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Abstract: Water pollution has become a serious threat to our ecosystem. Water contamination 

due to human, commercial, and industrial activities has negatively affected the whole world. 

Owing to the global demanding challenges of water pollution treatments and achieving 

sustainability, membrane technology has gained increasing research attention. Although 

numerous membrane materials have focused, the sustainable water purification membranes are 

most effective for environmental needs. In this regard sustainable, green, and recyclable 

polymeric and nanocomposite membranes have been developed. Materials fulfilling 

sustainable environmental demands usually include wide-ranging polyesters, polyamides, 

polysulfones, and recyclable/biodegradable petroleum polymers plus non-toxic solvents. 

Consequently, water purification membranes for nanofiltration, microfiltration, reverse 

osmosis, ultrafiltration, and related filtration processes have been designed. Sustainable 

polymer membranes for water purification have been manufactured using facile techniques. 

The resulting membranes have been tested for desalination, dye removal, ion separation, and 

antibacterial processes for wastewater. Environmental sustainability studies have also pointed 

towards desired life cycle assessment results for these water purification membranes. 

Recycling of water treatment membranes have been performed by three major processes 

mechanical recycling, chemical recycling, or thermal recycling. Moreover, use of sustainable 

membranes has caused positive environmental impacts for safe waste water treatment. 

Importantly, worth of sustainable water purification membranes has been analyzed for the 

environmentally friendly water purification applications. There is vast scope of developing and 

investigating water purification membranes using countless sustainable polymers, materials, 

and nanomaterials. Hence, value of sustainable membranes has been analyzed to meet the 

global demands and challenges to attain future clean water and ecosystem. 
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1. Introduction 

For the purification of globally produced wastewater, membrane technology has 

been found most effective not only for treating the desired pollutants but also for large-

scale processing [1]. However, previously synthesized and used water permeation 

membranes have low sustainability due to the non-green materials used. The entire 

life cycle assessment results also revealed the low sustainability of commercially used 

water-treating membranes [2]. The design of sustainable membranes obviously 

depends upon the use of green and recyclable raw materials like green polymers and 

biodegradable petroleum-derived polymers and non-hazardous solvents. Using 

sustainable materials based membranes can easily reduce the disposal burdens at the 

life cycle end as well as the expected environmental risks of non-degradable materials 
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[3]. Therefore, there is need of replacing the traditional commercial materials by using 

sustainable recyclable materials and green solvents for the membrane fabrication [4–

6]. The recyclability studies of water purification polymeric membranes through 

mechanical, chemical, or thermal processes have pointed ways to future sustainable 

environmental materials [7]. 

Briefly, this review critically assesses recent developments towards the 

sustainability of membrane technology including nanofiltration, reverse osmosis, 

ultrafiltration, and other techniques. The use of degradable materials (polymers, 

solvents, chemicals) may lead to the transformations of the advanced membrane 

industry according to circular economy concept and safe ecosystem. 

2. Sustainable water purification membranes 

Membrane technology has played important part globally in efficient waste water 

management through superior separation efficiency consuming less energy [8–10]. 

This technology has further employed the microfiltration, nanofiltration, ultrafiltration, 

and reverse osmosis membrane processes for efficient water cleaning. Different 

membrane materials have been pragmatic so far to develop the water purification 

membranes [11–13]. Table 1 exhibits examples of few membrane designs and 

specifications involved in the water treatment modules. Recent membrane technology 

has moved towards the green separation approaches due to the environment friendly 

and sustainability demands [14–16]. To enhance the membrane separation 

performances, modification routes have been preferred in this field [17,18]. At the end 

of membrane service, life cycle management techniques have been cast-off. In 

addition to the use of sustainable polymers, non-toxic solvents must be adopted for 

membrane processing [19–21]. 

Table 1. Design and specifications of few water purification membranes. 

