An overview of segmentation techniques for CT and MRI images: Clinical implications and future directions in medical diagnostics

Stefano Palazzo, Giovanni Zambetta, Roberto Calbi

Article ID: 7227
Vol 7, Issue 1, 2024

VIEWS - 25 (Abstract) 16 (PDF)

Abstract


Advancements in Medical Image Segmentation have revolutionized clinical diagnostics and treatment planning. This review explores a wide range of segmentation techniques applied to Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) images, emphasizing their clinical implications and future directions. CT segmentation techniques, including U-Net and its variant nnU-Net, are essential in oncology for precise tumor delineation, in cardiology for coronary artery analysis, and in pulmonology for lung lesion detection. These methods enhance radiotherapy targeting, surgical planning, and overall diagnostic accuracy. The nnU-Net, known for its self-configuring nature, is particularly notable for setting new benchmarks in medical image segmentation tasks. MRI segmentation benefits from superior soft tissue contrast. Techniques like Mask Region-based Convolutional Neural Network (R-CNN) excel in identifying brain lesions, assessing musculoskeletal injuries, and monitoring soft tissue tumors. These methods support detailed visualization of internal structures, improving diagnosis and guiding targeted interventions. U-Net architectures also play a critical role in MRI segmentation, demonstrating high efficacy in various applications such as brain and prostate imaging. A systematic review of the literature reveals performance metrics for various segmentation techniques, such as accuracy, sensitivity, specificity, and processing time. Traditional methods like thresholding and edge detection are contrasted with advanced deep learning and machine learning approaches, highlighting the strengths and limitations of each. The review also addresses methodological approaches, including data collection, analysis, and evaluation metrics. Future prospects include integrating 3D and 4D segmentation, multimodal data fusion, and enhancing AI explain ability. These innovations aim to refine diagnostic processes, personalize treatments, and improve patient outcomes. Clinical applications of these segmentation techniques demonstrate significant advantages in radiology, oncology, and cardiology, though challenges such as data variability and noise persist. Emerging strategies like data augmentation and transfer learning offer potential solutions to these issues. The continuous evolution of medical image segmentation techniques promises to enhance diagnostic accuracy, efficiency, and the personalization of patient care, ultimately leading to better healthcare outcomes.


Keywords


medical image processing; image segmentation; computed tomography; CT; magnetic resonance imaging; MRI; DICOM; artificial intelligence; AI; U-Net; nnU-Net; Mask R-CNN

Full Text:

PDF


References


1. Sharma S, Aggarwal LM. Automated image segmentation techniques. International Journal of Advanced Research in Computer Science. 2023; 35(1): 3–14. DOI: 10.4103/0971-6203.58777

2. Kekre HB, Sarode T, & Mishra D. Image segmentation of images using vector quantization. Journal of Computer Science and Technology. 2022. doi.org/10.1145/1523103.1523175

3. Wala'A NJ, Rana JM. (2021). A Survey on Segmentation Techniques for Image Processing. Iraqi Journal for Electrical and Electronic Engineering. 17. 73-93. 10.37917/ijeee.17.2.10.

4. Deklerck R, Cornelis J, Bister M, Segmentation of medical images, Image and Vision Computing, Volume 11, Issue 8, 1993, Pages 486-503, ISSN 0262-8856. https://doi.org/10.1016/0262-8856(93)90068-R.

5. Bidgood WD Jr, Horii SC. Introduction to the ACR-NEMA DICOM standard. Radiographics. 1992 Mar;12(2):345-55. doi: 10.1148/radiographics.12.2.1561424. PMID: 1561424.

6. Pianykh OS. Digital Imaging and Communications in Medicine (DICOM): A Practical Introduction and Survival Guide. Springer; 2008. DOI 10.1007/978-3-540-74571-6

7. Huang HK. Medical imaging, PACS, and imaging informatics: retrospective. Radiol Phys Technol. 2014 Jan;7(1):5-24. doi: 10.1007/s12194-013-0245-y. Epub 2013 Dec 6. PMID: 24311236.

8. Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J Clin. 2019 Mar;69(2):127-157. doi: 10.3322/caac.21552.

