Pharmaceutical management of hemorrhagic stroke: Optimizing outcomes following intracranial hemorrhage evacuation
Vol 6, Issue 1, 2023
VIEWS - 344 (Abstract)
Abstract
Stroke can be mainly categorized into hemorrhagic and ischemic stroke. Intracerebral hemorrhage (ICH) is a subtype of hemorrhagic stroke that is caused due to unconstrained bleeding within the parenchyma of the brain. ICH is one of the major conditions that have a high rate of disease and a high rate of death in a given population. Risk factors for ICH emerged to be age, male gender, hypertension, and intake of alcohol in huge quantities. The frequency of ICH is increased where hypertension is mainly untreated. To improve the prognosis and outcomes of an ICH patient, we need to perform emergent evacuation of blood from the brain parenchyma and prevent edema formation while restricting further neuronal damage due to surgical intervention. Evidence-based guidelines exist for ICH and form the basis for a care framework. The pharmaceutical management of ICH from current literature includes an aggressive reduction in blood pressure, tranexamic acid use, and recombinant activated factor VII administration. In addition, advanced imaging, surgical evacuation of ICH, and minimally invasive surgery techniques for hematoma evacuation could provide great benefits to patients with a large ICH.
Keywords
Full Text:
PDFReferences
1. Kazui S, Naritomi H, Yamamoto H, et al. Enlargement of spontaneous intracerebral hemorrhage. Incidence and time course. Stroke 1996; 27(10): 1783–1787. doi: 10.1161/01.str.27.10.1783
2. de Oliveira Manoel AL. Surgery for spontaneous intracerebral hemorrhage. Critical Care 2020; 24(1): 45. doi: 10.1186/s13054-020-2749-2
3. Ariesen MJ, Claus SP, Rinkel GJE, Algra A. Risk factors for intracerebral hemorrhage in the general population: A systematic review. Stroke 2003; 34(8): 2060–2065. doi: 10.1161/01.STR.0000080678.09344.8D
4. Yamada M. Cerebral amyloid angiopathy: Emerging concepts. Journal of Stroke 2015; 17(1): 17–30. doi: 10.5853/jos.2015.17.1.17
5. Morotti A, Goldstein JN. Diagnosis and management of acute intracerebral hemorrhage. Emergency Medicine Clinics of North America 2016; 34(4): 883–899. doi: 10.1016/j.emc.2016.06.010
6. Brainin M. Clinical aspects and diagnosis of cerebral hemorrhage (German). Acta Medical Austriaca 1992; 19(1): 1–13.
7. Hemphill JC, Greenberg SM, Anderson CS, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: A guideline for healthcare professionals from the american heart association/american stroke association. Stroke 2015; 46(7): 2032–2060. doi: 10.1161/STR.0000000000000069
8. Broderick JP, Brott TG, Duldner JE, et al. Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke 1993; 24(7): 987–993. doi: 10.1161/01.str.24.7.987
9. Anderson CS, Heeley E, Huang Y, et al. Rapid blood—Pressure lowering in patients with acute intracerebral hemorrhage. The New England Journal of Medicine 2013; 368(25): 2355–2365. doi: 10.1056/NEJMoa1214609
10. Qureshi AI, Palesch YY, Barsan WG, et al. Intensive blood-pressure lowering in patients with acute cerebral hemorrhage. The New England Journal of Medicine 2016; 375(11): 1033–1043. doi: 10.1056/NEJMoa1603460
11. Sprigg N, Flaherty K, Appleton JP, et al. Tranexamic acid for hyperacute primary intracerebral haemorrhage (TICH-2): An international randomised, placebo-controlled, phase 3 superiority trial. Lancet 2018; 391(10135): 2107–2115. doi: 10.1016/S0140-6736(18)31033-X
12. Mayer SA, Brun NC, Begtrup K, et al. Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. The New England Journal of Medicine 2008; 358(20): 2127–2137. doi: 10.1056/NEJMoa0707534
13. Hannah TC, Kellner R, Kellner CP. Minimally invasive intracerebral hemorrhage evacuation techniques: A review. Diagnostics 2021; 11(3): 576. doi: 10.3390/diagnostics11030576
14. Al-Shahi Salman R, Frantzias J, Lee RJ, et al. Absolute risk and predictors of the growth of acute spontaneous intracerebral haemorrhage: A systematic review and meta-analysis of individual patient data. The Lancet Neurology 2018; 17(10): 885–894. doi: 10.1016/S1474-4422(18)30253-9
15. Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet 2009; 373(9675): 1632–1644. doi: 10.1016/S0140-6736(09)60371-8
16. Qureshi AI, Palesch YY, Martin R, et al. Interpretation and implementation of intensive blood pressure reduction in acute cerebral hemorrhage trial (INTERACT II). Journal of Vascular and Interventional Neurology 2014; 7(2): 34–40.