Polymeric material Diameter/Size Voltage requirement Physical properties Membrane flow rate Reference 

Polyethylene terephthalate 

with graphene nanoparticles 
- - 

Percolation threshold 0.2 

Scm−1 

Air gap ~3 cm; pressure 

25 psi 
[22] 

Polyamide with graphene 
nanoparticles 

76–338 nm 8–10 kV 

113% increased Young’s 

modulus and 250% rise in 
fracture toughness 

0.05 mL h−1 [23] 

Aramid with carbon 
nanoparticles 

~8 nm - 
Ultimate tensile stress increase 
by 700% 

2–6 mL h−1 [24] 

Poly(ε-caprolactone) with 
graphene 

100–130 nm  12 kV 304% increased tensile strength 1 mL h−1 [25] 

Poly(ε-caprolactone) with 
nanoparticles 

121–154 nm 15–17 kV Young’s modulus 3771 MPa 0.8–1 mL h−1 [26] 

Polyesters have been identified as sustainable green materials for membranes 

[27–29]. Polyethylene membranes especially recycled membranes from petroleum 

products have advantages of antifouling, chemical. and chlorine resistance. These 

membranes have high separation ability towards water pollutants, organic wastes, salts, 

etc. Ma et al. [30] performed life cycle assessment of polyesters. These polymeric 

membranes had facile processing and sustainability opportunities. Park et al. [31] 

developed nanofiltration polyester membranes for desalination and dye removal. The 
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polyester membrane design and salt or dye removal towards water purification is given 

in Figure 1. The physicochemical features of polyester membranes and salt or dye 

rejection efficiencies for polluted water have been assessed. 

 

Figure 1. Polyester membrane for water purification by desalination and dye 

removal [31]. Reproduced with permission from Elsevier. 

Donnakatte Neelalochana et al. [32] produced sustainable polyethylene 

terephthalate based anion exchange membranes. These water purification membranes 

have alkaline stability and ionic conductivity of about 432 h (1 M KOH) and 5.3 × 

10−2 S·cm−1, respectively. The membrane degradation pathways and mechanisms have 

been investigated in the alkaline conditions. Fan et al. [33] designed the polyester 

membrane with superior physicochemical properties for drinking water purification. 

High-performance membranes have fine chlorine resistance and antifouling 

performance. 

Polypropylene based sustainable water purification membranes [34–36]. 

Particularly such membranes have been industrialised for oil-water separations. 

However, these membranes have high prices, low efficiency, and limited 

environmental pollutant removal for industrial oil-water separations [37–39]. Yuan et 

al. [40] fabricated the membranes based on polypropylene wood pulp fiber composite 

nonwoven fabric for kerosine-water separations. Figure 2 shows gravity-driven oil-

water separation system, oil-water separation device, and gravity-driven oil-water 

separation vs. time. Kerosine oil was stained with oil red. Oil-water mixture was 

gradually poured in the designed separation device. Upon passing through 

polypropylene membrane, oil-water separation may efficiently occur which can be 

visualized in photographs. Scanning electron microscopy images of polypropylene-

wood pulp fiber composite nonwoven membrane are given in Figure 3. The 

micrographs of the wood pulp fiber side and polypropylene fibres side of the 

polypropylene wood pulp fiber composite nonwoven fabric samples were scanned. 

The diameter of polypropylene fibres was observed at 10 μm, which was much lesser 

than that of the wood pulp fiber (35 μm). In these composites, oil-water separation was 

observed in the range of 50%–75%. Figure 4 depicts a simple design used for 

polypropylene membranes for oil-water separation. 

The oil-water contact interface was found to be affected by the polypropylene-

wood pulp fiber nonwoven membrane was found depending upon the nature and 

diameter of fibers used in the composites. The membranes revealed high efficiency 

towards oily wastewater purification. 

Polysulfone-based sustainable membranes have been found effective for waste 

water treatment [41–43]. Huang et al. [44] designed the thin film nanocomposite 

membrane using polysulfone with cellulose nanocrystals and piperazine through 
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interfacial polymerization technique (Figure 5). These membranes have sufficient 

hydrophilic surfaces with optimum water permeation flux pf about 10 L·m7−2·h−1. 

High salt rejection was observed in the range of 96%–99% for MgSO4, Na2SO4, and 

related salts. Thus, the nanocomposite membranes have been active water desalination 

and refinement effects. 

