: 10.1016/j.compmedimag.2005.10.001
Freiman M, Kronman A, Esses SJ, et al. Non-parametric iterative model constraint graph min-cut for automatic kidney segmentation. Med Image Comput Comput Assist Interv. 2010;13(Pt 3):73-80. doi: 10.1007/978-3-642-15711-0_10.
Dong L, Du H, Mao F, et al. Very High Resolution Remote Sensing Imagery Classification Using a Fusion of Random Forest and Deep Learning Technique—Subtropical Area for Example. December 2019. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing PP(99):1-16. DOI:10.1109/JSTARS.2019.2953234
Song Z, Wu H, Chen W, et al. Improving automatic segmentation of liver tumor images using a deep learning model. Heliyon. 2024 Mar 21;10(7):e28538. doi: 10.1016/j.heliyon.2024.e28538.
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. International Conference on Learning Representations. 2020. doi: 10.48550/ARXIV.2010.11929
Vaswani A, Shazeer N, Parmar N, et al. Attention Is All You Need. Advances in Neural Information Processing Systems. 2017. doi: 10.48550/ARXIV.1706.03762
Mishra R, Daescu O. Deep learning for skin lesion segmentation. 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (2017): 1189-1194. DOI:10.1109/BIBM.2017.8217826
Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: A review. Medical Image Analysis. 2019; 58: 101552. doi: 10.1016/j.media.2019.101552
Gu Y, Zeng Z, Chen H, et al. (2020). MedSRGAN: medical images super-resolution using generative adversarial networks. Multimedia Tools and Applications. 79. doi: 10.1007/s11042-020-08980-w.
Qatarneh SM et al. Evaluation of a segmentation procedure to delineate organs for use in construction of a radiation therapy planning atlas. Int J Med Inform. 2003 Jan;69(1):39-55. doi: 10.1016/s1386-5056(02)00079-5.
Langerak TR et al. Multiatlas-based segmentation with preregistration atlas selection. Med Phys. 2013 Sep;40(9):091701. doi: 10.1118/1.4816654.
Zhou Z, Siddiquee MMR, Tajbakhsh N, et al. UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation. IEEE Trans Med Imaging. 2020 Jun;39(6):1856-1867. doi: 10.1109/TMI.2019.2959609.
Hoeser T, Bachofer F, Kuenzer C. Object Detection and Image Segmentation with Deep Learning on Earth Observation Data: A Review-Part II: Applications. Remote Sensing. 2020; 12: 3053. doi: 10.3390/rs12183053.
Jeevakala S, Sreelakshmi C, Ram K, et al. Artificial intelligence in detection and segmentation of internal auditory canal and its nerves using deep learning techniques. Int J Comput Assist Radiol Surg. 2020 Nov;15(11):1859-1867. doi: 10.1007/s11548-020-02237-5.
Pathan RK, Lim WL, Lau SL, et al. Experimental Analysis of U-Net and Mask R-CNN for Segmentation of Synthetic Liquid Spray. 2022 IEEE International Conference on Computing (ICOCO). 2022; 237-242. doi: 10.1109/ICOCO56118.2022.10031951.
Yıldırım, MS, Dandıl E. Automated Multiple Sclerosis Lesion Segmentation on MR Images via Mask R-CNN. 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) (2021): 570-577. doi: 10.1109/ISMSIT52890.2021.9604593.
Pham DL, Xu C, Prince JL. Current Methods in Medical Image Segmentation. Annual Review of Biomedical Engineering. 2000; 2(1): 315-337. doi: 10.1146/annurev.bioeng.2.1.315
Tajbakhsh N, Shin JY, Gurudu SR, et al. Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? IEEE Transactions on Medical Imaging. 2016; 35(5): 1299-1312. doi: 10.1109/tmi.2016.2535302
Shin HC, Roth HR, Gao M, et al. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Transactions on Medical Imaging. 2016; 35(5): 1285-1298. doi: 10.1109/tmi.2016.2528162
He X, Guo BJ, Lei Y, et al. Automatic segmentation and quantification of epicardial adipose tissue from coronary computed tomography angiography. Phys Med Biol. 2020 May 11;65(9):095012. doi: 10.1088/1361-6560/ab8077.
Vesal S, Ravikumar N, Ellman S, et al. Comparative Analysis of Unsupervised Algorithms for Breast MRI Lesion Segmentation. January 2018. In: Bildverarbeitung für die Medizin. 2018. pp.257-262. doi: 10.1007/978-3-662-56537-7_68
Eelbode T, Bertels J, Berman M, et al. Optimization for Medical Image Segmentation: Theory and Practice When Evaluating With Dice Score or Jaccard Index. IEEE Trans Med Imaging. 2020 Nov;39(11):3679-3690. doi: 10.1109/TMI.2020.3002417.
Menze BH, Jakab A, Bauer S, et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Transactions on Medical Imaging. 2015; 34(10): 1993-2024. doi: 10.1109/tmi.2014.2377694
Haseena A, Mehaboobathunnis R, Mohamed S, et al. COMPARISON OF DIFFERENT SEGMENTATION ALGORITHMS FOR DERMOSCOPIC IMAGES. ICTACT Journal on Image and Video Processing. 2015; 5: 1030-1036. doi: 10.21917/ijivp.2015.0151.