9. Fu Y, Cao K, Xia Y, et al. Large-scale pancreatic cancer detection via non-contrast CT and deep learning. Nature Communications. 2021; 29: 3033–3043. doi: 10.1038/s41467-021-22298-6

10. Moreno A, Takemura CM, Colliot O, et al.. (2008). Using anatomical knowledge expressed as fuzzy constraints to segment the heart in CT images. Pattern Recognition. 41. 2525-2540. 10.1016/j.patcog.2008.01.020.

11. Stoecker H, Welter S, Moltz JH, et al. Determination of lung segments in computed tomography images using the Euclidean distance to the pulmonary artery. Med Phys. 2013 Sep;40(9):091912. doi: 10.1118/1.4818017.

12. Bustos A, Pertusa A, Salinas JM, et al. PadChest: A large chest x-ray image dataset with multi-label annotated reports. Medical Image Analysis. 2020; 66: 101797. doi: 10.1016/j.media.2020.101797

13. Kickingereder P, Isensee F, Tursunova I, et al. Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol. 2019 May;20(5):728-740. doi: 10.1016/S1470-2045(19)30098-1.

14. Stoyanov D, Taylor Z, Carneiro G, et al. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer International Publishing; 2018. DOI:10.1007/978-3-030-00889-5

15. Aimar A, Palermo A, Innocenti B. The Role of 3D Printing in Medical Applications: A State of the Art. J Healthc Eng. 2019 Mar 21;2019:5340616. doi: 10.1155/2019/5340616.

16. M. Fernando KR, Tsokos CP. Deep and statistical learning in biomedical imaging: State of the art in 3D MRI brain tumor segmentation, Information Fusion, Volume 92, 2023, Pages 450-465, ISSN 1566-2535. https://doi.org/10.1016/j.inffus.2022.12.013.

17. Goehler A, Hsu TMH, Lacson R, et al. Three-Dimensional Neural Network to Automatically Assess Liver Tumor Burden Change on Consecutive Liver MRIs. J Am Coll Radiol. 2020 Nov;17(11):1475-1484. doi: 10.1016/j.jacr.2020.06.033.

18. Petitjean C, Dacher JN. A review of segmentation methods in short axis cardiac MR images. Med Image Anal. 2011 Apr;15(2):169-84. doi: 10.1016/j.media.2010.12.004.

19. Khoo VS, Adams EJ, Saran F, et al. A Comparison of clinical target volumes determined by CT and MRI for the radiotherapy planning of base of skull meningiomas. Int J Radiat Oncol Biol Phys. 2000 Mar 15;46(5):1309-17. doi: 10.1016/s0360-3016(99)00541-6.

20. Scotti FM, Stuepp RT, Dutra-Horstmann KL, et al. Accuracy of MRI, CT, and Ultrasound imaging on thickness and depth of oral primary carcinomas invasion: a systematic review. Dentomaxillofac Radiol. 2022 Jul 1;51(5):20210291. doi: 10.1259/dmfr.20210291.

21. Zhang Y, Paulson E, Lim S, et al. A patient-specific auto-segmentation strategy using multi-input deformable image registration for MRI-guided online adaptive radiotherapy: a feasibility study. Advances in Radiation Oncology. 2020 May. doi: 10.1016/j.adro.2020.04.027.

22. Taha AA, Hanbury A. Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Medical Imaging. 2015; 15(1). doi: 10.1186/s12880-015-0068-x

23. Navab N, Hornegger J, Wells WM, et al. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Springer International Publishing; 2015.

24. Isensee F, Jaeger PF, Kohl SAA, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature Methods. 2020; 18(2): 203-211. doi: 10.1038/s41592-020-01008-z

25. Frangi AF, Schnabel JA, Davatzikos C, et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. Springer International Publishing; 2018.

26. Niu Z, Li H. Research and analysis of threshold segmentation algorithms in image processing. Journal of Physics: Conference Series. 2019; 1237: 022122. doi: 10.1088/1742-6596/1237/2/022122.

27. Wang X. Laplacian operator-based edge detectors. IEEE Trans Pattern Anal Mach Intell. 2007 May;29(5):886-90. doi: 10.1109/TPAMI.2007.1027.

28. Ramesh K, Kumar GK, Swapna K, et al. A Review of Medical Image Segmentation Algorithms. EAI Endorsed Transactions on Pervasive Health and Technology. doi: https://doi.org/10.4108/eai.12-4-2021.169184

29. Chaturvedi A, Khanna R, Kumar V. An Analysis of Region Growing Image Segmentation Schemes. International Journal of Computer Trends and Technology. 2016; 34: 46-51. doi: 10.14445/22312803/IJCTT-V34P108.