 

Figure 2. (a) schematic of the gravity-driven oil-water separation; (b) lab made oil-

water separation device; (c) gravity-driven oil-water separation experiments as a 
function of time. In the experiment, kerosene was stained with Oil Red O, whereas 

water was stained blue with industrial water-based pigment [40]. Reproduced with 

permission from ACS. 

 

Figure 3. (a) scanning electron microscopy (SEM) image of the wood pulp fibres 

side of polypropylene-wood pulp fiber composite nonwoven fabric (PWNF); (b) 

SEM image of the polypropylene fibres side of PWNF. The green arrow indicates 
the intertwined structure; (c) SEM image of a single ribbon of a wood pulp fibre; (d) 

SEM image of a single cylindrical polypropylene fibre [40]. Reproduced with 

permission from ACS. 
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Figure 4. Polypropylene membrane for oil water separation [40]. Reproduced with 

permission from ACS. 

 

Figure 5. Sustainable thin film polysulfone (PSf) nanocomposite membranes with 

cellulose nanocrystals (CNC) and piperazine (PIP) [44]. Reproduced with permission 

from ACS. 

Polyamide matrices have been employed for sustainable water purification 

membranes [45–47]. Polyamide membranes have been explored for durability, facile 

processing, superior water flux, and salt rejection as well as pollutant removal 

characteristics. Zhao et al. [48] fabricated the polyamide-derived water purification 

membranes using tannic acid functional carbon nanotube and silver nanoparticles. The 

interfacial polymerization method was used for the fabrication of reverse osmosis 

membranes (Figure 6). In these membranes, hydrogen binding and π-π stacking 

interactions were perceived between the matrix nanofiller. The polyamide 

nanocomposite membranes have high water permeability of about 5 L m−2 h−1 bar−1 

and NaCl salt rejection of 50%–99%. These membranes have fine antibacterial effects 

due to silver nanoparticles and also the bio-fouling effects. 

 

Figure 6. Schematic of tannic acid functionalized carbon nanotubes embedded with 

silver nanoparticle membranes for water purification [48]. Reproduced with 

permission from ACS. 
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3. Environmental impact assessment of sustainable water 

purification membranes 

After membrane filtration processes for waste water, environmental impact 

assessments need to be analysed at the end-of-life management [49–51]. Here, 

environmental and sustainability demands need the treatment of large amounts of 

wastes from water pollution. Figure 7 shows waste management opportunities in a 

hierarchal order. Specifically, the parameters regarding reverse osmosis membranes 

have been focused. 

 

Figure 7. (A) waste management hierarchy from most to least preferred options; (B) 

composition of a typical reverse osmosis (RO) membrane element [52]. Reproduced 

with permission from Elsevier. 

 

Figure 8. Membrane life cycle [53]. Reproduced with permission from Elsevier. 

In majority of practices, solid wastes are used to be disposed in landfills. 

Sustainable strategies need to be applied to dispose the water wastes. Safe 

management approaches must be adopted on priorities to meet the sustainable 

environmental needs [52]. The components of reverse osmosis membranes after 

recycling have been extracted and recycled through chemical or mechanical recycling 

processes. Lawler et al. [53] studied a normal membrane lifecycle leading from raw 

material extraction to end-of-life possibilities (Figure 8). Furthermore, greenhouse gas 

emissions resulting from disposal reverse osmosis membranes have been portrayed 

(Figure 9). Membrane processes as well as transportation contribute towards the 

gaseous and disposes emissions to environment. The entire membrane model can be 

seen as raw material extraction, synthesis or engineering, packaging, and delivery or 

transport processes. Major impacts of membrane disposition and recycling have been 
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assessed on climate changes and fossil fuel deletions. All the recycling emissions have 

affected the environmental sustainability scenarios. 

  
(A) (B) 

Figure 9. (A) greenhouse gas emissions and resource depletion for the disposal of one reverse osmosis (RO) 

membrane element. Results are displayed in terms of relative offset of membrane production; (B) contribution of 

transportation and process to the climate change emissions of the different scenarios [52]. Reproduced with 

permission from Elsevier. 

