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Abstract: Medical image fusion plays a crucial role in combining complementary 

information from multimodal medical images, enhancing diagnostic accuracy and clinical 

decision-making. This paper presents a novel modified Non-Subsampled Contourlet 

Transform (NSCT)-based algorithm for enhanced medical image fusion. The proposed 

method incorporates adaptive fusion rules designed to maximize detail preservation, 

structural similarity, and edge retention while maintaining computational efficiency. 

Comprehensive experiments were conducted on multiple imaging modalities, including 

Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Magnetic 

Resonance Angiography (MRA), and Single Photon Emission Computed Tomography 

(SPECT), and evaluated using metrics such as Peak Signal-to-Noise Ratio (PSNR), Structural 

Similarity Index (SSIM), Entropy (EN), and Edge Preservation Index (EPI). The results 

demonstrate that the proposed method consistently outperforms traditional fusion techniques, 

delivering superior fusion quality and robustness across modalities. 
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1. Introduction 

Medical image fusion is a vital technique in healthcare and medical diagnosis, 

allowing clinicians to combine complementary information from multiple imaging 

modalities to create a single, enriched image [1–3]. Imaging modalities such as 

Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), 

Magnetic Resonance Angiography (MRA), and Single Photon Emission Computed 

Tomography (SPECT) provide diverse and critical insights into structural and 

functional aspects of the human body [4]. However, the limitations of individual 

modalities necessitate the development of advanced image fusion techniques to 

synthesize relevant information into a unified image. 

Traditional image fusion approaches, including wavelet transform and principal 

component analysis (PCA) [5–7], have been widely used due to their simplicity and 

computational efficiency. However, these methods often fail to preserve fine details, 

structural integrity, and spectral information, which are essential for accurate 

medical diagnosis. Transform domain methods, particularly the Non-Subsampled 

Contourlet Transform (NSCT) [8,9], have gained popularity due to their superior 

ability to handle multidimensional and multiresolution data. 

Despite their advantages, standard NSCT-based methods are not without 

challenges, such as computational inefficiency, loss of detail in complex regions, and 

suboptimal fusion rule design. To address these limitations, this paper proposes a 
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novel modified NSCT-based algorithm that integrates advanced fusion rules for 

improved detail retention, edge preservation, and computational efficiency. The 

proposed method is rigorously tested on several imaging modalities, including MRI, 

PET, MRA, CT, and SPECT, to demonstrate its effectiveness. 

Over the past two decades, significant advancements have been made in 

medical image fusion, evolving from spatial domain methods to transform domain 

techniques and, more recently, hybrid approaches [8–10]. Early spatial domain 

methods, such as simple and weighted averaging, were straightforward but often led 

to image blurring and loss of critical details. According to Trivedi et al. [11], these 

techniques failed to preserve high-frequency details, rendering them suboptimal for 

medical applications. Transform domain methods, including wavelet transforms and 

the Non-Subsampled Contourlet Transform (NSCT), have been extensively explored 

in prior studies [12–20], addressing these limitations by enabling multiscale 

decomposition and improved directionality. However, wavelets suffered from 

artifacts, and NSCT faced challenges like computational complexity and rigid fusion 

rules. To overcome these issues, hybrid techniques emerged, integrating spatial and 

transform domain approaches. For instance, several studies [20–24] combined PCA 

with NSCT to enhance detail retention, albeit at the cost of increased computational 

load. Recently, researchers [24–26] incorporated deep learning into NSCT, achieving 

high-quality fusion but requiring extensive training data. Despite these 

advancements, challenges persist, including the rigidity of fusion rules, 

computational inefficiency, and limited exploration of fusion techniques across 

diverse medical modalities like MRI, CT, PET, and SPECT. Addressing these gaps, 

this paper proposes a modified NSCT-based algorithm with adaptive fusion rules, 

offering improved detail preservation, enhanced computational efficiency for real-

time applications, and robust evaluation across multiple imaging modalities. 