17. Anderson CS, Qureshi AI. Implications of INTERACT2 and other clinical trials: Blood pressure management in acute intracerebral hemorrhage. Stroke 2015; 46(1): 291–295. doi: 10.1161/STROKEAHA.114.006321
18. Bath PMW, Lees KR, Schellinger PD, et al. Statistical analysis of the primary outcome in acute stroke trials. Stroke 2012; 43(4): 1171–1178. doi: 10.1161/STROKEAHA.111.641456
19. Howard G, Waller JL, Voeks JH, et al. A simple, assumption-free, and clinically interpretable approach for analysis of modified Rankin outcomes. Stroke 2012; 43(3): 664–669. doi: 10.1161/STROKEAHA.111.632935
20. Zhang Y, Reilly KH, Tong W, et al. Blood pressure and clinical outcome among patients with acute stroke in Inner Mongolia, China. Journal of Hypertension 2008; 26(7): 1446–1452. doi: 10.1097/HJH.0b013e328300a24a
21. Okumura K, Ohya Y, Maehara A, et al. Effects of blood pressure levels on case fatality after acute stroke. Journal of Hypertension 2005; 23(6): 1217–1223. doi: 10.1097/01.hjh.0000170385.76826.4a
22. Vemmos KN, Tsivgoulis G, Spengos K, et al. U-shaped relationship between mortality and admission blood pressure in patients with acute stroke. Journal of Internal Medicine 2004; 255(2): 257–265. doi: 10.1046/j.1365-2796.2003.01291.x
23. Fogelholm R, Avikainen S, Murros K. Prognostic value and determinants of first-day mean arterial pressure in spontaneous supratentorial intracerebral hemorrhage. Stroke 1997; 28(7): 1396–1400. doi: 10.1161/01.str.28.7.1396
24. Ohwaki K, Yano E, Nagashima H, et al. Blood pressure management in acute intracerebral hemorrhage: Relationship between elevated blood pressure and hematoma enlargement. Stroke 2004; 35(6): 1364–1367. doi: 10.1161/01.STR.0000128795.38283.4b
25. Wang X, Ma L, Song J, You C. Tranexamic acid for adult patients with spontaneous intracerebral hemorrhage: A systematic review with meta-analysis. CNS Drugs 2021; 35(11): 1163–1172. doi: 10.1007/s40263-021-00865-2
26. Brott T, Broderick J, Kothari R, et al. Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke 1997; 28(1): 1–5. doi: 10.1161/01.str.28.1.1
27. Dowlatshahi D, Demchuk AM, Flaherty ML, et al. Defining hematoma expansion in intracerebral hemorrhage: Relationship with patient outcomes. Neurology 2011; 76(14): 1238–1244. doi: 10.1212/WNL.0b013e3182143317
28. Mayer SA. Recombinant activated factor VII for acute intracerebral hemorrhage. Stroke 2007; 38(2 Suppl): 763–767. doi: 10.1161/01.STR.0000254499.46122.22
29. Mayer SA, Brun NC, Begtrup K, et al. Recombinant activated factor VII for acute intracerebral hemorrhage. The New England Journal of Medicine 2005; 352(8): 777–785. doi: 10.1056/NEJMoa042991
30. Feng L, Liang N, Li T, et al. Efficacy and safety of edaravone for acute intracerebral haemorrhage: Protocol for a systematic review and meta-analysis. BMJ Open 2020; 10(8): e039366. doi: 10.1136/bmjopen-2020-039366
