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ABSTRACT 

Among the dental composites, Urethane Dimethacrylate (UDMA) is commonly used as a component in treating 

oral complications. Many molecular dynamics approaches are used to understand the behaviour of the material at room 

temperature as well as at higher temperatures to get a better insight after comparison with experimental values at the 

atomic level. There are three critical physical properties associated with these components, like abrasive wear, viscosity, 

and moduli, which play an essential role in determining the treatment and can be computed using the Large-scale 

Atomic/Molecular Massively Parallel Simulator (LAMMPS), the general-purpose quantum chemistry program package 

(ORCA), and the General Utility Lattice Program (GULP) molecular dynamics methods. A radial distribution function 

plot is generated using visual molecular dynamics (VMD) for UDMA and BisGMA. A comparison of these parameters 

with BisGMA, another component of dental composites, along with experimental results, is carried out in the present 

investigation. Further, since radiation also matters for settling the materials in dental treatment, we have computed 

absorption spectra from 200 nm to 800 nm using LAMMPS/ORCA. 
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1. Introduction 
Abrasive wear normally deals with the loss of material due to 

hard particles that are forced against and move along a solid surface 
and is measured as weight loss (in mg) per number of cycles[1,2]. This 
being associated with the movement of the molecules, we have also 
quantified viscosity and hardness, which are important in the field of 
dental composites and their applications. UDMA, being a component 
of the dental composite, is used regularly because of its flexibility and 
influence on physicomechanical properties[3–13]. For polymer and 
metallic samples, an experimental study has shown that there is a 
distinct correlation between abrasive wear and the cohesive energy of 
materials[14]. To understand the distinct features of the components 
UDMA and BisGMA used in dental composites, we have undertaken 
a molecular-dynamic study of the abrasive wear, viscosity, absorption, 
and moduli of both BisGMA and UDMA of dental resins. Molecular 
dynamics (MD) has been extensively used for the study of dental 
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materials by earlier investigators[15–18]. We have employed a method reported earlier for the computation of 
absorption spectra for polymers using LAMMPS and the ORCA procedure here for computing the same for 
BisGMA and UDMA molecules[19–22]. For this purpose, we have used the Large-scale Atomic/Molecular 
Massively Parallel Simulator (LAMMPS)[23,24] and the General Utility Lattice Program (GULP)[25,26] to 
compute the cohesive energy, viscosity absorption spectra, and elastic constants of UDMA and BisGMA 
molecules. 

2. Material and method 
The UDMA’s chemical name is Urethane Dimethacrylate, and the formula written in smiles as 

CC(CCNC(=O)OCCOC(=O)C(=C)C)CC(C)(C)CNC(=O)OCCOC(=O)C(=C)C[27] and for BisGMA as 
Propane-2,2-diylbis[4,1-phenyleneoxy(2-hydroxypropane-3,1-diyl)] bis(2-methylprop-2-en oate) with smiles 
as CC(=C)C(=O)OCC(COC1=CC=C(C=C1)C(C)(C)C2=CC=C(C=C2)OCC(COC(=O)C(=C)C)O)O. These 
smiles are essential for input to an online program to generate a set of parameter files, which includes *.pdb 
file for LAMMPS, ORCA, and GULP developed by Jorgensen group[28–31]. Using Visual Molecular 
Dynamics (VMD)[32] and *.pdb file generated, with the following command lines in extension/Tkconsole, 
one can create input LAMMPS data files for the molecule UDMA. The LAMMPS script for computing 
cohesive energy, viscosity, heat capacity, and radial distribution function with Linard-Jonnes potential is 
given here, along with the LAMMPS manual, which is essential in the absence of types of bonds, bond 
angles, and dihedral angles, and to write the output for use in the execution of the LAMMPS script. 

topo retypebonds 
topo guessangles 
topo guessdihedrals 
topo writelammpsdata file.data 

#initialization 
units real 
boundary f f f 
atom_style full 
read_data 
udm.data log 
udm_log.dat 