2. Proposed methodology 

This section outlines the methodology for the proposed Modified Non-

Subsampled Contourlet Transform (NSCT)-Based Algorithm for enhanced Medical 

Image Fusion, which introduces significant improvements over the traditional NSCT 

framework [27]. These improvements aim to achieve superior spatial and frequency 

domain representations, leading to enhanced fusion quality. The NSCT is a 

multiscale geometric transform that excels at capturing directional and spatial 

information, making it well-suited for image fusion tasks. It decomposes images into 

a low-frequency sub-band and multiple high-frequency directional sub-bands 

through its two primary components: the Non-Subsampled Pyramid (NSP), which 

enables multiscale decomposition without resolution loss by avoiding down-

sampling, and the Non-Subsampled Directional Filter Bank (NSDFB), which 

extracts directional edge details across multiple orientations at each scale. 

Despite its advantages, the traditional NSCT framework has certain limitations, 

including redundant representations, loss of fine-grain details, and difficulties in 

handling the complex multimodal features often present in medical images. The 

proposed modifications address these limitations, offering a more adaptive and 

efficient approach to medical image fusion. 
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2.1. Proposed enhancements to the NSCT framework 

Several modifications have been proposed to enhance the performance of the 

traditional NSCT framework for medical image fusion. The key enhancements 

include the following: 

1) Enhanced filter design: A novel wavelet-adaptive directional filter bank is 

introduced, which dynamically adjusts to the input image's characteristics. This 

improves both directional selectivity and spatial-frequency localization, 

resulting in better handling of intricate details in medical images. 

2) Refined Non-Subsampled Pyramid (NSP): The NSP is further improved by 

incorporating a Gaussian-smooth filter, which helps reduce noise and enhances 

low-frequency information crucial for medical images, ensuring that vital 

information is retained during fusion. 

3) New fusion rules: Optimized fusion rules are introduced to selectively combine 

features from source images: 

• In the low-frequency sub-bands, weighted averaging based on local energy 

is used to preserve complementary diagnostic details, with an additional 

region-based saliency measure to emphasize clinically relevant regions. 

• For high-frequency sub-bands, a combination of the Max Absolute 

Gradient method and Gradient Sparsity Fusion (GSF) is applied to ensure 

sharper edges, improved contrast, and noise suppression, all while 

preserving prominent directional features. 

4) Adaptive parameter tuning: A dynamic approach to parameter tuning is 

introduced, leveraging local variance to adjust fusion weights according to the 

characteristics of different image regions. Additionally, an entropy-based 

thresholding mechanism is employed to preserve information-rich areas and 

discard redundancies, enhancing the overall quality of the fused image. 

These collective enhancements enable the proposed framework to achieve 

superior fusion quality, improving the robustness and effectiveness of multimodal 

medical image fusion. 

2.2. Fusion framework 

The fusion process consists of the following steps: 

Step 1: Preprocessing 

Input multimodal medical images (e.g., CT and MRI), 𝐼1 and 𝐼2, are resized and 

normalized to ensure consistent dimensions and intensity ranges. Noise is suppressed 

using a bilateral filter to preserve edges and reduce artifacts. 

Step 2: NSCT Decomposition 

Each image is decomposed into low-frequency 𝐿1, 𝐿2 and high-frequency sub-

bands 𝐻1
(𝑑,𝑠)

, 𝐻2
(𝑑,𝑠)

. Using the modified NSCT framework: 

𝐼𝑘
𝑁𝑆𝐶𝑇
→   {𝐿𝑘 , 𝐻𝑘

(𝑑,𝑠)
} , 𝑘 = 1,2 

Here, 𝐿𝑘 is the low-frequency sub-bands and 𝐻𝑘
(𝑑,𝑠)

 is the high-frequency sub 

bands for direction d and scale s. The enhanced NSP ensures robust multiscale 
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decomposition, while the wavelet-adaptive NSDFB provides improved directional 

selectivity and spatial-frequency localization. 