31. Liu H, Uno M, Kitazato KT, et al. Peripheral oxidative biomarkers constitute a valuable indicator of the severity of oxidative brain damage in acute cerebral infarction. Brain Research 2004; 1025(1–2): 43–50. doi: 10.1016/j.brainres.2004.07.071
32. Abe K, Yuki S, Kogure K. Strong attenuation of ischemic and postischemic brain edema in rats by a novel free radical scavenger. Stroke 1988; 19(4): 480–485. doi: 10.1161/01.str.19.4.480
33. Watanabe T, Yuki S, Egawa M, Nishi H. Protective effects of MCI-186 on cerebral ischemia: Possible involvement of free radical scavenging and antioxidant actions. Journal of Pharmacology and Experimental Therapeutics March 1994; 268(3): 1597–1604.
34. Mizuno A, Umemura K, Nakashima M. Inhibitory effect of MCI-186, a free radical scavenger, on cerebral ischemia following rat middle cerebral artery occlusion. General Pharmacology: The Vascular System 1998; 30(4): 575–578. doi: 10.1016/s0306-3623(97)00311-X
35. Uno M, Kitazato KT, Suzue A, et al. Inhibition of brain damage by edaravone, a free radical scavenger, can be monitored by plasma biomarkers that detect oxidative and astrocyte damage in patients with acute cerebral infarction. Free Radical Biology and Medicine 2005; 39(8): 1109–1116. doi: 10.1016/j.freeradbiomed.2005.06.001
36. Edaravone Acute Infarction Study Group. Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction. Randomized, placebo-controlled, double-blind study at multicenters. Cerebrovascular Diseases 2003; 15(3): 222–229. doi: 10.1159/000069318
37. Shinohara Y, Yanagihara T, Abe K, et al. II. Cerebral infarction/transient ischemic attack (TIA). Journal of Stroke and Cerebrovascular Diseases 2011; 20(4 Suppl): S31–S73. doi: 10.1016/j.jstrokecerebrovasdis.2011.05.004
38. Nakamura T, Kuroda Y, Yamashita S, et al. Edaravone attenuates brain edema and neurologic deficits in a rat model of acute intracerebral hemorrhage. Stroke 2008; 39(2): 463–469. doi: 10.1161/STROKEAHA.107.486654
39. Shang H, Cui D, Yang D, et al. The radical scavenger edaravone improves neurologic function and perihematomal glucose metabolism after acute intracerebral hemorrhage. Journal of Stroke and Cerebrovascular Diseases 2015; 24(1): 215–222. doi: 10.1016/j.jstrokecerebrovasdis.2014.08.021
40. Zhang Y, Yang Y, Zhang GZ, et al. Stereotactic administration of edaravone ameliorates collagenase-induced intracerebral hemorrhage in rat. CNS Neuroscience & Therapeutics 2016; 22(10): 824–835. doi: 10.1111/cns.12584
41. Yoshida H, Yanai H, Namiki Y, et al. Neuroprotective effects of edaravone: A novel free radical scavenger in cerebrovascular injury. CNS Drug Reviews 2006; 12(1): 9–20. doi: 10.1111/j.1527-3458.2006.00009.x
