Topographic mapping of oxygen extraction and cerebral venous blood volume fraction in Brain tumors using quantitative BOLD: A case report

Arun Raj T., Karthik K., Joseph Suresh Paul

Article ID: 2719
Vol 6, Issue 1, 2023

VIEWS - 269 (Abstract) 170 (PDF)

Abstract


Background: While oxygen extraction fraction (OEF) reflects the underlying variations in cerebral brain oxygen metabolism, tissue voxels having elevated volume fraction of blood vessel network with deoxygenated blood, will apparently contribute to higher cerebral venous blood volume fraction (CVBVF). This Case report examines the difference in intra and peri-tumoral topographical patterns of OEF and CVBVF in cases of a meningioma tumor (Case-I) and a low- grade glioma (Case-II). Methods: Using a “static dephasing regime” BOLD model, we use the BOLD signal model containing parameters representing OEF and CVBVF. For each voxel in the region of interest, the parameters are solved by non-linearly fitting the signal model using paired differences between logarithms of the measured echo signal after inhomogeneity correction. Results: OEF and CVBVF maps in Case-I reveals an interesting phenomenon in the peritumoral parenchyma showing reduced OEF and increased CVBVF levels. The uniformly low CVBVF and elevated OEF in Case-II indicates that even with less density of vasculature, the region extracts higher amount of oxygen. Conclusion: While topographic mapping using qBOLD revealed elevated levels of intra-tumoral OEF for both cases, the pattern of CVBVF variation was uniformly low in Case-II.


Keywords


meningioma tumor; glioma; oxygen extraction fraction; venous cerebral blood volume fraction; multi-echo GRE; qBOLD

Full Text:

PDF


References


1. Jokivarsi K, Chen YI, Kwong K, et al. Blood flow and oxygen extraction as biomarkers for activated brown adipose tissue. Journal of Nuclear Medicine 2012; 53(s1): 408.

2. Branca RT, Zhang L, Warren WS, et al. In vivo noninvasive detection of brown adipose tissue through intermolecular zero-quantum MRI. PloS One. 2013; 8(9): e74206.

3. Yoo H, Baia GS, Smith JS, et al. Expression of the hypoxia marker carbonic anhydrase 9 is associated with anaplastic phenotypes in meningiomas. Clinical Cancer Research 2007; 13(1): 68–75. doi: 10.1158/1078-0432.ccr-06-1377

4. Welford SM, Giaccia AJ. Hypoxia and senescence: The impact of oxygenation on tumor suppression. Can Hypoxia Promote Tumor Initiation. Molecular Cancer Research 2011; 9(5): 538–544. doi: 10.1158/1541-7786.mcr-11-0065

5. Phillips RM. Targeting the hypoxic fraction of tumours using hypoxia-activated prodrugs. Cancer Chemotherapy and Pharmacology 2016; 77(3): 441–457. doi: 10.1007/s00280-015-2920-7

6. Pugh CW, Ratcliffe PJ. The von Hippel-Lindau tumor suppressor, hypoxia-inducible factor-1 (HIF-1) degradation, and cancer pathogenesis. Seminars in Cancer Biology 2003; 13(1): 83–89. doi: 10.1016/j.cell.2004.08.025

7. Welter M. A Theoretical Model of Vascularized Tumors: Simulation of Blood Vessel Network Remodeling, Interstitial Fluid Flow and Oxygenation [PhD thesis]. Saarland University; 2015.

8. Chen TC, Zee CS, Miller CA, et al. Magnetic resonance imaging and pathological correlates of meningiomas. Neurosurgery 1992; 31(6): 1015–1022. doi: 10.1227/00006123-199212000-00005

9. Beaney RP, Brooks DJ, Leenders KL, et al. Blood flow and oxygen utilisation in the contralateral cerebral cortex of patients with untreated intracranial tumours as studied by positron emission tomography, with observations on the effect of decompressive surgery. Journal of Neurology, Neurosurgery & Psychiatry 1985; 48(4): 310–319. doi: 10.1136/jnnp.48.4.310

10. Nakayama Y, Tanaka A, Kumate S, Yoshinaga S. Cerebral blood flow in normal brain tissue of patients with intracranial tumors. Neurologia Medico-Chirurgica 1996; 36(10): 709–715. doi: 10.2176/nmc.36.709

11. Lebrun-Grandié P, Baron JC, Soussaline F, et al. Coupling between regional blood flow and oxygen utilization in the normal human brain: A study with positron tomography and oxygen 15. Archives of Neurology 1983; 40(4): 230–236. doi: 10.1001/archneur.1983.04050040060010

12. Cho J, Lee J, An H, et al. Cerebral oxygen extraction fraction (OEF): Comparison of challenge-free gradient echo QSM+qBOLD (QQ) with 15O PET in healthy adults. Journal of Cerebral Blood Flow & Metabolism 2021; 41(7): 1658–1668. doi: 10.1177/0271678x20973951

13. Bammer R, Keeling SL, Augustin M, et al. Improved diffusion‐weighted single‐shot echo‐planar imaging (EPI) in stroke using sensitivity encoding (SENSE). Magnetic Resonance in Medicine 2001; 46(3): 548–554. doi: 10.1002/mrm.1226

14. Turner R, Le Bihan D, Scott Chesnicks A. Echo‐planar imaging of diffusion and perfusion. Magnetic Resonance in Medicine 1991; 19(2): 247–253. doi: 10.1002/mrm.1910190210

15. Deichmann R, Gottfried JA, Hutton C, Turner R. Optimized EPI for fMRI studies of the orbitofrontal cortex. Neuroimage 2003; 19(2): 430–441.