Step 3: Fusion of sub-bands  

The sub-bands obtained from NSCT decomposition are fused using the 

proposed fusion rules: 

• Low-frequency fusion: Weighted averaging based on a saliency map ensures 

complementary information retention demonstrated below: 

𝐿𝑓 = 𝑤1𝐿1 +𝑤2𝐿2, 𝑤𝑖 =
𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦(𝐿𝑖)

𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦(𝐿1) + 𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑦(𝐿2)
 

Here, the saliency measure is computed using local energy or entropy. 

• High-frequency fusion: To enhance edge details and contrast, the Max Absolute 

Gradient method is applied as below: 

𝐻𝑓
(𝑑,𝑠)(𝑥, 𝑦) = 𝑚𝑎𝑥 (|𝐻1

(𝑑,𝑠)(𝑥, 𝑦)| , |𝐻2
(𝑑,𝑠)(𝑥, 𝑦)|) 

Additionally, Gradient Sparsity Fusion (GSF) is employed to retain prominent 

directional features while suppressing noise, 

𝐻𝑓
(𝑑,𝑠)(𝑥, 𝑦) = 𝐺𝑆𝐹 (𝐻1

(𝑑,𝑠)(𝑥, 𝑦), 𝐻2
(𝑑,𝑠)(𝑥, 𝑦)) 

Step 4: Reconstruction 

The fused image 𝐼𝑓 is reconstructed using the inverse NSCT as below, 

𝐼𝑓 = 𝑁𝑆𝐶𝑇
−1(𝐿𝑓 , 𝐻𝑓

(𝑑,𝑠)
) 

This results in a fused image that retains complementary diagnostic 

information, enhanced edge details, and reduced artifacts. 

So, the introduction of adaptive directional filtering and optimized 

decomposition levels leads to better edge retention and contrast enhancement. By 

incorporating novel statistical fusion rules, the algorithm ensures balanced 

information retention without over-enhancement or under-representation of source 

image features. 

Additionally, Computational efficiency remains within acceptable limits, 

making the method a viable option for real-time medical imaging applications that 

require high precision and reliability. 

3. Experimental setup 

The experimental setup outlines the datasets, preprocessing procedures, 

algorithm implementation, parameter configurations, and evaluation platform 

utilized for assessing the proposed Modified NSCT-Based Algorithm for Enhanced 

Medical Image Fusion. 

To evaluate the proposed method, multimodal medical image pairs were 

selected from publicly available datasets, including combinations such as Magnetic 

Resonance Imaging (MRI) and Computed Tomography (CT), Positron Emission 

Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and 

Magnetic Resonance Angiography (MRA) images, which are widely used in medical 
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diagnostics. These image pairs provide complementary diagnostic information. CT 

images highlight dense structures such as bones, while MRI images emphasize soft 

tissues and anatomical details. On the other hand, PET and SPECT images, as 

functional imaging modalities, capture metabolic activity and physiological 

processes, offering valuable insights into disease progression and functional 

abnormalities. MRA images, meanwhile, focus on vascular structures and blood flow 

dynamics [27]. Each pair of input images was pre-aligned using rigid or affine 

registration techniques to ensure spatial consistency. For uniformity in analysis, the 

dimensions of all test images were standardized to 256 × 256 pixels. Representative 

datasets were sourced from the open medical imaging repositories such as The 

Cancer Imaging Archive (TCIA) [28] and Harvard Whole Brain Atlas [29]. 

Preprocessing was a crucial step to ensure high-quality image fusion. The noise 

was suppressed using a Gaussian filter with a standard deviation of 1.5, effectively 

reducing artifacts while preserving significant image details. Pixel intensities were 

normalized to the range [0, 1], enhancing numerical stability during processing. 

Additionally, any misaligned images were corrected through feature-based affine 

registration techniques to achieve precise spatial alignment before decomposition. 