42. Cao Y, Yu S, Zhang Q, et al. Chinese stroke association guidelines for clinical management of cerebrovascular disorders: Executive summary and 2019 update of clinical management of intracerebral haemorrhage. Stroke and Vascular Neurology 2020; 5(4): 396–402. doi: 10.1136/svn-2020-000433
43. Yang J, Liu M, Zhou J, et al. Edaravone for acute intracerebral haemorrhage. The Cochrane Database Systematic Reviews 2011; (2): CD007755. doi: 10.1002/14651858.CD007755
44. Yang J, Cui X, Li J, et al. Edaravone for acute stroke: Meta-analyses of data from randomized controlled trials. Developmental Neurorehabilitation 2015; 18(5): 330–335. doi: 10.3109/17518423.2013.830153
45. Lyden PD, Shuaib A, Lees KR, et al. Safety and tolerability of NXY-059 for acute intracerebral hemorrhage: The CHANT trial. Stroke 2007; 38(8): 2262–2269. doi: 10.1161/STROKEAHA.106.472746
46. Han R, Wan J, Han X, et al. 20-HETE participates in intracerebral hemorrhage-induced acute injury by promoting cell ferroptosis. Frontiers in Neurology 2021; 12: 763419. doi: 10.3389/fneur.2021.763419
47. Mendelow AD, Gregson BA, Rowan EN, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): A randomised trial. Lancet 2013; 382(9890): 397–408. doi: 10.1016/S0140-6736(13)60986-1
48. Mendelow AD, Gregson BA, Fernandes HM, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): A randomised trial. Lancet 2005; 365(9457): 387–397. doi: 10.1016/S0140-6736(05)17826-X
49. Hersh EH, Gologorsky Y, Chartrain AG, et al. Minimally invasive surgery for intracerebral hemorrhage. Current Neurology and Neuroscience Reports 2018; 18(6): 34. doi: 10.1007/s11910-018-0836-4
50. Wang WZ, Jiang B, Liu HM, et al. Minimally invasive craniopuncture therapy vs. conservative treatment for spontaneous intracerebral hemorrhage: Results from a randomized clinical trial in China. International Journal of Stroke 2009; 4(1): 11–16. doi: 10.1111/j.1747-4949.2009.00239.x
51. Pan J, Chartrain AG, Scaggiante J, et al. A compendium of modern minimally invasive intracerebral hemorrhage evacuation techniques. Operative Neurosurgery 2020; 18(6): 710–720. doi: 10.1093/ons/opz308
52. Sun H, Liu H, Li D, et al. An effective treatment for cerebral hemorrhage: Minimally invasive craniopuncture combined with urokinase infusion therapy. Neurological Research 2010; 32(4): 371–377. doi: 10.1179/016164110X12670144526147
53. Hanley DF, Thompson RE, Rosenblum M, et al. Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): A randomised, controlled, open-label, blinded endpoint phase 3 trial. Lancet 2019; 393(10175): 1021–1032. doi: 10.1016/S0140-6736(19)30195-3
54. Morgan T, Zuccarello M, Narayan R, et al. Preliminary findings of the minimally-invasive surgery plus rtPA for intracerebral hemorrhage evacuation (MISTIE) clinical trial. In: Steiger HJ (editor). Acta Neurochirurgica Supplement. Springer-Verlag Wien; 2008. Volume 105. pp. 147–151.
