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ABSTRACT 

This paper presents the state of displacement of a multilayered composite laminate subjected to transverse static load 

with varying balance, symmetric and anti-symmetric angle-ply and cross-ply staking sequences. Higher-order shear 

deformation theory (HSDT) is considered in the finite element formulation of nine-noded isoparametric element with 

seven degrees of freedom at each node. The finite element formulation is transformed into computer codes. A convergence 

study is carried out first to obtain the optimal mesh size for minimizing the computational time. The maximum deflection 

at the center of plate for both fixed and simply supported edges is verified with reported literature and a good conformity 

is found. An attempt has been made to observe the minimum value of maximum deflection in the laminate for attaining 

the maximum strength of laminate with a suitable combination of stacking sequences with a constant volume of material. 
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1. Introduction
Composites are superior to the conventional metal materials

because of their high stiffness and strength-to-weight ratios, long 
durability, resistance to corrosion, and other important properties. Fibre 
reinforced composite materials are widely used in aerospace, 
automobile, nuclear, marine, biomedical and civil engineering. The use 
of composite materials in designing the structures provides significant 
decrease in structural weight, increase in payload, and increase in range, 
speed and durability. In the last few decades, the composite plates were 
investigated by different researchers. Reddy[1] developed a higher-order 
shear deformation theory of laminated composite plates. Exact closed 
form of solutions for symmetric cross-ply laminates was presented and 
the results were compared with three-dimensional elasticity and first-
order shear deformation theory solutions. Pandya and Kant[2] presented 
the higher-order finite element formulation of thick composite plates 
for flexure under transverse loads. The discrete element chosen was a 
nine noded quadrilateral with nine degrees-of-freedom at each node. 
Results for plate deformations and stresses were compared with the 
closed-form and the theory of elasticity solutions by using another 
higher-order displacement model[3]. Pal and Ray[4] and Pal and 
Bhattacharyya[5] used an eight-noded isoparametric element to model 
the progressive failure analysis of angle-ply and cross-ply laminated 
composite plates under transverse static load. Pal and Bhar[6] studied 
the displacement of symmetric and anti-symmetric angle-ply and cross-
ply laminated composite plates during its ultimate failure, subjected to 
transverse static load. Authors studied the free vibration analyses of 
isotropic and laminated composite plates to ensure the overall validity 
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of the finite element codes. Singh et al.[7], Singh and Pal[8] and Gorai and Pal[9,10] evaluated the deflection and 
natural frequencies of stiffened and unstiffened isotropic and orthotropic plates with varying geometries, 
laminae properties and orientations of stiffener. Ahmed et al.[11] studied the static and dynamic analysis of 
composite laminated plate. The behavior of laminated composite plates under transverse loading was analyzed 
using FEM. The aforementioned literature contains little information from the viewpoint of the displacement 
components of laminated plate. However, it appears that the state of displacement of the laminate with varying 
properties of composite laminae is merely illustrated so far with the importance it deserves. 

The aim of the study is to determine the deflection of a composite laminate considering HSDT for both 
fixed (CCCC) and simply supported (SSSS) edges. The minimum value of maximum deflection of laminate is 
investigated for various stacking sequences, fibre orientations and the number of layers. A computer code is 
developed using FORTRAN for this purpose. The code is verified by solving the problems and finally, some 
interesting results are presented through a parametric study. 