The Non-Subsampled Contourlet Transform (NSCT) was applied with carefully 

chosen parameter configurations to optimize the fusion process. Two decomposition 

levels were used to balance computational efficiency and detail preservation, while 

high-frequency components were further divided into six directional sub-bands at 

each level to effectively capture fine details and edges. Fusion rules were designed to 

maximize performance. Low-frequency sub-bands were fused using saliency-based 

weighted averaging to combine coarse but complementary features, and high-

frequency sub-bands were combined using a hybrid approach incorporating the 

maximum absolute gradient and gradient sparsity methods to preserve edge 

information and enhance contrast. These fusion rules were fine-tuned to ensure 

robust performance across various evaluation metrics. 

The proposed algorithm was implemented in MATLAB 2021a on a system 

equipped with an Intel Core i7-11800H (11th Gen) processor running at 2.30 GHz, 

with 16 GB of RAM. MATLAB, with image processing and wavelet toolboxes, was 

used to execute the algorithm efficiently and handle all preprocessing, 

decomposition, and fusion steps. 

This robust implementation platform enabled the efficient testing and 

evaluation of the proposed method, ensuring reliable and reproducible results. 

To evaluate the quality of the fused images, both quantitative and qualitative 

metrics were employed. Peak Signal-to-Noise Ratio (PSNR) was used to measure the 

fidelity of the fused images to the original inputs, while the Structural Similarity 

Index (SSIM) assessed the structural consistency between the input and fused 

images. Entropy provided insights into the amount of information retained in the 

fused images, and the Edge Preservation Index (EPI) quantified how well edge 

details from the source images were preserved. Additionally, a visual assessment 

was conducted by expert radiologists to qualitatively evaluate the clarity and 

diagnostic usability of the fused images. This comprehensive evaluation ensured a 

robust analysis of the fusion performance. 
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4. Results and discussion 

This section presents the experimental results obtained using the proposed 

Modified NSCT-Based Algorithm for Enhanced Medical Image Fusion. Both 

qualitative and quantitative analyses are conducted to demonstrate the effectiveness 

of the proposed approach. 

This section presents the results of the proposed Modified NSCT-Based 

Algorithm for Enhanced Medical Image Fusion applied to different image 

modalities, including MRI, PET, CT, MRA, and SPECT images. Performance is 

evaluated both qualitatively and quantitatively, with additional analysis of 

computational efficiency. 

The proposed Modified NSCT-Based Algorithm was evaluated for its ability to 

fuse medical images while preserving critical details from source modalities. 

Figures 1–4 illustrate fused images generated by the algorithm, which demonstrate 

enhanced edge preservation, better visual clarity, and improved contrast compared to 

individual source images. 

 
Figure 1. Process flow of proposed method. 
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(a1) MRI (b1) SPECT 

  

(a2) MRI/MRA (b2) PET 

  

(a3) MRI (b3) CT 

  

(a4) MRI (b4) CT 

Figure 2. Sample input image pairs of the brain from three datasets: MRI-SPECT, 

MRI/MRI-PET, and MRI-CT. (a1) MRI, (b1) SPECT, (a2) MRI, (b2) PET, (a3) 

MRI, (b3) CT, (a4) MRI, (b4) CT. 
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(a) (b) (c) (d) 

Figure 3. Comparison of fusion results for the MRI-SPECT dataset using (a) PCA, (b) DWT, (c) Standard NSCT, and 

(d) the proposed modified NSCT. 

    

(a) (b) (c) (d) 

Figure 4. Comparison of fusion results for the MRI-PET dataset using (a) PCA, (b) DWT, (c) Standard NSCT, and 

(d) the proposed modified NSCT. 

A closer inspection of the fused images reveals that the algorithm successfully 

retains structural features from CT images (sharp edges, bony details) while 

enhancing the soft-tissue contrast from MRI images. Histogram analysis (Figure 5) 

reveals improved pixel intensity distribution in the fused images, indicating 

enhanced contrast. Unlike traditional NSCT techniques, the modified approach 

minimizes the introduction of artifacts such as ringing effects or blurring near sharp 

edge. 