16. Bolar DS, Rosen BR, Sorensen AG, Adalsteinsson E. Quantitative imaging of extraction of oxygen and tissue consumption (QUIXOTIC) using venular-targeted velocity-selective spin labeling. Magnetic Resonance in Medicine 2011; 66(6): 1550–1562. doi: 10.1002/mrm.22946

17. Hoge RD. Calibrated FMRI. Neuroimage 2012; 62(2): 930–937. doi: 10.1016/j.neuroimage.2012.02.022

18. Gauthier CJ, Hoge RD. Magnetic resonance imaging of resting OEF and CMRO (2) using a generalized calibration model for hypercapnia and hyperoxia. Neuroimage 2012; 60(2): 1212–1225. doi: 10.1016/j.neuroimage.2011.12.056

19. Wise RG, Harris AD, Stone AJ, Murphy K. Measurement of OEF and absolute CMRO 2: MRI-based methods using interleaved and combined hypercapnia and hyperoxia. Neuroimage 2013; 83: 135–147. doi: 10.1016/j.neuroimage.2013.06.008

20. Bulte DP, Kelly M, Germuska M, et al. Quantitative measurement of cerebral physiology using respiratory-calibrated MRI. Neuroimage 2012; 60(1): 582–591. doi: 10.1016/j.neuroimage.2011.12.017

21. He X, Yablonskiy DA. Quantitative BOLD: Mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: Default state. Magnetic Resonance in Medicine 2007; 57(1): 115–126. doi: 10.1002/mrm.21108

22. Wang X, Sukstanskii AL, Yablonskiy DA. Optimization strategies for evaluation of brain hemodynamic parameters with qBOLD technique. Magnetic Resonance in Medicine 2013; 69(4): 1034–1043. doi: 10.1002/mrm.24338

23. Wehrli FW, Fan AP, Rodgers ZB, et al. Susceptibility-based time-resolved whole-organ and regional tissue oximetry. NMR in Biomedicine 2017; 30(4): 10. doi: 10.1002/nbm.3495

24. Fan AP, Benner T, Bolar DS, et al. Phase-based regional oxygen metabolism (PROM) using MRI. Magnetic Resonance in Medicine 2012; 67(3): 669–678. doi: 10.1002/mrm.23050

25. Jiang D, Lu H. Cerebral oxygen extraction fraction MRI: Techniques and applications. Magnetic Resonance in Medicine 2022; 88(2): 575–600. doi: 10.1002/mrm.29272

26. Yablonskiy DA, Sukstanskii AL, He X. Blood oxygenation level-dependent (BOLD)-based techniques for the quantification of brain hemodynamic and metabolic properties—Theoretical models and experimental approaches. NMR Biomedicine 2013; 26(8): 963–986. doi: 10.1002/nbm.2839

27. Ulrich X, Yablonskiy DA. Separation of cellular and BOLD contributions to T2* signal relaxation. Magnetic Resonance Medicine 2016; 75(2): 606–615. doi: 10.1002/mrm.25610

28. Yablonskiy DA, Sukstanskii AL, Luo J, Wang X. Voxel spread function method for correction of magnetic field inhomogeneity effects in quantitative gradient-echo-based MRI. Magnetic Resonance Medicine 2013; 70(5): 1283–1292. doi: 10.1002/mrm.24585

29. Horten BC, Urich H, Rubinstein LJ, Montague SR. The angioblastic meningioma: A reappraisal of a nosological problem: Light-, electron-microscopic, tissue, and organ culture observations. Journal of the Neurological Sciences. 1977; 31(3): 387-410.

30. Liu G, Chen ZY, Ma L, et al. Intracranial hemangiopericytoma: MR imaging findings and diagnostic usefulness of minimum ADC values. Journal of Magnetic Resonance Imaging. 2013; 38(5): 1146-1151.

31. Perry A, Brat DJ. Practical surgical neuropathology a diagnostic approach. Churchill Livingstone Elsevier, Philadelphia. 2010; 185-217.

32. Miyake K, Ogawa D, Okada M, et al. Usefulness of positron emission tomographic studies for gliomas. Neurologia Medico-Chirurgica 2016; 56(7): 396–408. doi: 10.2176/nmc.ra.2015-0305

33. Rodgers ZB, Detre JA, Wehrli FW. MRI-based methods for quantification of the cerebral metabolic rate of oxygen. Journal of Cerebral Blood Flow and Metabolism 2016; 36(7): 1165–1185. doi: 10.1177/0271678X16643090

34. Christen T, Bouzat P, Pannetier N, et al. Tissue oxygen saturation mapping with magnetic resonance imaging. Journal of Cerebral Blood Flow and Metabolism 2014; 34(9): 1550–1557. doi: 10.1038/jcbfm.2014.116




DOI: https://doi.org/10.24294/mipt.v6i1.2719

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Arun Raj T., Karthik K., Joseph Suresh Paul

License URL: https://creativecommons.org/licenses/by-nc/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.