4. Sustainable membrane recycling 

Polymers especially the petroleum derived polymers have been recycled using 

efficient techniques such as mechanical recycling, chemical recycling, and thermal 

recycling [54–56]. Soundness of membrane recyclability processes depends upon the 

membrane material used for water purification [57–59]. Most widely used process is 

mechanical recycling including physical grounding of plastics or membranes and 

contaminant separation based on particle sizes [60–62]. The mechanically recycled 

material can be used for producing new desired products [63]. The economic viability 

of the mechanical recycling process has been found important to consider in addition 

to environmental safety [64,65]. Polymers like polypropylene, polyamide, and 

polysulfone are chemically resistant and may need toxic solvents for degradation, 

therefore mechanical recycling is preferred for these membranes [66–68]. Similarly, 

polyester can be better recycled using the mechanical processes [69]. The recycled 

membrane materials have been studied for maintained physical properties to be further 

employed for technical uses [70]. 

Second important recycling method used is chemical recycling of the membrane 

materials [71–73]. This technique involves the degradation or depolymerisation of 

membranes into valuable raw materials for petrochemical uses. The plastic material is 

usually degraded to small molecules or chains which can be easily recycled or used. 

Polyesters based membranes have been degraded easily through the chemical route 

via polycondensation reaction [74]. However, using chemical recycling on the 

contaminated materials may result into the production of ecologically hazardous 

products [75]. Consequently, materials need to be pre-treated before the chemical 

recycling. 

Another important recycling process used is thermal recycling of the membrane 

materials [76]. Thermal recycling may involve the pyrolysis in the absence of oxygen 

and through gasification processes [77]. This method has been found safe depending 
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upon the nature of material recycled. Here, gasification typically includes the simple 

waste residue treatments with less toxic emissions. Mixed plastic wastes based on 

recyclable green polymers can be easily processed using thermal method. Hence, 

different water purification polymeric membranes can be easily recycled to attain 

sustainable processing [78–80]. 

5. Future and conclusions 

Design and essential properties of water permeation membranes have been 

scrutinized in this article. After developing the sustainable water purification 

membranes, permeability, desalination, salt removal, dye elimination, toxic ion 

removal, and antibacterial effects have been studied. The microstructure, water flux, 

and flow rate of the membranes have been considered important for pollutant removal. 

Moreover, major functional demands of water purification membranes include 

durability and strength while filtration. According to the modern global sustainability 

and environmental demands of waste water treatment, recyclable and degradable 

membrane materials have been focused. Various sustainable membrane designs with 

polymers based on polyesters, polyamides, and other green polymers and efficient 

techniques (micro-, nano-, ultra-, reverse osmosis, etc.) have been considered. 

Appropriate membrane fabrication process may lead to well defined membrane 

structure and optimum membrane properties. Subsequently, smooth molecular 

transportation, superior flux, and barrier features were observed for membranes. After 

designing and successful use, recycling of polymeric membranes through appropriate 

processes has been found desirable. Here, according to the material type, heat, 

mechanical, or chemical routes have been applied for degrading the membrane 

material. The choice of membrane material as well as recycling process have been 

found challenging. The detailed overall life cycle assessments of the membranes must 

be carried out to resolve the sustainability and environmental challenges in this field. 

Hence, current and future research on water purification membranes must focus 

on various parameters like the (i) development of efficient ecofriendly ultrafiltration, 

reverse osmosis, nanofiltration, and microfiltration processes; (ii) sustainable 

membrane manufacturing; (iii) choice of sustainable polymers like polyesters, 

polyamide, polysulfone, and others; (iv) choice of non-toxic solvent; (v) impact of 

membrane processes on the desalination or other filtration processes; (vi) recycling 

through mechanical, chemical, or thermal processes; (vii) use of life cycle assessment 

tool; and (viii) environmental impact of using sustainable water purification 

membranes. 

Conflict of interest: The author declares no conflict of interest. 
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