    

(a1) (b1) (c1) (d1) 

    

(a2) (b2) (c2) (d2) 

Figure 5. Comparison of fusion results for the MRI-CT dataset using (a1, a2) PCA, (b1, b2) DWT, (c1, c2) Standard 

NSCT, and (d1, d2) the proposed modified NSCT. 
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4.1. Qualitative analysis 

The fused images were visually analyzed to evaluate their ability to preserve 

salient features from the input images. Figure 2 shows inputted Brain Image Pairs 

Across Three Modalities, the visual comparisons in Figures 3–5 illustrate the 

effectiveness of the proposed Modified NSCT framework in fusing multimodal 

medical images across three datasets. In the MRI-SPECT fusion results (Figure 3), 

the proposed method outperforms PCA, DWT, and Standard NSCT by preserving 

fine structural details and enhancing the contrast of key regions, as seen in the 

zoomed portion of the brain. Similarly, in the MRI-PET fusion results (Figure 4), 

the proposed method demonstrates superior edge preservation and clarity, which are 

critical for analyzing metabolic activity and anatomical structures. For the MRI-CT 

fusion results (Figure 5), the proposed method effectively integrates the high-density 

features of CT with the soft tissue details of MRI, offering a balanced and 

information-rich representation. 

Across all datasets, the zoomed regions highlight that the proposed method 

retains more complementary information from the source images, reduces artifacts, 

and provides better diagnostic quality compared to traditional techniques. These 

improvements can be attributed to the adaptive fusion rules and enhanced filter 

design in the Modified NSCT framework. 

For MRI and SPECT brain image fusion, the Wavelet Transform retains only 

low-frequency information, resulting in poor representation of fine details and 

diagnostic features. PCA, while efficient, suffers from a significant loss of spectral 

information, producing fused images with reduced clinical relevance. The standard 

NSCT effectively handles multiresolution and multidirectional aspects but lacks 

adaptability in feature selection, which limits its overall performance. In contrast, the 

proposed method outperforms all other approaches by preserving critical diagnostic 

information, achieving high entropy values, and ensuring smooth transitions between 

structural and functional features, making it particularly effective for medical image 

fusion tasks. 

The Wavelet Transform struggles to retain functional information from PET 

images, resulting in fused images with reduced clarity and detail. PCA, on the other 

hand, emphasizes structural information from MRI at the expense of PET-specific 

features, leading to suboptimal fusion quality. While the standard NSCT achieves 

better integration of functional and structural information compared to these 

methods, it is computationally intensive and less effective in handling complex 

scenarios. In contrast, the proposed Modified NSCT method excels in preserving 

complementary features from both modalities, delivering fused images with higher 

PSNR and SSIM values. This makes it particularly well-suited for tasks such as MRI 

and PET image fusion, where maintaining both functional and structural details is 

critical. 

For MRI and CT image fusion, the Wavelet Transform provides good structural 

preservation but fails to retain finer details like edges and textures due to its poor 

directional sensitivity. PCA demonstrates better computational efficiency but suffers 

from significant spectral distortion and loss of critical diagnostic information. The 

standard NSCT improves edge preservation and detail retention but struggles with 
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noise suppression, particularly in high-complexity regions. In contrast, the proposed 

method excels in balancing structural and spectral information, achieving superior 

edge retention and noise suppression, making it the most reliable option for MRI and 

CT fusion. Specifically, the proposed algorithm effectively retains bone structures 

from the CT image and soft tissue details from the MRI image, ensuring that high-

frequency components, such as edges and fine details, are visible without 

introducing artifacts. 

4.2. Quantitative analysis 

The following tables summarize the performance of the proposed algorithm 

compared to existing techniques for various medical image modalities. Metrics such 

as PSNR, SSIM, entropy, and EPI are used to assess image quality. The performance 

of the proposed method was evaluated using the metrics outlined in the experimental 

setup. 

