Radiomics in oncology: A mini-review of principles, applications and challenges

Sahand Karimzadhagh, Elahe Abbaspour

Article ID: 6279
Vol 7, Issue 1, 2024

VIEWS - 148 (Abstract)

Abstract


Radiomics, a quantitative approach to medical imaging, employs computational methods to extract features from the images, revealing hidden characteristics of specific regions. This emerging field leverages advanced techniques to analyze a spectrum of features from modalities, including computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) scans, aiming to decode tissue characteristics, disease progression, and treatment responses. The radiomics workflow integrates image acquisition, segmentation, feature selection, and data integration, utilizing advanced techniques such as deep learning, machine learning, and data mining. Radiomics demonstrates considerable potential in cancer detection and management, exhibiting high sensitivity and specificity in distinguishing between benign and malignant tumors and predicting outcomes. However, challenges such as imaging protocol variability, overfitting, and standardization requirements impede its broad clinical adoption. Innovations in multi-modal radiomics, deep learning, and genomics integration strive to mitigate these constraints. This review elucidates radiomics’ capabilities, current applications, benefits, challenges, and future directions in oncology.


Keywords


radiomics; artificial intelligence; machine learning; cancer detection; medical imaging

Full Text:

PDF


References


1. Basran PS, Porter I. Radiomics in veterinary medicine: Overview, methods, and applications. Vet Radiol Ultrasound. 2022; 63(Suppl 1): 828-839. doi: 10.1111/vru.13156

2. Zhang W, Guo Y, Jin Q. Radiomics and Its Feature Selection: A Review. Symmetry. 2023; 15(10): 1834. doi: 10.3390/sym15101834

3. Nair VS, Gould MK. Chapter 1—The Asymptomatic Patient with a Pulmonary Nodule. In: Tanoue L, Detterbeck F (editors). Lung Cancer: A Practical Approach to Evidence-Based Clinical Evaluation and Management. Elsevier; 2018. pp. 1-37.

4. Cobo M, Menéndez Fernández-Miranda P, Bastarrika G, Lloret Iglesias L. Enhancing radiomics and Deep Learning systems through the standardization of medical imaging workflows. Sci Data. 2023; 10: 732. doi: 10.1038/s41597-023-02641-x

5. Florez E, Fatemi A, Claudio PP, Howard CM. Emergence of Radiomics: Novel Methodology Identifying Imaging Biomarkers of Disease in Diagnosis, Response, and Progression. SM J Clin Med Imaging. 2018; 4(1): 1019.

6. Hussain S, Mubeen I, Ullah N, et al. Modern Diagnostic Imaging Technique Applications and Risk Factors in the Medical Field: A Review. Biomed Res Int. 2022; 2022: 5164970. doi: 10.1155/2022/5164970

7. van Timmeren JE, Cester D, Tanadini-Lang S, et al. Radiomics in medical imaging—“How-to” guide and critical reflection. Insights into Imaging. 2020; 11(1): 91. doi: 10.1186/s13244-020-00887-2

8. Scapicchio C, Gabelloni M, Barucci A, et al. A deep look into radiomics. Radiol Med. 2021; 126(10): 1296-1311. doi: 10.1007/s11547-021-01389-x

9. Khaire UM, Dhanalakshmi R. Stability of feature selection algorithm: A review. Journal of King Saud University—Computer and Information Sciences. 2022; 34(4): 1060-1073. doi: 10.1016/j.jksuci.2019.06.012

10. Avanzo M, Wei L, Stancanello J, et al. Machine and Deep Learning Methods for Radiomics. Med Phys. 2020; 47(5): e185-e202. doi: 10.1002/mp.13678

11. Afshar P, Mohammadi A, Plataniotis KN, et al. From Handcrafted to Deep-Learning-Based Cancer Radiomics: Challenges and Opportunities. IEEE Signal Processing Magazine. 2019; 36(4): 132-160. doi: 10.1109/MSP.2019.2900993