For computing the viscosity of the molecule, the following statement was included in the LAMMPS 
input script: 

#viscosity calculations reset_timestep 0 
variable pxy equal pxy variable pxz equal pxz variable pyz equal pyz 
fix SS all ave/correlate $s $p $d & 
v_pxy v_pxz v_pyz type auto file S0St.dat ave running  
variable scale equal ${convert}/(${kB}*$T)*$V*$s*${dt} 
variable v11 equal trap(f_SS[3])*${scale} 
variable v22 equal trap(f_SS[4])*${scale} variable v33 equal trap(f_SS[5])*${scale} 
thermo_style custom step temp press v_pxy v_pxz v_pyz v_v11 v_v22 v_v33 run 100000 
variable v equal (v_v11+v_v22+v_v33)/3.0 
variable ndens equal count(all)/vol 
print "average viscosity: $v [Pa.s] @ $T K, ${ndens} atoms/A^3" 

For computing the cohesive energy, we have incorporated the appropriate changes in the input script 
and they are: 
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#cohesive energy calculations eset_timestep 0 
fix 1 all box/relax iso 0.0 vmax 0.001 
thermo 10 
thermo_style custom step temp pe lx ly lz press pxx pyy pzz c_eatoms min_style cg 
minimize 1e-25 1e-25 5000 10000 
print "Cohesive energy (eV) = ${ecoh};" print "Temperature = $T K;" 

From the cohesive energy, we could estimate the abrasive wear rate using the linear relationship 
between these two parameters as reported based on experiment data[14] and its temperature variation is shown 
in Figure 1 for both UDMA and BisGMA. A linear fit to the computed abrasive wear rate shows that for 
BisGMA, there is a slight increase with the increase in temperature, which is not so for UDMA. The 
computed values are in the range for some of the polymers determined experimentally[14]. 

 
Figure 1. (a) UDMA and (b) BisGMA molecules used independently for computation. 

For computing the absorption, we have used the software ORCA along with the LAMMPS input script 
file. It has two stages of computing. Firstly, we have to use udma.pdb file to create the input file udma.xyz 
with the following instructions: 

! B3LYP DEF2-SVP Opt 
* xyz 0 1 

#along with fractional coordinates from udma.pdb file and then in the second stage we have to use 

! PBE0 D3BJ RIJCOSX CPCM 
%tddft nroots 50 
maxdim 5 end 
* xyzfile 0 1 udma/udma.xyz* 

for creating absorption data files. Normally for molecules like UDMA and BisGMA, the computation time is 
around 8 to 10 hours on a dual-core desktop computer. To convert the output file into two column files x in 
units of nm and y in arbitrary units, we use the command (./orca_mapspc output.file ABS-w1000) which can 
be used to plot as shown in Figure 2. 

 
Figure 2. Temperature variation of abrasive wear rate for (a) BisGMA and (b) UDMA. 
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From Figure 3, the absorption peak was observed at 273 nm for BisGMA, which is in agreement with 
the experimentally reported value of 230 nm[33]. For UDMA, the absorption starts at 257 nm and is in 
agreement with the experimental observation of the same feature[33]. 

 
Figure 3. Absorption spectra for (a) BisGMA and (b) UDMA. 

The computed viscosity for UDMA is 7.5E-7 Pa-s, and for BisGMA, it is 5.6E-7 at 300 K. The 
experimental value of the viscosity of UDMA is 7.054 (0.005) Pa-s[34] which is rather high. For BisGMA, the 
experimental value is 1200 Pa-s[35] (one poise is 0.1 Pa-s). The viscosity value in BisGMA is due to strong 
hydrogen bonding interactions and π-π interactions, which result in low flexibility. Computation has been 
carried out for 8.98E-6 atoms/A˚3 in the case of BisGMA and 8.6E-6 atoms/AA˚3. As the particle’s volume 
fraction rises, the fluid viscosity increases. Further, there is a scaling factor involved in the LAMMPS 
computation for viscosity[36]. The temperature variation of viscosity for UDMA and BisGMA is shown in 
Figure 4. 