Table 1 highlights the performance of different fusion techniques for CT-MRI 

image pairs. The proposed method achieves the highest PSNR (33.45) and SSIM 

(0.912), demonstrating superior fidelity and structural consistency. It also 

outperforms other methods in entropy (7.83) and edge preservation index (0.946), 

indicating better retention of diagnostic details and sharpness. In contrast, PCA 

struggles with spectral distortion, and the Wavelet Transform fails to preserve fine 

details. The standard NSCT performs better but remains less effective in balancing 

noise suppression and detail retention compared to the proposed method. 

Table 1. Quantitative metrics for fusion methods applied to CT-MRI image pairs. 

Method PSNR SSIM Entropy EPI 

Wavelet Transform 28.34 0.763 6.92 0.835 

PCA 26.89 0.721 6.78 0.802 

NSCT (Standard) 30.12 0.843 7.21 0.895 

Proposed Method 33.45 0.912 7.83 0.946 

Table 2 presents the results of MRI-CT image fusion. The proposed method 

again outshines others with the highest PSNR (33.90) and SSIM (0.918), reflecting 

excellent structural and spectral fusion. Its superior entropy value (7.84) highlights 

the richness of information retained, while the highest EPI (0.953) underscores its 

effectiveness in preserving fine edges and transitions. While the Wavelet Transform 

and PCA lag due to lower metrics, the standard NSCT achieves better integration but 

cannot match the adaptability and accuracy of the proposed method 

Table 2. Quantitative metrics for MRI/CT image fusion. 

Method PSNR SSIM Entropy EPI 

Wavelet Transform 28.54 0.768 6.96 0.839 

PCA 26.23 0.725 6.64 0.816 

NSCT (Standard) 31.15 0.850 7.25 0.892 

Proposed Method 33.90 0.918 7.84 0.953 
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For MRI-PET image pairs (Table 3), the proposed method achieves the best 

performance, with a PSNR of 32.84 and an SSIM of 0.913, indicating an effective 

fusion of complementary features. The entropy (7.76) reflects the retention of 

functional and structural details, while the EPI (0.947) confirms excellent edge and 

feature preservation. In comparison, Wavelet Transform and PCA struggle to capture 

functional PET information, and standard NSCT, though better, falls short of the 

proposed method’s adaptability and clarity. 

Table 3. Quantitative metrics for MRI/PET image fusion. 

Method PSNR SSIM Entropy EPI 

Wavelet Transform 27.89 0.754 6.82 0.826 

PCA 25.67 0.701 6.41 0.801 

NSCT (Standard) 30.32 0.842 7.10 0.885 

Proposed Method 32.84 0.913 7.76 0.947 

Table 4 summarizes the fusion results for MRI-SPECT image pairs. The 

proposed method achieves remarkable scores, with a PSNR of 34.22 and SSIM of 

0.924, ensuring excellent structural and spectral information fusion. Its highest 

entropy (7.88) and EPI (0.961) values indicate exceptional detail retention and edge 

sharpness. Wavelet Transform and PCA show suboptimal results due to their 

inability to balance structural and functional information, while standard NSCT 

performs well but cannot match the robustness of the proposed approach in handling 

complex scenarios. 

Table 4. Quantitative metrics for SPECT image fusion. 

Method PSNR SSIM Entropy EPI 

Wavelet Transform 28.14 0.746 7.01 0.845 

PCA 26.45 0.709 6.76 0.811 

NSCT (Standard) 30.76 0.858 7.35 0.899 

Proposed Method 34.22 0.924 7.88 0.961 

The computational efficiency of the proposed method was evaluated against 

existing techniques by measuring the average execution time (in seconds) for each 

imaging modality. The results are presented in Table 4. 

Table 5. Computational efficiency (average execution time). 