30. James C. Tilton. Image segmentation by iterative parallel region growing with application to data compression and image analysis. The 2nd Symposium on the Frontiers of Massively Parallel Computations. Document ID: 19900007136. ntrs.nasa.gov/citations/19900007136

31. Chan TF, Vese LA. Active contours without edges. IEEE Trans Image Process. 2001;10(2):266-77. doi: 10.1109/83.902291.

32. Bresson X, Esedoḡlu S, Vandergheynst P, et al. Fast global minimization of the active contour/snake model. Journal of Mathematical Imaging and Vision 28(2):151-167. doi: 10.1007/s10851-007-0002-0

33. Shabari Shedthi B, Shetty S, Siddappa M. Implementation and comparison of K-means and fuzzy C-means algorithms for agricultural data. 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT) (2017): 105-108. doi: 10.1109/ICICCT.2017.7975168

34. Chuang KS, Tzeng HL, Chen S, et al. Fuzzy c-means clustering with spatial information for image segmentation. Computerized Medical Imaging and Graphics. 30, 9-15. doi: 10.1016/j.compmedimag.2005.10.001

35. Freiman M, Kronman A, Esses SJ, et al. Non-parametric iterative model constraint graph min-cut for automatic kidney segmentation. Med Image Comput Comput Assist Interv. 2010;13(Pt 3):73-80. doi: 10.1007/978-3-642-15711-0_10.

36. Dong L, Du H, Mao F, et al. Very High Resolution Remote Sensing Imagery Classification Using a Fusion of Random Forest and Deep Learning Technique—Subtropical Area for Example. December 2019. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing PP(99):1-16. DOI:10.1109/JSTARS.2019.2953234

37. Song Z, Wu H, Chen W, et al. Improving automatic segmentation of liver tumor images using a deep learning model. Heliyon. 2024 Mar 21;10(7):e28538. doi: 10.1016/j.heliyon.2024.e28538.

38. Dosovitskiy A, Beyer L, Kolesnikov A, et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. International Conference on Learning Representations. 2020. doi: 10.48550/ARXIV.2010.11929

39. Vaswani A, Shazeer N, Parmar N, et al. Attention Is All You Need. Advances in Neural Information Processing Systems. 2017. doi: 10.48550/ARXIV.1706.03762

40. Mishra R, Daescu O. Deep learning for skin lesion segmentation. 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (2017): 1189-1194. DOI:10.1109/BIBM.2017.8217826

41. Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: A review. Medical Image Analysis. 2019; 58: 101552. doi: 10.1016/j.media.2019.101552

42. Gu Y, Zeng Z, Chen H, et al. (2020). MedSRGAN: medical images super-resolution using generative adversarial networks. Multimedia Tools and Applications. 79. doi: 10.1007/s11042-020-08980-w.

43. Qatarneh SM et al. Evaluation of a segmentation procedure to delineate organs for use in construction of a radiation therapy planning atlas. Int J Med Inform. 2003 Jan;69(1):39-55. doi: 10.1016/s1386-5056(02)00079-5.

44. Langerak TR et al. Multiatlas-based segmentation with preregistration atlas selection. Med Phys. 2013 Sep;40(9):091701. doi: 10.1118/1.4816654.

45. Zhou Z, Siddiquee MMR, Tajbakhsh N, et al. UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation. IEEE Trans Med Imaging. 2020 Jun;39(6):1856-1867. doi: 10.1109/TMI.2019.2959609.

46. Hoeser T, Bachofer F, Kuenzer C. Object Detection and Image Segmentation with Deep Learning on Earth Observation Data: A Review-Part II: Applications. Remote Sensing. 2020; 12: 3053. doi: 10.3390/rs12183053.

47. Jeevakala S, Sreelakshmi C, Ram K, et al. Artificial intelligence in detection and segmentation of internal auditory canal and its nerves using deep learning techniques. Int J Comput Assist Radiol Surg. 2020 Nov;15(11):1859-1867. doi: 10.1007/s11548-020-02237-5.