2. Governing equations of the plate 
Finite element formulation for nine noded isoparametric element is well-known in literature[2,3,12]. The 

HSDT plate theory is well-known and may be found elsewhere[1,12,13]. The displacement components in the 
plate with respect to global coordinate system (x-y-z) are assumed as 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢଴(𝑥, 𝑦) + 𝑧𝜃௫(𝑥, 𝑦) + 𝑧ଷ𝜃௫
∗(𝑥, 𝑦)

𝑣(𝑥, 𝑦, 𝑧) = 𝑣଴(𝑥, 𝑦) + 𝑧𝜃௬(𝑥, 𝑦) + 𝑧ଷ𝜃௬
∗(𝑥, 𝑦)

𝑤(𝑥, 𝑦, 𝑧) = 𝑤଴(𝑥, 𝑦)                                               

ቑ (1)

where u, v and w are the displacements in x, y and z directions, respectively at any point. 𝑢଴, 𝑣଴  are the 

membrane displacements and 𝑤଴ is the transverse displacement of the mid-plane. The parameters 𝜃௫  and 

𝜃௬ are the rotations of the transverse normal cross-section in the y-z and x-z planes, respectively. The 

parameters 𝜃௫
∗ and 𝜃௬

∗ are the corresponding higher-order terms. For plane stress conditions, the constitutive 

equation of a kth orthotropic layer in local coordinate system is yielded as 
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where the material constants are given by 

𝑄ଵଵ =
ாభ

ଵିఓభమఓమభ
, 𝑄ଵଶ =

ఓభమாమ

ଵିఓభమఓమభ
, 𝑄ଶଶ =

ாమ

ଵିఓభమఓమభ
, 𝑄଺଺ = 𝐺ଵଶ, 𝑄ସସ = 𝐺ଶଷ, 𝑄ହହ = 𝐺ଵଷ (3)

where 𝐸ଵ, 𝐸ଶ are the Young modulus in the 1 and 2 directions, respectively, and 𝐺ଵଶ, 𝐺ଵଷ, 𝐺ଶଷare the shear 

modulus in the 1-2, 1-3, 2-3 planes, respectively, and 𝜇௜௝ are the Poisson’s ratios. The laminated plate is usually 

made of several layers, where the stress-strain relationship for the orthotropic lamina with varying fiber 
orientations maps to the reference as 

⎩
⎪
⎨

⎪
⎧

𝜎௫

𝜎௬

𝜏௫௬

𝜏௬௭

𝜏௫௭ ⎭
⎪
⎬

⎪
⎫

௞

=

⎣
⎢
⎢
⎢
⎢
⎡𝑄ଵଵ 𝑄ଵଶ 𝑄ଵ଺ 0 0

𝑄ଶଵ 𝑄ଶଶ 𝑄ଶ଺ 0 0

𝑄଺ଵ 𝑄଺ଶ 𝑄଺଺ 0 0

0 0 0 𝑄ସସ 𝑄ସହ

0 0 0 𝑄ହସ 𝑄ହହ⎦
⎥
⎥
⎥
⎥
⎤

௞

⎩
⎪
⎨

⎪
⎧

𝜀௫

𝜀௬

𝛾௫௬

𝛾௬௭

𝛾௫௭ ⎭
⎪
⎬

⎪
⎫

௞

 (4)



 

3 

where 𝑄పఫ
തതതത are transformed material constants of the kth lamina[14]. The element stiffness matrix is yielded as 

[𝐾௘] = න න [𝐵]்[𝐷][𝐵]|𝐽|𝑑𝜉𝑑𝜂
ଵ

ିଵ

ଵ

ିଵ

 (5)

where [𝐵] is the strain-displacement matrix obtained by solving the Equation (1), after differentiating the shape 
functions of nine-noded isoparametric element for the strain components expressed in Equation (2). The 
Jacobian and the rigidity matrices are given below. 
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[𝐷] = ൥
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where 
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3. Results and discussion 

3.1. Convergence study and validation 

This problem is studied to select the optimal mesh division required to achieve a minimum error in the 
calculated displacement of an isotropic plate subjected to a uniformly distributed load of 1.0 kN/m2. A square 
plate of size 1.0 m × 1.0 m and thickness of 0.01 m is considered. The material properties of plate considered 

are: modulus of elasticity, E = 2.2 × 105 MPa, Poisson’s ratio, 𝜇 = 0.3 and mass density, 𝜌 = 7850 kg/m3. Both 
eight and nine noded isoparametric elements with seven degrees of freedom per node are considered to 
determine the maximum deflection of plate for different boundary conditions and the results are illustrated in 
Figure 1. Keeping the computational time in mind, it is observed that the results tend to converge at 8 × 8 
mesh for 8-noded elements and at 5 × 5 mesh for 9-noded elements for both the edges. It is clearly seen that 
the results for 9 noded elements converge at lower mesh size for both the edges. Thus, the parametric study is 
carried out for 9 noded isoparametric elements with 5 × 5 mesh size for both the edges to minimize the 
computational time. 