55. Hanley DF, Thompson RE, Muschelli J, et al. Safety and efficacy of minimally invasive surgery plus alteplase in intracerebral haemorrhage evacuation (MISTIE): A randomised, controlled, open-label, phase 2 trial. The Lancet Neurology 2016; 15(12): 1228–1237. doi: 10.1016/S1474-4422(16)30234-4
56. Al-Shahi Salman R, Klijn CJM, Selim M. Minimally invasive surgery plus alteplase for intracerebral haemorrhage. Lancet 2019; 393(10175): 965–967. doi: 10.1016/S0140-6736(19)30309-5
57. Bauer AM, Rasmussen PA, Bain MD. Initial single-center technical experience with the BrainPath system for acute intracerebral hemorrhage evacuation. Operative Neurosurgery (Hagerstown) 2017; 13(1): 69–76. doi: 10.1227/NEU.0000000000001258
58. Przybylowski CJ, Ding D, Starke RM, et al. Endoport-assisted surgery for the management of spontaneous intracerebral hemorrhage. Journal of Clinical Neuroscience 2015; 22(11): 1727–1732. doi: 10.1016/j.jocn.2015.05.015
59. Labib MA, Shah M, Kassam AB, et al. The Safety and feasibility of image-guided BrainPath-Mediated Transsulcul hematoma evacuation: A multicenter study. Neurosurgery 2017; 80(4): 515–524. doi: 10.1227/NEU.0000000000001316
60. Nagasaka T, Tsugeno M, Ikeda H, et al. Early recovery and better evacuation rate in neuroendoscopic surgery for spontaneous intracerebral hemorrhage using a multifunctional cannula: preliminary study in comparison with craniotomy. Journal of Stroke and Cerebrovascular Diseases 2011; 20(3): 208–213. doi: 10.1016/j.jstrokecerebrovasdis.2009.11.021
61. Auer LM, Deinsberger W, Niederkorn K, et al. Endoscopic surgery versus medical treatment for spontaneous intracerebral hematoma: A randomized study. Journal of Neurosurgery 1989; 70(4): 530–535. doi: 10.3171/jns.1989.70.4.0530
62. Xu X, Chen X, Li F, et al. Effectiveness of endoscopic surgery for supratentorial hypertensive intracerebral hemorrhage: A comparison with craniotomy. Journal of Neurosurgery 2018; 128(2): 553–559. doi: 10.3171/2016.10.JNS161589
63. Wang WH, Hung YC, Hsu SP, et al. Endoscopic hematoma evacuation in patients with spontaneous supratentorial intracerebral hemorrhage. Journal of the Chinese Medical Association 2015; 78(2): 101–107. doi: 10.1016/j.jcma.2014.08.013
64. Cai Q, Zhang H, Zhao D, et al. Analysis of three surgical treatments for spontaneous supratentorial intracerebral hemorrhage. Medicine 2017; 96(43): e8435. doi: 10.1097/MD.0000000000008435
65. Li Y, Yang R, Li Z, et al. Surgical evacuation of spontaneous supratentorial lobar intracerebral hemorrhage: Comparison of safety and efficacy of stereotactic aspiration, endoscopic surgery, and craniotomy. World Neurosurgery 2017; 105: 332–340. doi: 10.1016/j.wneu.2017.05.134
66. Liang B, Zhang Y, Nguyen AV, et al. Surgical evacuation of intracerebral hemorrhage using DTT-guided parafascicular Brain Path/Myriad technique. Brain Hemorrhages 2022; 3(3): 120–123. doi: 10.1016/j.hest.2021.06.002
67. Sacco S, Marini C, Toni D, et al. Incidence and 10-year survival of intracerebral hemorrhage in a population-based registry. Stroke 2009; 40(2): 394–399. doi: 10.1161/STROKEAHA.108.523209
68. Babi MA, James ML. Spontaneous intracerebral hemorrhage: Should we operate? Frontiers Neurology 2017; 8: 645. doi: 10.3389/fneur.2017.00645
69. Flaherty ML, Beck J. Surgery for intracerebral hemorrhage: moving forward or making circles? Stroke 2013; 44(10): 2953–2954. doi: 10.1161/STROKEAHA.113.002533
70. Chohan SA, Venkatesh PK, How CH. Long-term complications of stroke and secondary prevention: An overview for primary care physicians. Singapore Medical Journal 2019; 60(12): 616–620. doi: 10.11622/smedj.2019158