48. Pathan RK, Lim WL, Lau SL, et al. Experimental Analysis of U-Net and Mask R-CNN for Segmentation of Synthetic Liquid Spray. 2022 IEEE International Conference on Computing (ICOCO). 2022; 237-242. doi: 10.1109/ICOCO56118.2022.10031951.

49. Yıldırım, MS, Dandıl E. Automated Multiple Sclerosis Lesion Segmentation on MR Images via Mask R-CNN. 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) (2021): 570-577. doi: 10.1109/ISMSIT52890.2021.9604593.

50. Pham DL, Xu C, Prince JL. Current Methods in Medical Image Segmentation. Annual Review of Biomedical Engineering. 2000; 2(1): 315-337. doi: 10.1146/annurev.bioeng.2.1.315

51. Tajbakhsh N, Shin JY, Gurudu SR, et al. Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? IEEE Transactions on Medical Imaging. 2016; 35(5): 1299-1312. doi: 10.1109/tmi.2016.2535302

52. Shin HC, Roth HR, Gao M, et al. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Transactions on Medical Imaging. 2016; 35(5): 1285-1298. doi: 10.1109/tmi.2016.2528162

53. He X, Guo BJ, Lei Y, et al. Automatic segmentation and quantification of epicardial adipose tissue from coronary computed tomography angiography. Phys Med Biol. 2020 May 11;65(9):095012. doi: 10.1088/1361-6560/ab8077.

54. Vesal S, Ravikumar N, Ellman S, et al. Comparative Analysis of Unsupervised Algorithms for Breast MRI Lesion Segmentation. January 2018. In: Bildverarbeitung für die Medizin. 2018. pp.257-262. doi: 10.1007/978-3-662-56537-7_68

55. Eelbode T, Bertels J, Berman M, et al. Optimization for Medical Image Segmentation: Theory and Practice When Evaluating With Dice Score or Jaccard Index. IEEE Trans Med Imaging. 2020 Nov;39(11):3679-3690. doi: 10.1109/TMI.2020.3002417.

56. Menze BH, Jakab A, Bauer S, et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Transactions on Medical Imaging. 2015; 34(10): 1993-2024. doi: 10.1109/tmi.2014.2377694

57. Haseena A, Mehaboobathunnis R, Mohamed S, et al. COMPARISON OF DIFFERENT SEGMENTATION ALGORITHMS FOR DERMOSCOPIC IMAGES. ICTACT Journal on Image and Video Processing. 2015; 5: 1030-1036. doi: 10.21917/ijivp.2015.0151.

58. Xiang Y, Chung ACS, Ye J. An active contour model for image segmentation based on elastic interaction. Journal of Computational Physics 219 (2006) 455–476. doi:10.1016/j.jcp.2006.03.026

59. Bahade S, Edwards M, Xie X. Graph Convolution Networks for Cell Segmentation. January 2021. Conference: 10th International Conference on Pattern Recognition Applications and Methods. DOI:10.5220/0010324306200627

60. Chen LC, Papandreou G, Kokkinos I, et al. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs, in IEEE Transactions on Pattern Analysis and Machine Intelligence. 2018; 40(4): 834-848. doi: 10.1109/TPAMI.2017.2699184

61. Bilic P, Christ P, Li HB, et al. The Liver Tumor Segmentation Benchmark (LiTS). Medical Image Analysis. 2023; 84: 102680. doi: 10.1016/j.media.2022.102680

62. Fripp J, Crozier S, Warfield SK, et al. Automatic segmentation of articular cartilage in magnetic resonance images of the knee. Med Image Comput Comput Assist Interv. 2007;10(Pt 2):186-94. doi: 10.1007/978-3-540-75759-7_23.

63. Kavur AE, Gezer NS, Barış M, et al. CHAOS Challenge - combined (CT-MR) healthy abdominal organ segmentation. Med Image Anal. 2021; 69: 101950. doi: 10.1016/j.media.2020.101950

64. Maier O, Menze BH, von der Gablentz J, et al. ISLES 2015 - A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Medical Image Analysis. 2017; 35: 250-269. doi: 10.1016/j.media.2016.07.009

65. Kwitt R, Vasconcelos N, Razzaque S, et al. Localizing target structures in ultrasound video – A phantom study. Medical Image Analysis. 2013; 17(7): 712-722. doi: 10.1016/j.media.2013.05.003

66. Staal J, Abramoff MD, Niemeijer M, et al. Ridge-Based Vessel Segmentation in Color Images of the Retina. IEEE Transactions on Medical Imaging. 2004; 23(4): 501-509. doi: 10.1109/tmi.2004.825627

67. Kiaei AA, Khotanlou H. Segmentation of medical images using mean value guided contour. Medical Image Analysis. 2017; 40: 111-132. doi: 10.1016/j.media.2017.06.005

68. Ourselin S, Joskowicz L, Sabuncu MR, et al. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. Springer International Publishing; 2016.

