Identifying the probability of genetic mutations in lung cancer using predictive and prognostic biomarkers from histopathological images

Lokeswari Y. Venkataramana, D. Venkata Vara Prasad, G. V. N. Akshay Varma, Chitraju Vishnusree

Article ID: 2712
Vol 6, Issue 1, 2023

VIEWS - 156 (Abstract) 87 (PDF)

Abstract


Background: Lung cancer is the highest deadliest disease and second largest disease being diagnosed worldwide. In the age of precision medicine, determining a patient’s genetic status is critical. Finding the percentage of gene mutation of a particular biomarker will help in targeted therapy of a patient at an early stage. Objective: Histopathology images are larger in size which needs to be converted into smaller tiles for the computational purpose. Deep Learning Techniques could be applied on this huge number of histopathological images to derive the probability of gene mutation occurrence in predictive and prognostic biomarkers of lung cancer. Methods: In this work, a deep learning convolutional neural network (CNN) model (InceptionV3) is trained on histopathology images obtained from The Cancer Genome Atlas (TCGA) to accurately predict the mutated genes in lung adenocarcinoma. The convolutional neural network-based model predicts 10 major genetic mutations percentage, i.e., EGFR, FAT1, FAT4, KEAP1, KRAS, LRP1B, NF1, SETBP1, STK11, TP53. Results: InceptionV3 predicted the probability of gene mutation from the histopathology images and categorized the genes as predictive and prognostic. InceptionV3 yielded an accuracy of 82.36% and cross entropy of 37.62%. Conclusion: InceptionV3 was trained on histopathology images to predict gene mutations with an accuracy of 82%. Prediction of gene mutations with different CNN models like AlexNet and ResNet can be explored further.


Keywords


lung cancer; biomarker; deep learning; multi label classification and histopathology images

Full Text:

PDF


References


1. Uludag U, Pankanti S, Prabhakar S, Jain AK. Biometric cryptosystems: Issues and challenges. Proceedings of the IEEE 2004; 92(6): 948–960. doi: 10.1109/jproc.2004.827372

2. Thukral R, Aggarwal AK, Arora AS, et al. Artificial intelligence-based prediction of oral mucositis in patients with head-and-neck cancer: A prospective observational study utilizing a thermographic approach. Cancer Research, Statistics, and Treatment 2023; 6(2): 181–190. doi: 10.4103/crst.crst_332_22

3. Kumar A. Light propagation through biological tissue: Comparison between Monte Carlo simulation and deterministic models. International Journal of Biomedical Engineering and Technology 2009; 2(4): 344. doi: 10.1504/ijbet.2009.027798

4. Aggarwal AK. Rehabilitation of the blind using audio to visual conversion tool. British Journal of Healthcare and Medical Research 2014; 1(4): 24–31. doi: 10.14738/jbemi.14.395

5. Kaur A, Chauhan APS, Aggarwal AK. Machine learning based comparative analysis of methods for enhancer prediction in genomic data. In: Proceedings of the 2019 2nd International Conference on Intelligent Communication and Computational Techniques (ICCT); 28–29 September 2019; Jaipur, India. pp. 142–145.

6. Maini S, Aggarwal AK. Camera position estimation using 2D image dataset. International Journal of Innovations in Engineering and Technology (IJIET) 2018; 10(2): 199–203. doi: 10.21172/ijict.102.29

7. Thukral R, Kumar A, Arora AS. Effects of different radiations of electromagnetic spectrum on human health. In: Proceedings of the 2020 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS); 22–23 February 2020; Bhopal, India. pp. 1–6.

8. Amini M, Hajianfar G, Avval AH, et al. Overall survival prognostic modelling of non-small cell lung cancer patients using positron emission tomography/computed tomography harmonised radiomics features: The quest for the optimal machine learning algorithm. Clinical Oncology 2022; 34(2): 114–127. doi: 10.1016/j.clon.2021.11.014

9. Bhardwaj P, Raipuria G, Bhatt N, Singhal N, Joshi UY, Kondragunta C. A deep learning method for tumour region identification and tumour proportion score estimation of PD-L1 expression in non-small cell lung carcinoma. Journal of Pathology Informatics 2022; 13: 100041. doi: 10.1016/j.jpi.2022.100041.

10. Chang C, Sun X, Wang G, et al. A machine learning model based on PET/CT radiomics and clinical characteristics predicts ALK rearrangement status in lung adenocarcinoma. Frontiers in Oncology 2021; 11: 603882. doi: 10.3389/fonc.2021.603882

11. Chen M, Zhang B, Topatana W, et al. Classification and mutation prediction based on histopathology H&E images in liver cancer using deep learning. NPJ Precision Oncology 2020; 4(1): 14. doi: 10.1038/s41698-020-0120-3.

12. Fu Y, Jung AW, Torne RV, et al. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nature Cancer 2020; 1(8): 800–810. doi: 10.1038/s43018-020-0085-8

13. Gao Y, Zhou R, Lyu Q. Multiomics and machine learning in lung cancer prognosis. Journal of Thoracic Disease 2020; 12(8): 4531–4535. doi: 10.21037/jtd-2019-itm-013

14. Korpanty GJ, Graham DM, Vincent MD, Leighl NB. Biomarkers that currently affect clinical practice in lung cancer: EGFR, ALK, MET, ROS-1, and KRAS. Frontiers in Oncology 2014; 4: 204. doi: 10.3389/fonc.2014.00204

15. Mayer C, Ofek E, Fridrich DE, et al. Direct identification of ALK and ROS1 fusions in non-small cell lung cancer from hematoxylin and eosin-stained slides using deep learning algorithms. Modern Pathology 2022; 35(12): 1882–1887. doi: 10.1038/s41379-022-01141-4

