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ABSTRACT 

Herein, we report a facile preparation of super-hydrophilic sand by coating the sand particles with cross-linked 

polyacrylamide (PAM) hydrogels for enhanced water absorption and controlled water release aimed at desert agriculture. 

To prepare the sample, 4 wt% of aqueous PAM solution is mixed with organic cross-linkers of hydroquinone (HQ) and 

hexamethylenetetramine (HMT) in a 1:1 weight ratio and aqueous potassium chloride (KCl) solution. A specific amount 

of the above solution is added to the sand, well mixed, and subsequently cured at 150 °C for 8 h. The prepared super-

hydrophilic sands were characterized by Fourier-transform infrared spectroscopy (FT-IR) for chemical composition and 

X-ray diffraction (XRD) for successful polymer coating onto the sand. The water storage for the samples was studied by 

absorption kinetics at various temperature conditions, and extended water release was studied by water desorption 

kinetics. The water swelling ratio for the super-hydrophilic sand has reached a maximum of 900% (9 times its weight) at 

80 °C within 1 h. The desorption kinetics of the samples showed that the water can be stored for up to a maximum of 3 

days. Therefore, super-hydrophilic sand particles were successfully prepared by coating them with PAM hydrogels, which 

have great potential to be used in sustainable desert agriculture. 
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1. Introduction 
Polymer hydrogels are otherwise known as superabsorbent 

polymers (SAPs) with unique three-dimensional networks of 
hydrophilic polymers that can absorb and retain large amounts of water 
within their networks[1–4]. The very high water absorption capacity of 
the hydrogel is due to the inherent thermodynamic affinity of the 
hydrophilic polymers for water molecules. Due to this excellent water 
absorption property, hydrogels are prime candidates for various 
applications such as tissue engineering, wound dressing, drug delivery 
systems, sensors, and agriculture[5–11]. In general, sand is an abundant 
natural resource in desert land and has a low water storage capacity, 
which makes sustainable agriculture highly challenging in these dry 
lands. However, some of the current methods used to overcome 
desertification involve various water irrigation systems, such as 
sprinkling, trickling, and/or micro-irrigation of water. However, these 
methods are expensive to install and also require constant maintenance. 
The cultivation of arid dunes needs a huge amount of water and frequent 
irrigation. This is due to the low water-holding capacity of the sand, 
which results in rapid infiltration and quick surface evaporation of 
water. Therefore, hydrogels have been widely employed to enhance the 
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water-holding capacity of sandy soils to realize desert agriculture[12–27]. Among various hydrogels, anionic 
polyacrylamides (PAMs) are the most commonly used system for infiltration control, erosion management, 
and aggregate stabilization in soil[22,28–38]. Since the 1990s, there has been a rapid advancement in PAM 
hydrogel-based agricultural and environmental technologies. The ease of processing and the remarkable 
potency of absorbing huge amounts of water with excellent network integrity largely improve the overall 
efficiency and economies of agricultural and environmental processes[24,39,40]. In addition, the PAM hydrogels 
are inexpensive and highly recyclable. 

Therefore, we report a facile preparation of PAM-coated sand for improved water absorption with 
controlled water release aimed at desert agriculture. The PAM-coated sand samples were prepared by mixing 
the sand particles with a 4 wt% aqueous PAM solution that is pre-mixed with organic cross-linkers of HQ and 
HMT in a 1:1 weight ratio and aqueous KCl solution, and subsequent curing at 150 ℃ for 8 h. The PAM-
coated sand samples were then characterized in detail by FT-IR and XRD for surface coverage. The water 
absorption of the samples was studied by absorption kinetics at various temperatures, and the water release 
was analyzed by water desorption kinetics. The water swelling ratio for the PAM-coated sand has reached a 
maximum of 900% at 80 ℃ within 1 h. The desorption kinetics of the PAM-coated sand showed that the water 
can be stored for up to 72 h. 

2. Materials and method 

2.1. Materials 

Polyacrylamide (PAM) with a Mol. wt. of 550,000 g/mol was purchased from Flotek. The cross-linkers, 
such as hydroquinone, HQ (99% purity), and hexamethylene tetramine, HMT (99% purity), were purchased 
from Loba Chemie. The potassium chloride, KCl, was purchased from Scharlau. The sand particles were 
collected from the deserts of Saudi Arabia. 

2.2. Method 

The sand particles were coated with PAM hydrogel using an in-situ method. The weight percentages of 
PAM, organic crosslinkers (HQ and HMT), and salt were taken from our previous optimized condition[22,31,41]. 
4 wt% PAM solution, 0.3 wt% of HQ and HMT, as well as 2 wt% of KCl. The weights were all based on the 
amount of water used to dissolve the PAM. Hence, the PAM solution required to coat the sand was prepared 
by mixing a specified amount of PAM in DI water for 1 h. Then, the required amount of organic crosslinkers 
and KCl were added and mixed further for another 15 min. Finally, the prepared PAM solution was mixed 
with the sand. Afterwards, the sand mixed with PAM solution was cured at 150 ℃ for 48 h. FTIR and XRD 
studies were performed to analyze the chemistry of the sand-PAM gels. The water absorption capacity of the 
prepared sand-PAM gels was studied by immersing the dried sand-PAM gel beads in water for 48 h. 

2.3. Characterization 

Fourier transform infrared spectroscopy (FT-IR, Thermo Scientific Nicolet-iS10) spectra were used to 
study the chemical structure and surface interaction of sand-PAM hydrogel using attenuated reflectance (ATR) 
mode. The FT-IR spectra for the samples were recorded in the range of 4000–500 cm–1 wavenumbers[40,42–50]. 
The XRD (Rigaku MiniFlex 600) was used to characterize the successful surface coating of PAM hydrogel 
onto the sand[51–53]. The XRD of the samples was measured with Cu radiation [40  kV, 15  mA, Kα radiation 
(1.54 A°)] and recorded in the range of 5–80°[40,46,54,55]. 
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3. Results and discussion 

3.1. Surface interaction of PAM with sand 

The reaction chemistry and mechanism for the formation of PAM hydrogel can be found in our previous 
works[22,31]. The surface interaction between the sand and the PAM matrix, i.e., the success of the sand being 
coated by the PAM hydrogel, was investigated using XRD and ATR-FTIR techniques. Figure 1 depicts the 
XRD patterns of the PAM-coated sand in comparison to neat-sand and neat-PAM. The neat-sand attained sharp 
peaks with high intensity, indicating crystalline structure[56]. Meanwhile, the XRD patterns of the neat-PAM 
did not show the presence of sharp peaks as a result of the amorphous structure of the PAM[57]. Hence, the 
success of the sand coating was evaluated based on the peak intensities depicted for the sand-PAM gels with 
respect to neat-sand and neat-PAM. The absence of some of these peaks of sand and their corresponding 
decrease in intensities indicates the successful coating of the PAM hydrogel matrix onto the sand surface. 

 
Figure 1. The XRD patterns of neat-sand, neat-PAM, and PAM-coated sand. 

Figure 2 illustrates the ATR-FTIR spectrum of the PAM-coated sand in comparison to neat-sand[58] and 
neat-PAM[59]. The neat-PAM depicted the characteristic peaks of PAM, i.e., the C = O bond detected at 1642 
cm–1 and the OH group at 3382 cm–1. At a lower coating thickness, i.e., 5 wt% of the PAM coating thickness, 
the ATR-FTIR spectra of the sand-PAM gel resembled the neat sand, indicating that the amount used to coat 
the sand was not sufficient. Meanwhile, increasing the coating thickness to 15 wt% further, the attained ATR-
FTIR peaks were similar peaks that resembled the neat-PAM. This shows that the sand particles were 
successfully coated with the PAM matrix. 

 
Figure 2. The FTIR spectrum of the PAM-coated sand at different coating thicknesses (a) neat sand, (b) neat PAM, (c) 5wt%, (d) 
15wt%, (e) 25wt%, (f) 30wt%, (g) 50wt%, and (h) 100wt% of PAM to sand. 
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In addition, the peaks detected for the sand-PAM gel shifted slightly compared to the neat-PAM. For 
instance, the C = O bond detected at 1642 cm–1 for the neat-PAM was seen to slightly shift to 1645 cm–1 (i.e., 
15 wt% PAM), 1645 cm–1 (i.e., 25 wt% PAM), 1645 cm–1 (i.e., 30 wt% PAM), 1652 cm–1 (i.e., 50 wt% PAM), 
and 1642 cm–1 (i.e., 100 wt% PAM). Meanwhile, the OH group of the neat-PAM at 3382 cm–1 shifted to 3440 
cm–1 (i.e., 15 wt% PAM), 3384.48 cm–1 (i.e., 25 wt% PAM), 3384 cm–1 (i.e., 30 wt% PAM), 3384 cm–1 (i.e., 
50 wt% PAM), and 3385 cm–1 (i.e., 100 wt% PAM). This redshift (i.e., increased in wavelength) indicates 
there is some kind of interaction between the sand and the PAM molecules, thus confirming the successful 
functionalization of the sand-PAM hydrogel. 

3.2. Water absorption 

The water absorption of the sand-PAM hydrogel was evaluated by immersing the dried samples in excess 
water for 48 h. The swelling ratio of the samples was calculated from the ratio of the weight of the swollen 
sample to that of the initial sample (Equation (1)). 

𝑆𝑤𝑒𝑙𝑙𝑖𝑛𝑔 𝑅𝑎𝑡𝑖𝑜(%) =
𝑤ଶ − 𝑤ଵ

𝑤ଵ
× 100 (1) 

where 𝑤ଶ (g) and 𝑤ଵ (g) are the weights of samples before and after the absorption process, respectively. The 
results obtained are depicted in Figure 3. As evident from the figure, the swelling ratio for the neat PAM 
hydrogel is found to be as high as 12,000%. From the results obtained, it was seen that the water swelling 
ratios of the sand-PAM gel increased with an increase in PAM thickness, i.e., the water swelling was directly 
proportional to the amount of PAM coated on the sand particles. This suggested that the more PAM was used 
to coat the sand, the greater the gel's water absorption capacity due to the PAM’s affinity for the water 
molecules. 

 
Figure 3. Water absorption of (a) neat-PAM and (b) PAM-coated sand at different PAM thicknesses after 48 h of swelling. 

3.3. Water absorption kinetics 

Kinetics analyses of water absorption by sand-PAM hydrogels are beneficial in elucidating the 
mechanism of the absorption process. Figure 4 illustrates the absorption kinetic curves for the sand-PAM 
100wt% at different temperatures of 25 ℃, 50 ℃, and 80 ℃. The kinetic curves were obtained by plotting the 
swelling ratio as a function of contact time for the samples at the respective temperatures. As shown in Figure 
4, the swelling ratio initially increases rapidly with contact time and reaches saturation in about 2 h then 
remains almost constant for up to 6 h. It can be distinctively concluded from the obtained kinetic curves that 
the observed kinetic trends are quite similar for the samples at different temperatures. Interestingly, it was 
observed that the swelling ratio increased with an increase in the temperature. The swelling ratio for sand-
PAM 100wt% reached as high as 900% at 80 ℃ whereas the swelling ratio was found to be only 500% and 
200% at 50 ℃ and 25 ℃, respectively. 
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Figure 4. Water absorption kinetics of the PAM-coated sand at different temperatures. 

3.4. Water desorption kinetics 

Figure 5 illustrates the desorption kinetic curve for sand-PAM at 100 wt% at a temperature of 25 ℃. The 
kinetic curve was obtained by plotting the deswelling ratio as a function of time for the sample at the respective 
temperature. As shown in Figure 5, the swelling ratio initially decreased at faster rates and reached saturation 
in about 25 h then remained almost constant for up to 70 h. This experiment was carried out in open air and 
under ambient conditions. Interestingly, the fabricated sand-PAM hydrogels have the potential for excellent 
water storage, with the most desirable characteristic being extended water release for several hours. 
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Figure 5. Water desorption kinetics of the PAM-coated sand at different temperatures. 

4. Conclusion 
The facile preparation of super-hydrophilic sand by coating the sand particles with cross-linked PAM 

hydrogels for enhanced water absorption and extended water release is reported. 4 wt% of PAM solution is 
mixed with organic cross-linkers in a 1:1 weight ratio and KCl solution. A specific amount of the PAM 

hydrogel solution is added to the sand particles, well mixed, and subsequently cured at 150 ℃ for 8 h. The 

prepared super-hydrophilic sand was characterized by FT-IR for chemical composition and XRD for successful 
polymer coating onto the sand. The FT-IR and XRD results revealed the successful coating of the PAM with 
sand. The water storage for the samples was studied by absorption kinetics at various temperature conditions, 
and extended water release was studied by water desorption kinetics. The water swelling ratio for the super-

hydrophilic sand has reached a maximum of 900% (9 times its weight) at 80 ℃ within 1 h. Water absorption 

is found to be higher at higher temperatures. The desorption kinetics of the samples showed that the water can 
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be stored for up to a maximum of three days. Therefore, super-hydrophilic sand particles were successfully 
prepared by coating them with PAM hydrogels, which have great potential to be used in sustainable desert 
agriculture. 
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