Further, the same plate is considered with different edges by applying a point load of 1 kN at centre. To 
validate the present developed computer codes, the maximum deflection is observed and compared in Table 
1. The results are verified with the results calculated from the mathematical expressions given by Timoshenko 
and Woinowsky-Krieger[15] and are found to be ok. 
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Figure 1. Maximum deflection of isotropic plate. 

Table 1. Comparison of results for maximum displacement (mm). 

S. No Edge conditions Type of load Present result Timoshenko and 
Woinowsky-Krieger [15] 

Variation (%) 

1 CCCC Distributed load 0.0692 0.0688 0.58 

2 CCCC Point load 0.3075 0.3058 0.55 

3 SSSS Distributed load 0.2219 0.2271 2.28 

4 SSSS Point load 0.6342 0.6334 0.13 

3.2. Parametric study 

At the next natural step, an orthotropic plate subjected to transverse loading with varying balance, 
symmetric and anti-symmetric angle-ply and cross-ply laminated plate with different edges is studied. The 
material used for composite laminate is epoxy-carbon, which is available in ANSYS 15.0 workbench. The 
geometric and material properties of laminate are presented in Table 2. The thickness of plate is fixed as 10 
mm to maintain a constant volume of material in the laminate. 

Table 2. Properties of orthotropic plate. 

Material properties Geometric properties 

Modulus of elasticity, E1 = 1.21 × 105 MPa 
Modulus of elasticity, E2 = 8600 MPa 
Poisson’s ratio, μ12 = μ13 = 0.27 
Poisson’s ratio, μ23 = 0.4 
Shear modulus, G12 = G13 = 4700 MPa 
Shear modulus, G23 = 3100 MPa 
Mass density, 𝜌 = 1490 kg/m3 

[1] Size: Length = 1000 mm, Width = 1000 mm & Thickness = 10 mm 
[2] Staking sequence (𝜃 =15°, 30°, 45°, 60°, 75° & 90°):  
(i) (𝜃/−𝜃); balance ply 
(ii) (𝜃/𝜃); angle ply 
(iii) (0°/90°);  cross ply 
[3] Number of layers = 2, 4, 6, 8 & 10 

3.2.1. Balance and symmetric ply laminate 

The balance and symmetric angle-ply and cross-ply laminated plate subjected to uniformly distributed 
load of 1.0 kN/m2 is studied for both the edges. The numbers of layers in the laminate are varied from 2 to 10 
in which the volume of laminate is maintained to be constant by altering the thickness of laminae. The fibre 

orientations with a gradual variation of 𝜃 are taken as 15°, 30°, 45°, 60° and 90°. The maximum deflection of 
the laminate is evaluated and the results are plotted in figures. Figure 2 illustrates the deflection for balance 
angle-ply laminate with simple supported edges. Figure 3 illustrates the deflection for symmetric angle-ply 
and cross-ply laminate with simple supported edges. It is found that the deflection of laminate decreases with 
the increase in numbers of layers, as expected. The minimum value of displacement is obtained at 10-ply 
laminate and for 45° fibre orientations. Figure 4 illustrates the deflection for balance angle-ply laminate with 
clamped edges. The minimum value of displacement is obtained at 10 ply laminate and for 15° fibre 



 

5 

orientations. Figure 5 illustrates the deflection for symmetric angle-ply and cross-ply laminate with clamped 
edges. Whereas the minimum value of displacement is obtained at 4-ply laminate and for 15° fibre orientations, 
which is very surprising. The pattern of displacement view for SSSS laminate is found to be concave type and 
for CCCC laminate is convex type. 