69. Litjens G, Toth R, van de Ven W, et al. Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge. Medical Image Analysis. 2014; 18(2): 359-373. doi: 10.1016/j.media.2013.12.002

70. He K, Gkioxari G, Dollar P, et al. Mask R-CNN. 2017 IEEE International Conference on Computer Vision (ICCV). 2017. doi: 10.1109/iccv.2017.322

71. Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. Communications of the ACM. 2020; 63(11): 139-144. doi: 10.1145/3422622

72. Yan Y, Zhang D. Multi-scale U-like network with attention mechanism for automatic pancreas segmentation. PLOS ONE. 2021; 16(5): e0252287. doi: 10.1371/journal.pone.0252287

73. Zhou Z, Shin J, Zhang L, et al. Fine-Tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally. IEEE Conference on Computer Vision and Pattern Recognition. 2017; 4761-4772. doi: 10.1109/cvpr.2017.506

74. Hapke RY, Haake SM. Hypoxia-induced epithelial to mesenchymal transition in cancer. Cancer Letters. 2020; 487: 10-20. doi: 10.1016/j.canlet.2020.05.012

75. Mcloughlin MP, Stewart R, McElligott AG. Automated bioacoustics: methods in ecology and conservation and their potential for animal welfare monitoring. Journal of The Royal Society Interface. 2019; 16(155): 20190225. doi: 10.1098/rsif.2019.0225

76. Shoaib MA, Lai KW, Chuah JH, et al. Comparative studies of deep learning segmentation models for left ventricle segmentation. Front Public Health. 2022; 10: 981019. doi: 10.3389/fpubh.2022.981019

77. Winzeck S, Hakim A, McKinley R, et al. ISLES 2016 and 2017-Benchmarking Ischemic Stroke Lesion Outcome Prediction Based on Multispectral MRI. Frontiers in Neurology. 2018; 9. doi: 10.3389/fneur.2018.00679

78. Liu Z, Wang S, Dong D, et al. The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges. Theranostics. 2019; 9(5): 1303-1322. doi: 10.7150/thno.30309

79. Kalantar R, Lin G, Winfield JM, et al. Automatic Segmentation of Pelvic Cancers Using Deep Learning: State-of-the-Art Approaches and Challenges. Diagnostics (Basel). 2021; 11(11): 1964. doi: 10.3390/diagnostics11111964

80. van Opbroek A, Ikram MA, Vernooij MW, et al. Transfer learning improves supervised image segmentation across imaging protocols. IEEE Trans Med Imaging. 2015; 34(5): 1018-30. doi: 10.1109/TMI.2014.2366792

81. Li X, Yu L, Chen H, et al. Transformation-Consistent Self-Ensembling Model for Semisupervised Medical Image Segmentation. IEEE Trans Neural Netw Learn Syst. 2021; 32(2): 523-534. doi: 10.1109/TNNLS.2020.2995319

82. Dou Q, Yu L, Chen H, et al. 3D deeply supervised network for automated segmentation of volumetric medical images. Med Image Anal. 2017; 41: 40-54. doi: 10.1016/j.media.2017.05.001

83. Guo Y, Li X, Huang H, et al. Deep learning-based image segmentation for multimodal medical imaging. IEEE Trans Radiat Plasma Med Sci. 2019 Mar;3(2):162-169. doi: 10.1109/trpms.2018.2890359

84. Eder M, Moser E, Holzinger A, et al. Interpretable Machine Learning with Brain Image and Survival Data. BioMedInformatics 2022, 2, 492-510. doi: 10.3390/biomedinformatics2030031

85. Pal NR, Pal SK. A review on image segmentation techniques. Pattern Recognition. 1993. doi: 10.1016/0031-3203(93)90135-J




DOI: https://doi.org/10.24294/mipt7227

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Stefano Palazzo, Giovanni Zambetta, Roberto Calbi

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.