16. Kourou K, Exarchos TP, Exarchos KP, et al. Machine learning applications in cancer prognosis and prediction. Computational and Structural Biotechnology Journal 2015; 13: 8–17. doi: 10.1016/j.csbj.2014.11.005

17. Morgado J, Pereira T, Silva F, et al. Machine learning and feature selection methods for EGFR mutation status prediction in lung cancer. Applied Sciences 2021; 11(7): 3273. doi: 10.3390/app11073273

18. Murchan P, Ó’Brien C, O’Connell S, et al. Deep learning of histopathological features for the prediction of tumour molecular genetics. Diagnostics 2021; 11(8): 1406. doi: 10.3390/diagnostics11081406

19. Ni M, Liu X, Wu J, et al. Identification of candidate biomarkers correlated with the pathogenesis and prognosis of non-small cell lung cancer via integrated bioinformatics analysis. Frontiers in Genetics 2018; 9: 469. doi: 10.3389/fgene.2018.00469

20. Patil SS, Shetty D, Pawar VS. Novel machine learning algorithm for prevalent gene biomarkers for effective cancer treatment by detecting its PH. Computer Science & Information Technology 2021; 11(7): 155–170. doi: 10.5121/csit.2021.110713

21. Roman-Canal B, Moiola CP, Gatius S, et al. EV-associated miRNAs from pleural lavage as potential diagnostic biomarkers in lung cancer. Scientific Reports 2019; 9(1): 1–9. doi: 10.1038/s41598-019-51578-y

22. Santarpia M, Liguori A, D’Aveni A, et al. Liquid biopsy for lung cancer early detection. Journal of Thoracic Disease 2018; 10(S7): S882–S897. doi: 10.21037/jtd.2018.03.81

23. Seijo LM, Peled N, Ajona D, et al. Biomarkers in lung cancer screening: Achievements, promises, and challenges. Journal of Thoracic Oncology 2019; 14(3): 343–357. doi: 10.1016/j.jtho.2018.11.023

24. Shiri I, Amini M, Nazari M, et al. Impact of feature harmonization on radiogenomics analysis: Prediction of EGFR and KRAS mutations from non-small cell lung cancer PET/CT images. Computers in Biology and Medicine 2022; 142: 105230. doi: 10.1016/j.compbiomed.2022.105230

25. Song L, Zhu Z, Mao L, et al. Clinical, conventional CT and radiomic feature-based machine learning models for predicting ALK rearrangement status in lung adenocarcinoma patients. Frontiers in Oncology 2020; 10: 369. doi: 10.3389/fonc.2020.00369

26. Silva F, Pereira T, Morgado J, et al. EGFR assessment in lung cancer CT images: Analysis of local and holistic regions of interest using deep unsupervised transfer learning. IEEE Access 2021; 9: 58667–58676. doi: 10.1109/access.2021.3070701

27. Šutić M, Vukić A, Baranašić J, et al. Diagnostic, predictive, and prognostic biomarkers in non-small cell lung cancer (NSCLC) management. Journal of Personalized Medicine 2021; 11(11): 1102. doi: 10.3390/jpm11111102

28. Terada Y, Takahashi T, Hayakawa T, et al. Artificial intelligence—Powered prediction of alk gene rearrangement in patients with non-small-cell lung cancer. JCO Clinical Cancer Informatics 2022; 6: e2200070. doi: 10.1200/cci.22.00070

29. Tripathi S, Moyer EJ, Augustin AI, et al. RadGenNets: Deep learning-based radiogenomics model for gene mutation prediction in lung cancer. Informatics in Medicine Unlocked 2022; 33: 101062. doi: 10.1016/j.imu.2022.101062

30. Tsou P, Wu CJ. Mapping driver mutations to histopathological subtypes in papillary thyroid carcinoma: Applying a deep convolutional neural network. Journal of Clinical Medicine 2019; 8(10): 1675. doi: 10.3390/jcm8101675

31. Wang C, Xu X, Shao J, et al. Deep learning to predict EGFR mutation and PD-L1 expression status in non-small-cell lung cancer on computed tomography images. Journal of Oncology 2021; 2021: 5499385. doi: 10.1155/2021/5499385

32. Wang P, Huang Q, Meng S, et al. Identification of lung cancer breath biomarkers based on perioperative breathomics testing: A prospective observational study. EClinicalMedicine 2022; 47: 101384. doi: 10.1016/j.eclinm.2022.101384

33. Yang Y, Xu L, Sun L, et al. Machine learning application in personalised lung cancer recurrence and survivability prediction. Computational and Structural Biotechnology Journal 2022; 20: 1811–1820. doi: 10.1016/j.csbj.2022.03.035

34. Yu L, Tao G, Zhu L, et al. Prediction of pathologic stage in non-small cell lung cancer using machine learning algorithm based on CT image feature analysis. BMC Cancer 2019; 19(1): 1–12. doi: 10.1186/s12885-019-5646-9

35. Xie Y, Meng WY, Li RZ, et al. Early lung cancer diagnostic biomarker discovery by machine learning methods. Translational Oncology 2021; 14(1): 100907. doi: 10.1016/j.tranon.2020.100907

36. Histopathology images from TCGA. Available online: https://portal.gdc.cancer.gov/projects/TCGA-LUAD (accessed on 24 March 2023).

37. Gene mutation data from GDC. Available online: https://xenabrowser.net/datapages/ (accessed on 25 March 2023).




DOI: https://doi.org/10.24294/mipt.v6i1.2712

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Lokeswari Y. Venkataramana, D. Venkata Vara Prasad, G. V. N. Akshay Varma, Chitraju Vishnusree

License URL: https://creativecommons.org/licenses/by-nc/4.0/

Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.