 
Figure 4. Temperature variation of viscosity for (a) UDMA and (b) BisGMA. 

From Figures 2 and 4, it is evident that even though abrasive wear remains constant with temperature 
for both UDMA and BisGMA, viscosity indicates a broad increase, which has till now not been reported. To 
understand this behaviour at the atomic level, we have computed the radial distribution function for both 
UDMA and BisGMA and represented it in Figure 5. 

 
Figure 5. Radial distribution function for (a) UDMA and (b) BisGMA. 
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It is evident from Figure 5 that the first peak in UDMA occurs for an r-value less than that for BisGMA, 
leading to a stronger interaction between the molecules and hence the corresponding behaviour of abrasive 
wear and viscosity. 

Radial distribution function (RDF) can be used to determine the state of the particles in a system. We 
have identified carbon-carbon atoms for the computation of RDF. Figure 5 shows the RDF plot generated 
using VMD[37,38] procedure. 

The GULP program, along with appropriate potential constant parameters, can obtain 21 symmetric 
elastic constants for UDMA, as given in Table 1. Details for the procedure can be obtained from our earlier 
paper[34]. 

Table 1. Computed elastic constants Cij for I, j = 1 to 6. 

0.1109 0.0023 0.0038 0.0377 −0.0079 0.0024 

−0.0032 0.0501 −0.0047 0.0023 0.0065 −0.0166 

−0.0056 −0.0047 0.0102 0.0038 0.0002 0.0061 

−0.0032 0.0023 0.0038 0.0377 −0.0079 0.0024 

−0.0064 0.0065 0.0002 −0.0079 0.0489 0.0051 

−0.0195 −0.0166 0.0061 0.0024 0.0051 0.0562 

For UDMA, Young’s modulus is 0.03 GPa(experimental value being 1.8 Gpa[35] and for BisGMA, it is 
0.06 GPa (experimental value being 3.55 GPa[40]). The spatial variation of these moduli is represented in 
Figure 6. Flexural modulus is Young’s modulus(Y) and Bulk modulus(K) is K = Y/3(1 − 2µ) which can be 
calculated using the experimental value of Y and Poisson’s ratio (µ) and is given in Table 2. 

 
Figure 6. 3-D spatial behaviour young’s modulus in (a) BisGM and (b) UDMA. 

Electronegativity, which defined the tendency of an atom to attract electrons towards itself, has been 
computed and given in Table 2 and is of the same order for BisGMA reported earlier[40]. Self-energy, which 
is the potential energy generated by the electron due to its surrounding environment, is of the same order as 
the BisGMA value. Total lattice energy, which is the energy required to convert one mole into its 
constituents, is greater than what is observed for BisGMA[40]. Human sound P-wave and S-wave velocities 
are 6.0 km/s and 4.00 km/s, which is less than the values for UDMA material. Zero-point energy, which is 
the lowest energy of an electron in a system, is 3.17 eV, which is the value normally observed for polymers. 
The bulk modulus for UDMA agrees with the experimentally reported value. 
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Table 2 . Computed parameters for the molecules UDMA. 

Parameter Comp Expt UDMA 

Electronegativity self energy 
Total lattice energy 
P-wave velocity 

6.62 eV 
26.74 eV 
3942.0 eV 
48.03 km/s 

6.00 km/s 

S-wave velocity 
Zero point energy bulk modulus *(GPa) 

37.82 km/s 
3.17 eV 
0.01 

4.00 km/s 
1.67[35] 

Poisson’s ratio *(GPa) −0.32 - 

* Reuss averaging procedure is used. 

Electronegativity, which defined the tendency of an atom to attract electrons towards itself, has been 
computed and given in Table 2 and is of the same order for BisGMA reported earlier[40]. Self-energy, which 
is the potential energy generated by the electron due to its surrounding environment, is of the same order as 
the BisGMA value. Total lattice energy, which is the energy required to convert one mole into its 
constituents, is greater than what is observed for BisGMA[40]. