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Abstract: Due to rising global environmental challenges, air/water pollution treatment 

technologies, especially membrane techniques, have been focused on. In this context, air or 

purification membranes have been considered effective for environmental remediation. In the 

field of polymeric membranes, high-performance polymer/graphene nanocomposite 

membranes have gained increasing research attention. The polymer/graphene nanomaterials 

exposed several potential benefits when processed as membranes. This review explains the 

utilization of polymer and graphene-derived nanocomposites towards membrane formation and 

water or gas separation or decontamination properties. Here, different membrane designs have 

been developed depending upon the polymer types (poly(vinyl alcohol), poly(vinyl chloride), 

poly(dimethyl siloxane), polysulfone, poly(methyl methacrylate), etc.) and graphene 

functionalities. Including graphene in polymers influences membrane microstructure, physical 

features, molecular permeability or selectivity, and separations. Polysulfone/graphene oxide 

nanocomposite membranes have been found to be most efficient with an enhanced rejection 

rate of 90%–95%, a high water flux >180 L/m2/h, and a desirable water contact angle for water 

purification purposes. For gas separation membranes, efficient membranes have been reported 

as polysulfone/graphene oxide and poly(dimethyl siloxane)/graphene oxide nanocomposites. 

In these membranes, N2, CO2, and other gases permeability has been found to be higher than 

even >99.9%. Similarly, higher selectivity values for gases like CO2/CH4 have been observed. 

Thus, high-performance graphene-based nanocomposite membranes possess high potential to 

overcome the challenges related to water or gas molecular separations. 
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1. Introduction 

Generally, membrane-based technologies have been used to remove toxic 
nanomaterials from the environment [1]. Among membrane materials, polymeric-
based materials and nanomaterials have been adopted for separation purposes [2,3]. 
Owing to the technical benefits of nanocarbons, graphene, fullerene, and carbon 
nanotubes have been adopted as unique and valuable nanostructures [4,5]. Graphene-
derived nanomaterials possess fine tendencies toward separation applications [6]. 
Especially, graphene has been reinforced in polymers to form high-performance 
nanocomposite membranes [7]. Polymer- and graphene-derived nanocomposite 
membranes have been efficiently used for the separation of hazardous molecules [8]. 
For the fabrication of polymer/graphene membranes, facile processing approaches 
have been used [9]. Solution processing, the phase inversion method, the infiltration 
technique, and other facile methods have been reported [10,11]. Polymer/graphene 

CITATION 

Kausar A, Ahmad I. Footsteps of 
graphene filled polymer 
nanocomposites towards efficient 
membranes—Present and future. 
Journal of Polymer Science and 
Engineering. 2024; 7(1): 4978. 
https://doi.org/10.24294/jpse.v7i1.49
78 

ARTICLE INFO 

Received: 4 March 2024 
Accepted: 25 March 2024 
Available online: 17 April 2024 

COPYRIGHT 

 
Copyright © 2024 by author(s). 
Journal of Polymer Science and 
Engineering is published by EnPress 
Publisher, LLC. This work is licensed 
under the Creative Commons 
Attribution (CC BY) license. 
https://creativecommons.org/licenses/
by/4.0/ 



Journal of Polymer Science and Engineering 2024, 7(1), 4978.  

2 

membranes have been developed using polymers like polyamides, polysulfone, 
poly(dimethyl siloxane), poly(methyl methacrylate), and several others [12]. The 
nanocomposite membranes possess superior nanofiller dispersion, pore sizes, 
molecular permeation, and selectivity properties [13]. Owing to their effective 
characteristics, polymer/graphene nanocomposite membranes have been applied for 
technological sectors focusing on water, gaseous, and chemical separations [14]. The 
resulting membranes have been applied in commercial-scale water purification 
systems, gas sensing, and separation systems, fuel cell systems, and a myriad of other 
technical areas [15,16]. Most importantly, polymer- and graphene-based 
nanocomposite membranes have been fabricated for gas and water purification. 
Graphene mostly develops torturous pathways in the matrices to facilitate gas- or 
water-based ionic or molecular diffusion processes [17]. Homogeneous graphene 
dispersion in polymeric membranes has been used to enhance the separation of 
impurities and toxic molecules from air mixtures or contaminated water [18,19]. In 
this regard, several membrane processes have been studied, like nanofiltration, 
microfiltration, ultrafiltration, and reverse osmosis [20–22]. Afterward, graphene-
derived nanocomposite membranes have been efficiently used for removing pollutants 
[23]. The polymer/graphene nanocomposite membranes have structural advantages 
relative to reported nanocomposite membrane designs in terms of facile processing 
and resulting performance benefits [24]. Research progressions have led to the 
advancement of efficient air/water membranes [25]. 

For efficient graphene membrane fabrication, membranes, and mechanisms of 
molecular transport need to be thoroughly understood. The self-standing 
nanocomposite membranes must be researched for new design novelties [26]. In 
addition to graphene, graphene derivatives like graphene oxide, reduced graphene 
oxide, etc. may widen the potential of these membranes. The ultimate thinness of the 
membranes has been desirable to allow high flux [27]. The narrow pore size 
distribution and surface chemistry have been identified as desirable factors to promote 
molecular sieving and diffusion through the membranes. According to the literature, 
the interlayer spacing between graphene nanosheets can promote molecular 
transportation through the membrane [28]. To better withstand the high temperature, 
pressure, and humidity conditions, membrane support materials must be used [29]. 
Such efforts fill gaps between the membrane designs, large-scale productions, and 
commercialization of the novel graphene nanocomposite membranes. 

This review article discusses the developments of graphene nanocomposites 
towards efficient membrane applications. The inclusion of graphene in polymers has 
improved the membranes’ permeation and selectivity properties for water purification 
and gaseous molecular separation. In this article, the design, structure, and properties 
of polymeric membranes filled with graphene or graphene oxide nanofillers have been 
scrutinized. Subsequently, the microstructure, durability, stability, permeability, and 
other membrane properties have been used. The competence of nanocomposite 
membranes has been studied for gas or water purification, especially for the separation 
of toxins, pollutants, and unwanted species. The polymer and graphene-based 
nanomaterials have a high surface area and exceptional structure for efficient 
membrane performance. Accordingly, the formation of polymer/graphene membranes 
has extended the scope of air purification and water management. To the best of my 
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knowledge, this article is ground-breaking in presenting efficient graphene-based 
membranes. The review outline, including literature, as well as relevant discussions, 
is novel and based on recent research assumptions for graphene-based membranes. 
Moreover, hardly any recent topical comprehensive review reports have been observed 
on the polymer/graphene nanocomposite membranes. The need for this review article 
also arises due to remarkably increased research reports on graphene nanocomposite 
membranes in the past two to three years. Hence, there is the utmost need for a recent 
innovative review on polymer/graphene nanocomposite membranes. According to 
recent reports on polymer/graphene nanocomposite membranes, it can be stated that 
substantial progress has been made in this field up until now. This article will 
definitely be beneficial for field scientists/researchers to expand their research toward 
the future success of high-performance industrial-scale nanocomposite membranes. 

2. Graphene 

Graphene is a one-atom-thick nanosheet of sp2 hybridized carbon atoms [30]. 
Figure 1 shows the structure of graphene and related derivative forms. This 
remarkable nanocarbon was discovered in 2004 [31]. 

 
Figure 1. Graphene and related derivative forms. 

Graphene has been developed using various techniques such as graphite 
exfoliation, plasma processes, chemical vapor deposition, and chemical or organic 
synthetic strategies [32]. It is a transparent carbon nanostructure [33] having a high 
thermal conductivity of 3000–5000 W/mK [34], Young’s modulus of ~1 TPa [35], and 
weak van der Waals forces [36]. Graphene oxide is a graphene-based nanocarbon that 
is usually formed through the oxidation and stripping of graphite. This graphene 
derivative has a graphene nanosheet structure with carboxylic, hydroxyl, carbonyl, or 
other oxygen-containing surface groups [37]. Graphene and graphene oxide have been 
employed to form nanocomposite materials [38]. Graphene nanocomposites have been 
studied for their high electron conductivity, thermal and chemical stability, and 
physical properties [39]. In addition, the high-tech potential of graphene has been 
developed for coatings, membranes, energy devices, and biomedical sectors [40]. 

Graphene is composed of a single carbon atom layer arranged in a two-
dimensional honeycomb lattice. A wide range of two-dimensional nanomaterials like 
graphene, graphene, nanoclays, MXenes, silicane, hexagonal boron nitride, transition 
metal dichalcogenides, etc. have been reported. A two-dimensional carbon 
nanostructure like graphene has probabilities to tailor and functionalize through 
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surface defects, modified groups, number of layers, morphology, etc. Graphene has 
been explored for doping, modification, strength, conductivity, and other physical 
characteristics, relative to other two-dimensional nanomaterials. Consequently, 
graphene has been found to be stronger than other zero-, one-, or two-dimensional 
materials due to its structural strength. Especially compared with other carbon 
nanomaterials like carbon nanotubes (one-dimensional) and fullerene (zero-
dimensional), graphene nanosheets have revealed remarkable potential due to their 
high surface area nanostructures and better compatibility with polymer matrices. 
Research has realized the importance of graphene two-dimensional monolayers in 
several fields, with a special emphasis on their benefit to our society. 

3. Polymer nanocomposite based membranes 

Polymer-based membranes have been produced using a range of polymer 
matrices and preparation approaches [41]. Numerous carbonaceous nanoparticles and 
inorganic nanofillers were filled in the different polymeric matrices to develop the 
nanocomposite membranes [42]. The combination of these nanoparticles with 
polymers resulted in the formation of membranes with significant physical 
characteristics [43]. The resulting properties depend upon the nanoparticle type, 
nanoparticle amount, and polymer types as well [44]. These nanocomposite 
membranes have fine microstructure and separation properties for different types of 
molecules [45,46]. In other words, polymeric nanocomposite membranes act as 
molecular sieves for molecular separations [47]. The molecular permeation 
mechanisms depend on the interactions between the polymer and nanoparticles and 
their mutual effects [48]. In inorganic nanoparticle-filled membranes, silica 
nanoparticles have been used as nanofillers [49,50]. For silica-filled membranes, 
permeation and selective separation of O2, CO2, and N2 gaseous molecules have been 
studied. Functional silica nanoparticle-filled poly(vinylidene-fluoride-
hexafluoropropylene) membranes were prepared through the phase separation method 
[51]. The molecular separation of CO2 molecules was studied. The nanocomposite 
membrane with 40 wt.% nanoparticles revealed a CO2 uptake of 33.75 mg/g [52,53]. 
Silica nanoparticles developed fine pathways for gas diffusion [54,55]. Titania 
nanofiller [56] and zinc oxide nanoparticles [57] have also been used with the 
polymers. Such membranes may have high structural robustness and CO2/H2 
selectivity of 2.77. 

In addition, carbon nanoparticles have been reinforced in the polymeric 
membranes [58]. Various nanocarbon nanoparticles have been used as efficient 
nanofillers with polymers like carbon nanotube, nanodiamond, fullerene, etc. to form 
nanocomposite membranes. Graphene-based nanomaterials have a high surface area-
to-volume ratio, light weight, facile processing, and structural flexibility [59]. The 
inclusion of very minor amounts of graphene nanofiller in the nanocomposites has 
been found to enhance the physical features due to their interfacial properties [60]. 
Interfacial bonding has been found to directly affect the mechanical and thermal 
properties of the nanocomposites. As compared to zero- and one-dimensional 
nanocarbons like fullerene and carbon nanotubes, graphene nanostructure has an 
advantageous two-dimensional nanostructure with a light and strong nanosheet 
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nanostructure and intrinsic charge mobility and permeability features [61]. Therefore, 
graphene nanocomposites reveal a range of potential applications and remarkable 
properties, from high-performance nanocomposites to technical nanostructures like 
membranes. In nanocomposites membranes, graphene has a better alignment, 
dispersion, porosity, and tortuous pathway formation than one-dimensional 
nanostructures for better molecular permeability [62]. The polymer-based 
nanocomposite membranes have been applied for water purification and gas 
permeation purposes [63–65]. 

4. Efficiency of graphene nanocomposite membranes for water or 
gas separations 

Owing to the lack of inherent robustness, and structural, and fouling drawbacks, 
polymeric membranes have been continuously replaced with nanocomposite 
membranes for better performance [66,67]. Consequently, nanocomposite membranes 
have been recognized for their controlled and advantageous thermal stability, 
selectivity, and permeability features [68]. For water remediation applications, 
solution processing, blading, phase separation, and related membrane fabrication 
strategies have been focused on [69]. Membrane matrices like poly(vinyl alcohol), 
polysulfones, nylons, and numerous others [70,71]. Graphene and graphene oxide 
nanofillers have been used for the development of efficient membranes. Polystyrene, 
polysulfone, and polyethersulfone have been widely used as ultrafiltration membranes 
due to their fine strength, durability, pH operating range, and chemical stability [72]. 
However, their uses in water treatment have been restricted due to their hydrophobicity 
and related reduced permeability properties. Widely used ultrafiltration polymeric 
membrane materials have hydrophobic properties. Poly(vinyl fluoride), poly(vinyl 
chloride), and poly(methyl acrylic acid) have been adopted for these membranes. 
Membrane hydrophobicity has been found to decrease the water flux due to the organic 
compound accumulation on the membrane surface. In this regard, polymer 
modification has been suggested to induce membrane hydrophilicity to enhance the 
membrane antifouling properties for enhanced water filtration processes. The future 
of polymer-based water treatment membranes relies on the adoption of new modified 
polymer matrices as well as nanoparticle nanofillers in the nanocomposite matrices. 

Most membranes have been used to remove soluble and non-soluble impurities 
through the processes of ultra-filtration, reverse osmosis, nanofiltration, 
microfiltration, etc. [73]. Ultrafiltration membranes have pore sizes of 0.01–0.1 µm, 
which are smaller than microfiltration membranes. However, these pores are larger 
than the pores of nanofiltration (0.0001 µm) and reverse osmosis membranes. 
Nanofiltration has been used to remove small organic molecules, like viruses. 
Ultrafiltration has been found to remove bacteria, microbes, and suspended solids from 
the water. Reverse osmosis works like filter media which attracts contaminants. The 
efficiency of the membrane filtration processes depends on the polymer type, surface 
functional groups, and physical characteristics of the polymeric membranes. The 
polymer modification has been used to attain efficient membrane separation processes 
and desired membrane performance. The modification may involve the incorporation 
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of copolymers and nanoparticles into the polymeric membranes to form blends or 
nanocomposites. 

For the fabrication of polymer/graphene nanocomposite membranes, efficient 
techniques have been used [74,75]. The solution-casting technique follows the 
principle of Stokes’ law [76]. In this technique, the polymer is dissolved in a solvent. 
The nanoparticles are also dispersed in a solvent. Both the polymer solution and the 
nanoparticle solution are mixed to form a homogeneous phase. Later, the solution 
phase is evaporated to form a polymer film or membrane. The phase inversion 
technique has also been focused on polymer/graphene nanocomposite membranes [77]. 
In this process, the controlled transformation of polymers is performed from the liquid 
to the solid phase. Consequently, steps like precipitation, controlled evaporation, and 
immersion precipitation are involved in this method. Furthermore, the 
polymer/graphene nanocomposites have been formed by interfacial polymerization 
[78]. Interfacial polymerization involves steps like the oil phase, emulsification, and 
solvent evaporation. All these technologies have been used to form nanocomposite 
membranes with finely dispersed graphene and derived nanofillers. 

Consequently, poly(vinyl alcohol) and poly(vinyl chloride) matrices have been 
considered important as important matrices for graphene nanofillers [79–81]. 
Production and properties of poly(vinyl chloride) and graphene oxide nanocomposite 
membranes have been produced through the phase inversion method [82]. According 
to microscopic studies, these membranes revealed a macro-void structure. The 
nanocomposite membranes were investigated to remove bovine serum albumin from 
water. The separation performance was observed due to the hydrophilic nature of the 
membranes. Poly(vinyl alcohol) matrix has been filled with graphene or graphene 
oxide nanoparticles [83]. These nanomaterials based on poly(vinyl alcohol) and 
graphene oxide possess hydrogen and hydrophilic binding interactions. Moreover, the 
membrane design based on poly(vinyl alcohol) and graphene oxide was reported by 
Castro-Muñoz and researchers [84]. The poly(vinyl alcohol)/graphene oxide-based 
mixed matrix membranes were prepared using dense-film casting and solvent 
evaporation methods. The inclusion of 1 wt.% graphene oxide in the membrane 
resulted in a permeate flux of 0.14 kg m−2h−1. Sun and co-workers [85] used the 
pressure-assisted filtration process for the production of a poly(vinyl 
alcohol)/graphene oxide system. Including 10 wt.% nanoparticles caused superior 
water flux and salt rejection of 98 kgm−2h−1 and 99.9%, respectively. Thakur and co-
researchers [86] utilized the direct laser writing method to form laser-induced 
graphene-based three-dimensional porous carbon nanomaterial. Three-dimensional 
laser-induced graphene had superior electron conductivity. Then, nanocomposite of 
poly(vinyl alcohol) and laser-induced graphene have been prepared for the formation 
of membranes. The poly(vinyl alcohol)/laser-induced graphene nanocomposites own 
fine mechanical, physical, and surface wettability characteristics. Figure 2 displays a 
scheme for the development of poly(vinyl alcohol) and laser-induced graphene 
nanocomposite derived nanocomposite based water treatment membranes for nt. 
Consequently, the ultrafiltration poly(vinyl alcohol)/laser-induced graphene 
nanocomposite membranes showed separations of solute particles and bacterial 
species. Figure 3 specifies the construction of poly(vinyl alcohol)/laser-induced 
graphene nanocomposite membranes. 
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Figure 2. Schematic of poly(vinyl alcohol) and laser induced graphene 
nanocomposite membranes for water remediation [86]. Reproduced with permission 
from ACS. 

 
Figure 3. (a) Laser-induced graphene (LIG) is generated on UP 010 membranes 
through 10.6 µm CO2 laser; (b) scanning electron microscopy images of as-prepared 
LIG including cross-section (inset); (c) fabrication technique for laser-induced 
graphene and poly(vinyl alcohol) (LIGPVA-4) membrane showing excess of 
poly(vinyl alcohol) (PVA) solution removal with a rubber roller; and (d) scanning 
electron microscopy images of LIG-PVA-4, including cross-section (inset) [86]. 
Reproduced with permission from ACS. 

Initially, laser-induced graphene was coated on a polyethersulfone substrate. 
Then, the laser-induced graphene was coated with poly(vinyl alcohol) to form the 
nanocomposite membrane. Scanning electron microscopic studies on laser-induced 
graphene and poly(vinyl alcohol)/laser-induced graphene nanocomposite membranes 
revealed the development of a porous three-dimensional network with consistent pore 
size distributions. The rejection rate was found to be 99.9%. 

The polysulfone and graphene-derived nanocomposites formed some 
advantageous membrane design combinations [87]. Zinadini et al. [88] reported on 
polysulfone and graphene oxide-derived membranes. The addition of nanoparticles to 
the membrane systems resulted in a unique microstructure and high water flux [89]. 
The polysulfone/graphene oxide-derived membranes revealed a contact angle of 55°–
65° and a water flux of >20 kg/m2h. Hydrogen bonding interactions have also been 
observed between the polysulfone matrix and graphene oxide, leading to the formation 
of efficient hydrophilic membranes. Here, the wet phase inversion method has been 
preferred for the fabrication of polysulfone and graphene oxide-derived membranes 
[90]. Rezaee and co-workers [91] reported on polysulfone/graphene oxide 
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nanocomposite membranes using the solution technique. Table 1 demonstrates the 
influence of adding graphene oxide amounts on the pure water flux, porosity, and pore 
structure of the membranes. Enhancing the graphene oxide contents from 0.5 to 1 wt.% 
enhanced the pure water flux from 20 to 50 L/m2h. The membrane porosity was also 
enhanced from 78% to 87%. 

Table 1. Effect of GO content on pure water flux and pore structure parameters of 
the prepared membranes [91]. GO = graphene oxide; PSF = polysulfone; PSF/GO = 
polysulfone/graphene oxide. Reproduced with permission from Springer (Creative 
Commons CC BY). 

Membrane Pure water flux (L/m2h) Porosity (%) Pore diameter (nm) 

Pure PSF 19.7 ± 3.2 48.3 ± 2.6  6.9 ± 0.56 

PSF/GO 0.5 32.3 ± 3.5 77.9 ± 2.2 8.3 ± 0.31 

PSF/GO 1 49.9 ± 2.6 86.5 ± 1.8 9.1 ± 0.63 

PSF/GO 2 46.4 ± 2.0 82.1 ± 2.6 8.7 ± 0.42 

Adding 1 wt.% graphene oxide caused higher pure water flux, porosity, and pore 
diameter properties relative to the neat polymer and other nanofiller loaded 
membranes. The effect of a change in pH on the rejection rate was studied for 
membranes with different nanofiller contents (Figure 4). Better arsenate rejection 
performance was observed for 1 and 2 wt.% nanoparticle loading. Consequently, the 
nanofiller addition caused high separation efficiency due to homogeneous membrane 
structure, morphology, pore sizes, and optimum porosities [92]. Hence, 
polymer/graphene and polymer/graphene oxide nanocomposites have been studied for 
water remediation and filtration [93]. However, these membranes need further 
research efforts to resolve the challenges of low membrane stability and fouling effects. 

 
Figure 4. Percentage rejection of As (V) at different pHs by prepared membranes 
with various graphene oxide (GO) contents. (Operating pressure = 4 bar; initial As 
(V) concentration = 300 ± 10 μg/L; feed temperature = 25 ± 0.5 °C) [91]. As = 
arsenate; PSF = polysulfone; PSF/GO = polysulfone/graphene oxide. Reproduced 
with permission from Springer (Creative Commons CC BY). 

Tulugan et al. [94] formed polysulfone/graphene nanocomposite-derived 
nanofiltration membranes. The water flux of the neat polysulfone membrane (33.2 
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L/m2/h) was improved with the inclusion of graphene to 183.6 L/m2/h. Moreover, the 
nanofiltration membranes have a high adsorption rate of 79.8%, relative to neat 
polymer membranes (26.7%). Alshahrani et al. [95] used the interfacial 
polymerization method for polysulfone/reduced graphene oxide membrane fabrication. 
Including 0.015% nanofiller in polyamide led to a water permeability of 48.9 L/m2 h, 
higher than the neat polyamide membrane (25.0 L/m2 h). In addition, these membranes 
have a high salt rejection of 80–95%. Yu et al. [96] developed polyamide-polysulfone 
membranes through interfacial polymerization. The water permeability of membranes 
was found to be 48.90 L/m2h at 22 bar, which was superior to the neat polyamide 
membrane of 25.0 L/m2h. Salt rejection was observed in the range of 80%–95%. 

In addition to water permeation or desalination membranes, polymer/graphene 
membranes have been frequently investigated for gas molecule transportation [97]. 
Koenig and colleagues [98] formed pristine graphene membranes on a silicon substrate 
for the separation of H2 and CO2 gases. The structure and morphology of membranes 
have been reported. In addition, membranes have been studied for CO2/CH4, CO2/O2, 
and CO2/N2 permeation and separation processes [99]. The performances were found 
to be related to membrane pore sizes as well as affinity towards different molecular 
species [100]. Subsequently, graphene designs have been investigated for fine gas 
separations [101]. To improve the properties of graphene towards gas permeation, 
polymer and graphene-based membranes have been reported [102]. Li and researchers 
[103] fabricated the polymer/graphene nanocomposite membranes with a pore size of 
0.34 nm. The membranes were tested for high selectivity for H2/CO2 and H2/N2 gases. 
These membranes still need to be focused on improving pore sizes towards CO2 
sieving [104]. For gas separation membranes, poly(dimethyl siloxane) has been 
considered [105]. Ultrathin membranes of poly(dimethyl siloxane) have been designed 
to focus on the carbon dioxide and other toxic gases removal [106]. Nevertheless, 
pristine poly(dimethyl siloxane) membranes have certain drawbacks due to a lack of 
structural robustness. In this regard, reports on poly(dimethyl siloxane) and graphene 
oxide-derived nanocomposite membranes have been found in the literature [107]. 
Such nanocomposite membranes have been prepared using ultrasonication and 
solvent-based methods. The poly(dimethyl siloxane)/graphene oxide membranes have 
fine CO2 permeability and CO2/CH4 separation characteristics. Poly(methyl 
methacrylate) is a thermoplastic polymer widely applied for membrane applications 
[108]. Baldanza and researchers [109] produced poly(methyl methacrylate) and 
graphene-based nanocomposite membranes through a wet deposition technique. The 
‘lift-off/float-on’ method was used for the formation of these membranes [110]. 
Figure 5 shows the formation of poly(methyl methacrylate) and twenty layers of 
graphene-based nanocomposite membrane. The membrane thickness and nominal 
volume fraction were observed at around 550 nm and 0.06%, respectively. According 
to scanning electron microscopy, a regular lamination sequence was observed. Neat 
poly(methyl methacrylate) and poly(methyl methacrylate)/graphene membranes were 
studied for the permeability coefficients of humidified CO2 and O2 (Figure 6). The 
nanocomposite membrane had significantly low permeability properties. Adding 
graphene nanofiller reduced the CO2 and O2 permeability coefficients of the 
membrane to 1.30 × 10−17 and 0.21 × 10−17 mol·m·m−2·Pa−1·s−1, respectively (Table 
2). The property was declined owing to the development of diffusion pathways in the 
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membrane. These membranes had high permeability coefficients suitable for 
commercial scale uses of poly(methyl methacrylate)/graphene membranes [111]. 

 
Figure 5. (a) Schematic illustration of the iterative ‘lift-off/float-on’ process 
combined with wet depositions adopted to produce the Gr-PMMA nanolaminates; 
(b) Thickness evaluation of the single Gr-PMMA layer deposited on a Si wafer: 
representative cross-section of the scratch and atomic force microscopy image as 
inset; and (c) scanning electron microscopy image in the cross-section plane of the 
nanolaminate [109]. Gr = graphene; Gr-PMMA = poly(methyl 
methacrylate/graphene nanocomposite); APS = ammonium peroxydisulfate. 
Reproduced with permission from MDPI. 

 
Figure 6. Gas permeability coefficients at 25 ℃ through poly(methyl methacrylate) 
(PMMA) (blue bars) and Gr-PMMA (poly(methyl methacrylate/graphene 
nanocomposite)) (red bars) for (a) CO2 and humidified CO2 and (b) O2 and 
humidified O2 [109]. Reproduced with permission from MDPI. 
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Table 2. Permeability coefficients of CO2 or O2 through the nanocomposite at 
different R.H. levels [109]. PMMA = poly(methyl methacrylate); Gr-PMMA = 
poly(methyl methacrylate/graphene nanocomposite). Reproduced with permission 
from MDPI. 

Nanolaminate/ permeating gas P [mol·m·m−2 ·Pa−1 ·s−1] P [Barrer] 

PMMA/CO2 21.9 (±0.8) × 10−17 6.5 (±0.2) × 10−1 

Gr-PMMA/CO2 1.30 (±0.1) × 10−17 0.39 (±0.03) × 10−1 

PMMA/O2 4.79 (±0.01) × 10−17 1.434 (±0.003) × 10−1 

Gr-PMMA/O2 0.21 (±0.01) × 10−17 0.063 (±0.003) × 10−1 

Polysulfone is also an important thermoplastic polymer for gas purification 
membrane systems [112]. In this contest, the mixed matrix membranes of polysulfone 
have been reported [113]. These membranes have been reported for the separation or 
selective separation of CO2 and other noxious gases [114]. Sainath and co-workers 
[115] produced the mixed matrix polysulfone/graphene oxide membrane for the 
selective separation of gases. Adding 0.25 wt.% graphene oxide caused 3–4 times 
higher CO2/CH4 selectivity relative to the pristine membrane. The results were 
obtained due to better nanofiller dispersion and the formation of diffusing routes in the 
nanocomposite membranes [116]. Gas separation membranes of copolymers have also 
gained success in gas separation applications such as poly(1-trimethylsilyl-1-
propyne)/graphene oxide [117–119] and poly(phenyl sulfonepyridine)/graphene oxide 
nanocomposites [120]. Similarly, poly(2,6-dimethyl-1,4-phenylene oxide) has been 
adopted for gas separation membrane matrix [121–123]. Rea and co-workers [124] 
fabricated the poly(2,6-dimethyl-1,4-phenylene oxide) and graphene-based 
nanocomposite membranes. The 0.3–15 wt.% nanoparticle contents were filled in the 
membranes. Figure 7 shows the morphology of the poly(2,6-dimethyl-1,4-phenylene 
oxide)/graphene nanocomposite membrane. A few layers of graphene were observed 
in the polymer matrix, showing layered morphology and fine dispersion. 

 
Figure 7. Scanning electron microscopy image of PPO and a few-layer graphene 
membrane [124]. PPO = poly(2,6-dimethyl-1,4-phenylene oxide). Reproduced with 
permission from MDPI. 
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Figure 8. Gas permeability before (a) 35 ℃; (b) 65 ℃; and after graphene addition 
(c) 35 ℃; (d) 65 ℃, as a function of graphene loading in the poly(1-trimethylsilyl-1-
propyne) matrix [124]. Reproduced with permission from MDPI. 

The gas permeability was found to decrease at 35 and 65 ºC with the addition of 
graphene (Figure 8). The effect on the permeation properties was observed due to the 
variation in loading level and dispersion in the polymer matrix. Hence, numerous 
polymeric membranes have been prepared with graphene or graphene oxide 
nanofillers for gas permeation [125]. The gas permeability and selectivity properties 
rely on the nanoparticle alignment in the matrices, which may affect the membrane 
pore sizes and microstructures [126,127]. 

5. Important prospects 

Numerous polymer/graphene nanocomposite membrane systems have been 
proposed for superior water permeation, desalination, gas separation, and selective 
separation characteristics. Key points of this review article include the (i) 
fundamentals of graphene; (ii) fundamentals of polymer membranes; (iii) efficiency 
of graphene nanocomposite membranes for water remediation or gas separations; (iv) 
important aspects of the nanocomposite membranes; (v) graphene amount and 
dispersion; (vi) graphene interactions with membrane matrix; (vii) membrane porosity, 
morphology, and surface properties; and (viii) membrane permeability and selectivity 
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properties. Additionally, graphene-based systems have advanced mechanical stability 
and thermal stability properties. Generally, fine graphene dispersion in matrices has 
been considered for fine molecular transportation characteristics such as barrier, 
permeation, and selective separation (Figure 9). These membrane properties can be 
limited due to poor nanoparticle dispersion, surface properties, and imperfect 
membrane pore formation. Another limiting factor is the fabrication of graphene-based 
membranes on industrial or commercial levels. The large-scale processing depends 
upon technique, polymer/nanofiller types, and functionalization affecting the 
microstructure, durability, and water/gaseous molecular transportation. 

 
Figure 9. Graphene for gas separation membranes. 

According to a literature comparison (Table 3), polysulfone nanocomposite 
membranes have been prepared with carbon nanotubes [128], zeolites [129], and 
silicon dioxide [130]. The polysulfone/graphene or graphene oxide-based membranes 
revealed better nanoparticle dispersion, antifouling, water flux, and permeability 
properties. By comparing the utilization of graphene or graphene oxide nanofillers in 
the water purification membranes, most of the membranes have been prepared using 
the graphene oxide nanofiller. The inclusion of graphene oxide or reduced graphene 
oxide in membranes led to superior water flux, permeability, and rejection properties. 
The reason seems to be the functionalization of graphene nanosheets, which causes 
better interactions and dispersion with the polymers relative to neat graphene 
nanofillers. 

Solution casting, phase inversion, and ultrasonication. Techniques that have been 
frequently used include gas separation polymer/graphene and polymer graphene oxide 
membranes. As compared to polysulfone/graphene and polysulfone/graphene oxide 
membranes [115,131], lower CO2 permeability and ideal CO2/CH4 selectivity of 4.2% 
and 2.7%, respectively, were observed for commercial polysulfone/zeolite membranes 
[132]. For gas separation membranes, both graphene, graphene oxide, and modified 
graphene oxide have been applied. A number of studies have been reported on 
graphene and derivative-based membranes [133]. By comparing various studies on 
graphene and graphene-derived membranes (Table 4), graphene oxide-based 
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membranes were found to have higher selectivity and permeability values than 
graphene-based systems. For example, the polysulfone [103] system revealed much 
higher gas selectivity than the corresponding graphene-based membranes [115,131]. 
The reason seems to be the nanostructure of graphene, which has impermeability 
towards molecular passage. However, the formation of graphene oxide or modified 
graphene nanostructures may cause surface defects, leading to better compatibility, 
interactions, and interface formation. Consequently, superior permeability and 
selectivity of graphene oxide-based membranes have been observed. Thus, the 
polymer/graphene oxide membranes reveal better gas separation properties to 
overcome the tradeoffs between permeability and selectivity of the nanocomposite 
membranes. Nevertheless, these membranes are still in their developmental stages, 
and further studies have been desirable to understand the transport mechanisms as well 
as the structural specifications. 

Table 3. Specifications of polymer/graphene nanocomposite membranes for water separation. 

Polymer Nanofiller Fabrication route Membrane properties Ref 

Poly(vinyl alcohol)  Graphene oxide 
Mixed matrix membranes; 
dense-film casting technique; 
solvent evaporation 

Permeate flux  
0.14 kg m−2h−1;  
permeation rate 75% 

[84] 

Poly(vinyl alcohol)  Graphene oxide Pressure-assisted filtration process 
water flux 98 k gm−2h−1; 
salt rejection 99.9% 

[85] 

Poly(vinyl alcohol)  Laser-induced graphene  
Ultrafiltration, direct laser writing 
method 

Three-dimensional network; 
consistent pore size distribution; 
rejection rate 
99.9% 

[86] 

Polysulfone  Graphene oxide Phase inversion method 
Water flux >20 kg/m2h;  
contact angle 55°–65° 

[89] 

Polysulfone  Graphene oxide Solution casting  
Pure water flux  
20–50 L/m2h; 
porosity 78%–87%. 

[91] 

Polysulfone Graphene oxide Nanofiltration  
Contact angle 7°; 
water flux 33.2 183.6 L/m2/h; 
adsorption rate 79.8% 

[94] 

Polysulfone Reduced graphene oxide Interfacial polymerization 

Water permeability  
48.9 L/m2h; 
permeability  
25.0 L/m2 h; 
salt rejection 80%–95%  

[95] 

Polysulfone-polyamide Sulfonated graphene oxide Interfacial polymerization 
Fluorine treatment; 
F- retention effect; 
water flux 83.2% 

[96] 

Here, research progress in the field of polymer/graphene nanocomposite 
membranes needs to be analyzed according to the membrane design, type, and specific 
end application in order to assess the crucial difficulties in this field. Research progress 
in the field of polymer/graphene membranes can be primarily categorized as 
desalination or separation membranes for the removal of salts, biological, and organic 
pollutants by attaining optimally high water flux. The design and essential 
characteristics of polymer/graphene nanocomposite-based water permeation 
membranes have been studied. 
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The nanocomposite membranes have been investigated for their morphological 
properties, permeability, flux, desalination, and toxin removal. 

Table 4. Specs of polymer/graphene nanocomposite membranes for gas separation. 

Polymer Nanofiller Fabrication route Physicochemical properties Membrane properties Ref 

Polymer 
Graphene or 
graphene oxide 

Solution casting 
Ion-molecule interaction; 
1.8–20 nm thickness 

H2/N2 selectivity 900;  
H2/CO2 selectivity 3400; pore 
size ~0.34 nm 

[103] 

Polysulfone Graphene oxide 
Solution route; N-
Methyl-2-pyrrolidone 
solvent 

Physical interaction between 
oxygenated functional groups 
of graphene oxide and 
polymer; 
Interactions between 
functional groups of 
nanocomposites and gas 
molecules 

CO2/CH4 selectivity ~45 [115] 

Polysulfone Graphene 
Phase inversion; 
hollow fiber mixed 
matrix membrane 

Nanosize synthesized 
graphene; 
Interfacial interaction between  
graphene and polymer matrix 

CO2/N2 selectivity 158%;  
CO2/CH4 selectivity 74% 

[131] 

Polysulfone  Zeolite  
Mixed matrix 
membranes 

Interlinked morphology 

CO2 permeability and ideal 
CO2/CH4 selectivity were 
slightly 4.2% and 2.7%, 
respectively 

[132] 

Polyphenylsulfone-
pyridine 

Graphene oxide 
Vacuum infiltration 
technique 

Wettability and surface charge 
response to pH; 
acidic pH = 3 form 
hydrophilic state contact angle 
63.3°;  
alkaline pH = 11 form 
hydrophobic state contact 
angle 106.5°; 
charge-density-tunable 
nanoporous; 
power of ≈ 0.76 W m–2 

Dispersion; 
morphology 

[120] 

Poly(dimethyl siloxane) Graphene 
Solution casting; 
p-xylene solvent 

π-π interactions in matrix-
nanofiller 

0.2 wt.% nanofiller; 
N2, CO2, Ar, and CH4 

permeation 60%; CO2/CH4 
selectivity 4.2 

[134] 

Poly(dimethyl siloxane) Graphene oxide 

Solution/ 
ultrasonication 
methods; 
tetrahydrofuran 
solvent 

Interfacial interactions 
between functional groups of 
graphene oxide and polymer; 
density 1.09–1.12; 
Thickness 1.9–2.8 nm 

5 wt.% nanofiller; 
CO2/CH4 selectivity 112%;  
CO2 permeability 29%. 

[107] 

Poly(dimethyl siloxane) Graphene oxide Solution casting 
Matrix-nanofiller interactions; 
interaction between graphene 
oxide and polymer 

8 wt.% nanofiller;  
H2, O2, N2, CH4 and CO2 
permeability 99.9% 

[135] 

Poly(methyl 
methacrylate) 

Graphene 
Wet deposition 
method 

Water adsorption, membrane 
wrinkles; 
degree of 
dispersion/orientation of the 
graphene nanosheet, 
structure organization of 
polymeric chains at the 
interface with graphene 
nanosheet 

CO2 permeability coefficient  
1.30 × 10−17 

mol·m·m−2 ·Pa−1 ·s−1;  
O2 permeability coefficient 
0.21 × 10−17 
mol·m·m−2 ·Pa−1 ·s−1 

[109] 
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Table 4. (Continued). 

Polymer Nanofiller Fabrication route Physicochemical properties Membrane properties Ref 

Poly(1-trimethylsilyl-1-
propyne) 

Graphene oxide 
Solution casting; 
chloroform solvent 

Anchoring of graphene oxide 
nanosheets lowers membrane 
flexibility; and less free 
volume; 
covalent cross-linking of 
polymer 

1 wt.% graphene;  
diffusion coefficient of CO2 

(25%); N2 (14); CH4 (9%) 
[118] 

Poly(1-trimethylsilyl-1-
propyne) 

Graphene Solution route 
Interaction between filler and 
polymer matrix; 
0.93–1.36 MPa; 38–44 MPa 

0.05 wt.% nanofiller; 
CO2 permeability 3.5  × 103 
Barrer 

[119] 

Poly(2,6-dimethyl-1,4-
phenylene oxide) 

Graphene Solution route 

Void formation at the 
interface; 
glassy polymer filled with 
graphene; 
graphene inclusion for the 
physical constraint to 
relaxation of polymer chains 

0.3–15 wt.% nanofiller 
reduced permeability 

[124] 

The mechanical properties like flexibility, strength, toughness, and other 
important properties of membranes have been deliberated. Graphene nanoparticle 
dispersion has been found to be important in enhancing the matrix-nanofiller 
interactions and improving the final membrane characteristics. In this context, 
compatibility between the polymer and graphene nanoparticles may cause better 
nanoparticle dispersion and miscibility effects. The molecular diffusion and 
permeability properties rely on the pore size, shape, and nanoparticle dispersal in the 
polymeric matrices. All these properties not only affect the selectivity/permeability 
features but also the membrane strength and functional life for membrane applications. 
Major challenges identified in this sector have been found to be complications owing 
to poor nanoparticle dispersion, phase separation, optimum fabrication parameters, 
and the identification of perfect membrane designs for commercial-scale production 
of these membranes. In this way, desirable barrier effects can be achieved for selective 
molecular transportation through the membranes to separate the salts, toxic ions, 
biological species, and other toxins. Thus, not much research has been observed 
regarding the separation mechanisms and overcoming the challenges of fabricating 
well-defined designs for commercial-level use. Future research in the mentioned 
directions will be beneficial for the formation of efficient water separation membranes. 

Secondly, an important application of polymer/graphene nanocomposite 
membranes has been observed for gas separation. Here, matrices like polysulfone, 
poly(dimethyl siloxane), poly(methyl methacrylate), and other block copolymers have 
been used and filled with graphene nanofillers using facile solution, sonication, phase 
inversion, infiltration, and other techniques. For this application, efficient design 
combinations have been observed for separating the toxic or desired gas from gaseous 
mixtures. The resulting membrane must have optimum porosity, permeability, 
selectivity, and other membrane features for the separation of molecular species. As 
discussed above, all the membrane characteristics have been found to be dependent 
upon the processing, nanoparticle alignment, functionality, and compatibility with the 
polymer phases. By controlling all these features, complex gas mixtures can be 
separated using novel membrane designs. In addition, membrane thicknesses have also 
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been found to be important to control not only the gas transport and flux characteristics, 
but also the membrane durability and cyclic performance. For gas separation, 
identification of the perfect processing technique, membrane parameters, and ultrathin 
polymer/graphene nanocomposite membrane formation have been found to be limiting 
factors or challenges. In this field, there is a lack of research regarding the separation 
mechanisms, structure-property relationships, and well-defined membrane designs for 
the separation of specific gaseous pollutants. Hence, due to a lack of targeted research 
in this area, desired permeability, selectivity, and working life have been found 
challenging. More focused research efforts have definitely been needed in these 
directions to form high-performance membranes through facile processing with well-
defined parameters. 

6. Conclusions 

Hence, this article presents the gas separation performance of polymer/graphene 
nanocomposite membranes, keeping in view the important literature reports. Graphene 
as well as modified graphene nanoparticles have been filled in the nanocomposite 
membranes. The resulting membrane systems have been analyzed for fine water and 
gas molecular separation as well as permeation properties. The polymer/graphene 
nanocomposite membranes have been examined for the nature of pores, microstructure, 
sturdiness, and gas or water molecular separation efficiencies. Various combinations 
of polymers and graphene, or modified graphene, have been developed for the 
formation of efficient membrane systems. Nevertheless, there are several challenges 
in the way of the formation and application of polymer/graphene nanocomposite 
membranes. The related challenges may be comprised of polymer type, nanoparticle 
modification, nanoparticle dispersion, and nanoparticle interaction with the polymer. 
Despite the advantages, there are numerous problems limiting the rapid development 
of graphene-based nanocomposite membranes. Even though facile solution methods 
have been used, no perfect design with all the defined parameters, high surface area, 
and even thickness has been identified so far for large-scale functioning. Facile 
methods have been found to be ineffective in producing membranes with all defined 
membrane parameters on a large scale. Pore clogging and membrane fouling 
(biofouling, micro fouling, macrofouling) due to the presence of organic/inorganic 
pollutants (dyes, metal particles, microbes, bacteria, etc.) have been found to prevent 
rapid water purification. Hence, the development of evenly structured ultrathin, 
enduring, lightweight, low price, antifouling, and extended life polymer/graphene 
membranes has been found difficult to attain for large-scale commercial systems. 
Overcoming all these challenges may yield fine future opportunities for high-tech, 
commercial-grade graphene-filled membranes. 

Thus, the research progress on graphene nanocomposite membranes led to 
several advances in types, designs, and applications to overcome the challenges in this 
field. For an increase in physical properties, nanoparticle dispersion has been found to 
be important for matrix-nanofiller interactions, microstructure, mechanical features, 
and for advanced membrane characteristics. Consequently, the compatibility of matrix 
graphene has been recommended to improve for better miscibility and reinforcing 
effects. The membrane performance also depends upon the pore shapes, sizes, and 
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distribution in the matrices. The random nanofiller dispersion or pore distribution in 
membranes may influence the strength, durability, and life of the membranes. For 
commercial-scale membrane production, membrane design features must be analyzed. 
Hence, future research must resolve the challenge of identifying directions for high-
performance gas separation membranes. 
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