71. Winters C, van Wegen EE, Daffertshofer A, Kwakkel G. Generalizability of the proportional recovery model for the upper extremity after an ischemic stroke. Neurorehabilitation and Neural Repair 2015; 29(7): 614–622. doi: 10.1177/1545968314562115
72. Ada L, O’Dwyer N, O’Neill E. Relation between spasticity, weakness and contracture of the elbow flexors and upper limb activity after stroke: An observational study. Disability Rehabilitation 2006; 28(13–14): 891–897. doi: 10.1080/09638280500535165
73. Pandyan AD, Cameron M, Powell J, et al. Contractures in the post-stroke wrist: A pilot study of its time course of development and its association with upper limb recovery. Clinical Rehabilitation 2003; 17(1): 88–95. doi: 10.1191/0269215503cr587oa
74. Malhotra S, Pandyan AD, Rosewilliam S, et al. Spasticity and contractures at the wrist after stroke: Time course of development and their association with functional recovery of the upper limb. Clinical Rehabilitation 2011; 25(2): 184–191. doi: 10.1177/0269215510381620
75. Pandyan AD, Gregoric M, Barnes MP, et al. Spasticity: Clinical perceptions, neurological realities and meaningful measurement. Disability and Rehabilitation 2005; 27(1–2): 2–6. doi: 10.1080/09638280400014576
76. Malhotra S, Cousins E, Ward A, et al. An investigation into the agreement between clinical, biomechanical and neurophysiological measures of spasticity. Clinical Rehabilitation 2008; 22(12): 1105–1115. doi: 10.1177/0269215508095089
77. Lannin NA, Cusick A, McCluskey A, Herbert RD. Effects of splinting on wrist contracture after stroke: A randomized controlled trial. Stroke 2007; 38(1): 111–116. doi: 10.1161/01.STR.0000251722.77088.12
78. Kwah LK, Harvey LA, Diong JH, Herbert RD. Half of the adults who present to hospital with stroke develop at least one contracture within six months: An observational study. Journal of Physiotherapy 2012; 58(1): 41–47. doi: 10.1016/S1836-9553(12)70071-1
79. Opheim A, Danielsson A, Alt Murphy M, et al. Upper-limb spasticity during the first year after stroke: Stroke arm longitudinal study at the University of Gothenburg. American Journal of Physical Medicine & Rehabilitation 2014; 93(10): 884–896. doi: 10.1097/PHM.0000000000000157
80. Lundström E, Terént A, Borg J. Prevalence of disabling spasticity 1 year after first-ever stroke. European Journal of Neurology 2008; 15(6): 533–539. doi: 10.1111/j.1468-1331.2008.02114.x
81. Sommerfeld DK, Eek EU, Svensson AK, et al. Spasticity after stroke: Its occurrence and association with motor impairments and activity limitations. Stroke 2004; 35(1): 134–139. doi: 10.1161/01.STR.0000105386.05173.5E
82. Urban PP, Wolf T, Uebele M, et al. Occurence and clinical predictors of spasticity after ischemic stroke. Stroke 2010; 41(9): 2016–2020. doi: 10.1161/STROKEAHA.110.581991
83. Welmer AK, von Arbin M, Widén Holmqvist L, Sommerfeld DK. Spasticity and its association with functioning and health-related quality of life 18 months after stroke. Cerebrovascular Diseases 2006; 21(4): 247–253. doi: 10.1159/000091222
84. Nadler M, Pauls M. Shoulder orthoses for the prevention and reduction of hemiplegic shoulder pain and subluxation: Systematic review. Clinical Rehabilitation 2017; 31(4): 444–453. doi: 10.1177/0269215516648753
85. Faghri PD, Rodgers MM, Glaser RM, et al. The effects of functional electrical stimulation on shoulder subluxation, arm function recovery, and shoulder pain in hemiplegic stroke patients. Archives of Physical Medicine and Rehabilitation 1994; 75(1): 73–79. doi: 10.1016/0003-9993(94)90341-7