Xiang Y, Chung ACS, Ye J. An active contour model for image segmentation based on elastic interaction. Journal of Computational Physics 219 (2006) 455–476. doi:10.1016/j.jcp.2006.03.026
Bahade S, Edwards M, Xie X. Graph Convolution Networks for Cell Segmentation. January 2021. Conference: 10th International Conference on Pattern Recognition Applications and Methods. DOI:10.5220/0010324306200627
Chen LC, Papandreou G, Kokkinos I, et al. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs, in IEEE Transactions on Pattern Analysis and Machine Intelligence. 2018; 40(4): 834-848. doi: 10.1109/TPAMI.2017.2699184
Bilic P, Christ P, Li HB, et al. The Liver Tumor Segmentation Benchmark (LiTS). Medical Image Analysis. 2023; 84: 102680. doi: 10.1016/j.media.2022.102680
Fripp J, Crozier S, Warfield SK, et al. Automatic segmentation of articular cartilage in magnetic resonance images of the knee. Med Image Comput Comput Assist Interv. 2007;10(Pt 2):186-94. doi: 10.1007/978-3-540-75759-7_23.
Kavur AE, Gezer NS, Barış M, et al. CHAOS Challenge - combined (CT-MR) healthy abdominal organ segmentation. Med Image Anal. 2021; 69: 101950. doi: 10.1016/j.media.2020.101950
Maier O, Menze BH, von der Gablentz J, et al. ISLES 2015 - A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Medical Image Analysis. 2017; 35: 250-269. doi: 10.1016/j.media.2016.07.009
Kwitt R, Vasconcelos N, Razzaque S, et al. Localizing target structures in ultrasound video – A phantom study. Medical Image Analysis. 2013; 17(7): 712-722. doi: 10.1016/j.media.2013.05.003
Staal J, Abramoff MD, Niemeijer M, et al. Ridge-Based Vessel Segmentation in Color Images of the Retina. IEEE Transactions on Medical Imaging. 2004; 23(4): 501-509. doi: 10.1109/tmi.2004.825627
Kiaei AA, Khotanlou H. Segmentation of medical images using mean value guided contour. Medical Image Analysis. 2017; 40: 111-132. doi: 10.1016/j.media.2017.06.005
Ourselin S, Joskowicz L, Sabuncu MR, et al. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. Springer International Publishing; 2016.
Litjens G, Toth R, van de Ven W, et al. Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge. Medical Image Analysis. 2014; 18(2): 359-373. doi: 10.1016/j.media.2013.12.002
He K, Gkioxari G, Dollar P, et al. Mask R-CNN. 2017 IEEE International Conference on Computer Vision (ICCV). 2017. doi: 10.1109/iccv.2017.322
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. Communications of the ACM. 2020; 63(11): 139-144. doi: 10.1145/3422622
Yan Y, Zhang D. Multi-scale U-like network with attention mechanism for automatic pancreas segmentation. PLOS ONE. 2021; 16(5): e0252287. doi: 10.1371/journal.pone.0252287
Zhou Z, Shin J, Zhang L, et al. Fine-Tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally. IEEE Conference on Computer Vision and Pattern Recognition. 2017; 4761-4772. doi: 10.1109/cvpr.2017.506
Hapke RY, Haake SM. Hypoxia-induced epithelial to mesenchymal transition in cancer. Cancer Letters. 2020; 487: 10-20. doi: 10.1016/j.canlet.2020.05.012
Mcloughlin MP, Stewart R, McElligott AG. Automated bioacoustics: methods in ecology and conservation and their potential for animal welfare monitoring. Journal of The Royal Society Interface. 2019; 16(155): 20190225. doi: 10.1098/rsif.2019.0225
Shoaib MA, Lai KW, Chuah JH, et al. Comparative studies of deep learning segmentation models for left ventricle segmentation. Front Public Health. 2022; 10: 981019. doi: 10.3389/fpubh.2022.981019
Winzeck S, Hakim A, McKinley R, et al. ISLES 2016 and 2017-Benchmarking Ischemic Stroke Lesion Outcome Prediction Based on Multispectral MRI. Frontiers in Neurology. 2018; 9. doi: 10.3389/fneur.2018.00679
Liu Z, Wang S, Dong D, et al. The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges. Theranostics. 2019; 9(5): 1303-1322. doi: 10.7150/thno.30309
Kalantar R, Lin G, Winfield JM, et al. Automatic Segmentation of Pelvic Cancers Using Deep Learning: State-of-the-Art Approaches and Challenges. Diagnostics (Basel). 2021; 11(11): 1964. doi: 10.3390/diagnostics11111964
van Opbroek A, Ikram MA, Vernooij MW, et al. Transfer learning improves supervised image segmentation across imaging protocols. IEEE Trans Med Imaging. 2015; 34(5): 1018-30. doi: 10.1109/TMI.2014.2366792
Li X, Yu L, Chen H, et al. Transformation-Consistent Self-Ensembling Model for Semisupervised Medical Image Segmentation. IEEE Trans Neural Netw Learn Syst. 2021; 32(2): 523-534. doi: 10.1109/TNNLS.2020.2995319
Dou Q, Yu L, Chen H, et al. 3D deeply supervised network for automated segmentation of volumetric medical images. Med Image Anal. 2017; 41: 40-54. doi: 10.1016/j.media.2017.05.001
Guo Y, Li X, Huang H, et al. Deep learning-based image segmentation for multimodal medical imaging. IEEE Trans Radiat Plasma Med Sci. 2019 Mar;3(2):162-169. doi: 10.1109/trpms.2018.2890359
Eder M, Moser E, Holzinger A, et al. Interpretable Machine Learning with Brain Image and Survival Data. BioMedInformatics 2022, 2, 492-510. doi: 10.3390/biomedinformatics2030031
Pal NR, Pal SK. A review on image segmentation techniques. Pattern Recognition. 1993. doi: 10.1016/0031-3203(93)90135-J