12. Zaresharifi N, Abbaspour E, Yousefzade-Chabok S, et al. Rare incidence of parietal lobe metastasis in an adult with desmoplastic/nodular medulloblastoma: A case report and review of the literature. Int J Surg Case Rep. 2024; 115: 109322. doi: 10.1016/j.ijscr.2024.109322

13. Alijani B, Karimzadhagh S, Abbaspour E, et al. Intradural intramedullary epidermoid cyst in a 17-year-old male: An exceptionally rare case report and review of the literature. Int J Surg Case Rep. 2024; 116: 109331. doi: 10.1016/j.ijscr.2024.109331

14. Oh KE, Vasandani N, Anwar A. Radiomics to Differentiate Malignant and Benign Breast Lesions: A Systematic Review and Diagnostic Test Accuracy Meta-Analysis. Cureus. 2023; 15(11): e49015. doi: 10.7759/cureus.49015

15. Abbaspour E, Karimzadhagh S, Monsef A, et al. Application of radiomics for preoperative prediction of lymph node metastasis in colorectal cancer: A systematic review and Meta-analysis. International Journal of Surgery. doi: 10.1097/JS9.0000000000001239

16. Katsoulakis E, Yu Y, Apte AP, et al. Radiomic analysis identifies tumor subtypes associated with distinct molecular and microenvironmental factors in head and neck squamous cell carcinoma. Oral Oncol. 2020; 110: 104877. doi: 10.1016/j.oraloncology.2020.104877

17. Wang JH, Wahid KA, van Dijk LV, et al. Radiomic biomarkers of tumor immune biology and immunotherapy response. Clin Transl Radiat Oncol. 2021; 28: 97-115. doi: 10.1016/j.ctro.2021.03.006

18. Karimzadhagh S, Reihanian Z, Abbaspour E, et al. Impact of age and gender on survival of glioblastoma multiforme patients: A multicentric retrospective study. Authorea. doi: 10.22541/au.171200124.41080848/v1

19. Dasgupta A, Bhardwaj D, DiCenzo D, et al. Radiomics in predicting recurrence for patients with locally advanced breast cancer using quantitative ultrasound. Oncotarget. 2021; 12(25): 2437-2448. doi: 10.18632/oncotarget.28139

20. Kang W, Qiu X, Luo Y, et al. Application of radiomics-based multiomics combinations in the tumor microenvironment and cancer prognosis. J Transl Med. 2023; 21: 598. doi: 10.1186/s12967-023-04437-4

21. Forghani R, Savadjiev P, Chatterjee A, et al. Radiomics and Artificial Intelligence for Biomarker and Prediction Model Development in Oncology. Computational and Structural Biotechnology Journal. 2019; 17: 995-1008. doi: 10.1016/j.csbj.2019.07.001

22. Soliman MAS, Kelahan LC, Magnetta M, et al. A Framework for Harmonization of Radiomics Data for Multicenter Studies and Clinical Trials. JCO Clinical Cancer Informatics. 2022; 6. doi: 10.1200/CCI.22.00023

23. Zhao B. Understanding Sources of Variation to Improve the Reproducibility of Radiomics. Front Oncol. 2021; 11: 633176. doi: 10.3389/fonc.2021.633176

24. Grapov D, Fahrmann J, Wanichthanarak K, Khoomrung S. Rise of Deep Learning for Genomic, Proteomic, and Metabolomic Data Integration in Precision Medicine. OMICS. 2018; 22(10): 630-636. doi: 10.1089/omi.2018.0097

25. Wekesa JS, Kimwele M. A review of multi-omics data integration through deep learning approaches for disease diagnosis, prognosis, and treatment. Front Genet. 2023; 14. doi: 10.3389/fgene.2023.1199087




DOI: https://doi.org/10.24294/mipt.v7i1.6279

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Sahand Karimzadhagh, Elahe Abbaspour

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.