 
Figure 2. Maximum deflection in balanced angle ply laminates (SSSS). 

 
Figure 3. Maximum deflection in symmetric angle ply and cross ply laminates (SSSS). 

 
Figure 4. Maximum deflection in balanced angle ply laminates (CCCC). 
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Figure 5. Maximum deflection in symmetric angle ply and cross ply laminates (CCCC). 

3.2.2. Unbalance and anti-symmetric ply laminate 

As the natural step forward, next to balance and symmetric fibre orientations, the unbalance and anti-
symmetric angle-ply and cross-ply laminated plate is studied now. The maximum deflection of the laminate is 
obtained for the similar conditions as mentioned above and the obtained results are plotted in figures. Figure 
6 illustrates the deflection for unbalance angle-ply laminate with simple supported edges. Figure 7 illustrates 
the deflection for anti-symmetric angle-ply and cross-ply laminate with simple supported edges. The minimum 
value of displacement is obtained at 10-ply laminate and for 45° fibre orientations. Figure 8 illustrates the 
deflection for unbalance angle-ply laminate with clamped edges. Figure 9 illustrates the deflection for anti-
symmetric angle-ply and cross-ply laminate with clamped edges. The minimum value of displacement is 
obtained at 10-ply laminate and for 15° fibre orientations. The similar pattern of displacement view is found 
in this case. 

 
Figure 6. Maximum deflection in unbalanced angle ply laminates (SSSS). 

 
Figure 7. Maximum deflection in anti-symmetric angle ply and cross ply laminates (SSSS). 
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Figure 8. Maximum deflection in unbalanced angle ply laminates (CCCC). 

 
Figure 9. Maximum deflection in anti-symmetric angle ply and cross ply laminates (CCCC). 

3.2.3. Displacement view 

When all the results are pooled together from Figures 2–9, the minimal displacement value can be 
interpreted. Figure 10 shows the minimum value of maximum deflection of multilayered laminate for simple 
supported edges. As expected, the minimum value of displacement is obtained at 10-ply SSSS laminate for 
unbalance angle-ply fibre orientations. Figure 11 shows the minimum value of maximum deflection of 
multilayered laminate for clamped edges. However, the minimum value of displacement is obtained for 4-ply 
CCCC laminate for symmetric angle-ply fibre orientations. 

 
Figure 10. Minimum value of maximum displacement of laminates (SSSS). 
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Figure 11. Minimum value of maximum displacement of laminates (CCCC). 

4. Conclusions 
The aim of the investigation is to find out the maximum strength of a laminate with va suitable 

combinations of staking sequences, fibre orientations and number of layers. In general, the laminate gives 
small deflection has more strength. In view of the above, the following conclusions can be drawn from the 
results obtained.  

 In case of symmetric and antisymmetric angle-ply fibre orientations, the minimum value of 
displacement is obtained at 45° fibre orientation for simple supported edges laminate. If the number 
of ply increases the displacement value decreases. 

 The minimum value of displacement is obtained at 15° or 75° fibre orientation for clamped edges 

laminate. 

 In case of symmetric and anti-symmetric angle-ply laminate, the symmetric ply laminate gives more 
strength. However, the similar observation is found in the cross-ply laminate. 

 In case of simple supported edges laminate, the maximum strength is obtained for unbalance angly-
ply laminate. Whereas in clamped edges laminate, the maximum strength is obtained for symmetric 
angly-ply laminate. 

 Angle-ply laminate shows the minimum value of displacement when compared to cross-ply laminate. 

 Four layers symmetric cross-ply laminate gives higher strength than the more numbers of layers 
when all the edges of laminate are clamped. 

 These usuful results may enable the engineer to select the fibre orientations and numbers of layers 
in the laminate productively. 
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