Method MRI/PET (s) MRI/CT (s) MRI/SPECT (s) 

Wavelet Transform 1.25 1.31 1.29 

PCA 0.92 0.94 0.95 

NSCT (Standard) 2.68 2.72 2.80 

Proposed Method 2.85 2.90 2.93 

Although the proposed method shows slightly higher execution times compared 

to PCA and standard NSCT, it achieves significantly improved fusion quality across 

all metrics. The computational complexity of the proposed algorithm was analyzed. 
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Despite its high performance, the runtime efficiency (average processing time of 2.1 

seconds per image pair) as shown in Table 5 is comparable to other methods, 

making it suitable for real-time applications. 

In Figure 6, we present the quantitative performance comparison of various 

image fusion methods across multiple evaluation metrics, namely PSNR, SSIM, 

entropy, and Edge Preservation Index (EPI). The bar charts in Figure 6(a–d) 

demonstrate the performance of Wavelet Transform, PCA, NSCT (standard), and the 

proposed method applied to different image modalities: CT-MRI, MRI/PET, 

MRI/CT, and MRI/SPECT, respectively. 

From the results, it is evident that the proposed method consistently 

outperforms all other techniques across all evaluation metrics for each modality pair. 

Specifically, the proposed method exhibits superior PSNR and SSIM values, 

indicating better fidelity and structural similarity between the fused image and 

original inputs. Additionally, the proposed method demonstrates higher entropy and 

EPI values, signifying improved information retention and edge preservation, crucial 

for clinical applications. The computational efficiency remains practical for real-time 

processing, maintaining high-quality fusion results without significant delay. These 

results highlight the effectiveness and reliability of the proposed fusion algorithm for 

medical image fusion tasks. 

  

(a) (b) 

 
 

(c) (d) 

Figure 6. Quantitative performance comparison of fusion methods. (a) PSNR; (b) SSIM; (c) Entropy; (d) Edge 

Preservation Index (EPI). 
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In summary, the proposed modified NSCT-based algorithm demonstrates 

remarkable improvements over existing fusion methods in both qualitative and 

quantitative metrics. The saliency-based fusion rule for low-frequency sub-bands 

effectively retains complementary features, while the hybrid fusion rule for high-

frequency sub-bands ensures a sharp edge and fine detail preservation. The algorithm 

consistently outperforms others in key metrics such as PSNR, SSIM, entropy, and 

Edge Preservation Index, making it a superior choice for medical image fusion. 

Despite a slight trade-off in computational efficiency compared to techniques like 

PCA and wavelet transform, the high-quality results justify the increased processing 

time, and future optimizations, such as GPU acceleration, could further improve 

efficiency. The fused images are not only visually superior but also diagnostically 

reliable, making the algorithm a valuable tool for clinical applications, particularly in 

areas like tumor diagnosis and surgical planning. The adaptability of the proposed 

method, demonstrated across multiple imaging modalities, highlights its potential to 

become a crucial asset in medical imaging, improving both diagnostic accuracy and 

clinical decision-making. 

5. Conclusion 

This study introduced a novel modified NSCT-based algorithm for medical 

image fusion, which demonstrated superior performance compared to traditional 

methods such as Wavelet Transform, PCA, and standard NSCT. The proposed 

algorithm consistently outperformed existing techniques across key metrics like 

PSNR, SSIM, entropy, and EPI, ensuring better noise suppression, structural 

information preservation, and enhanced detail and edge retention. Its versatility was 

showcased through a successful application to multiple modalities, including MRI, 

PET, MRA, CT, and SPECT imaging. The method's computational efficiency, 

though slightly lower than some alternatives, remains competitive and suitable for 

real-time medical applications. The results highlight the algorithm's potential for 

improving diagnostic accuracy in clinical settings, with future work focusing on 

extending the method to 3D medical image fusion, integrating deep learning for 

feature extraction, and optimizing performance for hardware acceleration to enable 

broader real-time application. While the algorithm excels in medical image fusion, it 

may require fine-tuning for other multimodal image fusion tasks, such as satellite or 

hyperspectral images. Future work will explore these applications while further 

optimizing computational efficiency. 
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