86. Malhotra S, Rosewilliam S, Hermens H, et al. A randomized controlled trial of surface neuromuscular electrical stimulation applied early after acute stroke: Effects on wrist pain, spasticity and contractures. Clinical Rehabilitation 2013; 27(7): 579–590. doi: 10.1177/0269215512464502
87. de Paiva A, Meunier FA, Molgó J, et al. Functional repair of motor endplates after botulinum neurotoxin type A poisoning: Biphasic switch of synaptic activity between nerve sprouts and their parent terminals. Proceedings of the National Academy of Sciences 1999; 96(6): 3200–3205. doi: 10.1073/pnas.96.6.3200
88. Robba C, Bonatti G, Battaglini D, et al. Mechanical ventilation in patients with acute ischaemic stroke: From pathophysiology to clinical practice. Critical Care 2019; 23(1): 388. doi: 10.1186/s13054-019-2662-8
89. Bösel J. Use and timing of tracheostomy after severe stroke. Stroke 2017; 48(9): 2638–2643. doi: 10.1161/STROKEAHA.117.017794
90. Pelosi P, Ferguson ND, Frutos-Vivar F, et al. Management and outcome of mechanically ventilated neurologic patients. Critical Care Medicine 2011; 39(6): 1482–1492. doi: 10.1097/CCM.0b013e31821209a8
91. Samary CS, Ramos AB, Maia LA, et al. Focal ischemic stroke leads to lung injury and reduces alveolar macrophage phagocytic capability in rats. Critical Care 2018; 22(1): 249. doi: 10.1186/s13054-018-2164-0
92. Smith CJ, Bray BD, Hoffman A, et al. Can a novel clinical risk score improve pneumonia prediction in acute stroke care? A UK multicenter cohort study. Journal of the American Heart Association 2015; 4(1): e001307. doi: 10.1161/JAHA.114.001307
93. Hannawi Y, Hannawi B, Rao CPV, et al. Stroke-associated pneumonia: Major advances and obstacles. Cerebrovascular Diseases 2013; 35(5): 430–443. doi: 10.1159/000350199
94. Powers WJ, Rabinstein AA, Ackerson T, et al. 2018 Guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the american heart association/american stroke association. Stroke 2018; 49(3): e46–e110. doi: 10.1161/STR.0000000000000158
95. Godet T, Chabanne R, Marin J, et al. Extubation failure in brain-injured patients: risk factors and development of a prediction score in a preliminary prospective cohort study. Anesthesiology January 2017; 126(1): 104–114. doi: 10.1097/ALN.0000000000001379
96. Kutchak FM, Debesaitys AM, de Mello Rieder M, et al. Reflex cough PEF as a predictor of successful extubation in neurological patients. Jornal Brasileiro de Pneumologia 2015; 41(4): 358–364. doi: 10.1590/S1806-37132015000004453
97. Wang S, Zhang L, Huang K, et al. Predictors of extubation failure in neurocritical patients identified by a systematic review and meta-analysis. PLoS One 2014; 9(12): e112198. doi: 10.1371/journal.pone.0112198
98. Wendell LC, Raser J, Kasner S, Park S. Predictors of extubation success in patients with middle cerebral artery acute ischemic stroke. Stroke Research and Treatment 2011; 2011: 248789. doi: 10.4061/2011/248789
99. Asehnoune K, Seguin P, Lasocki S, et al. Extubation success prediction in a multicentric cohort of patients with severe brain injury. Anesthesiology 2017; 127(2): 338–346. doi: 10.1097/ALN.0000000000001725
100. McCredie VA, Ferguson ND, Pinto RL, et al. Airway management strategies for brain-injured patients meeting standard criteria to consider extubation. A prospective cohort study. Annals of the American Thoracic Society 2017; 14(1): 85–93. doi: 10.1513/AnnalsATS.201608-620OC
DOI: https://doi.org/10.24294/mipt.v6i1.2276
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Siddharth Shah, Brandon Lucke-Wold
License URL: https://creativecommons.org/licenses/by-nc/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.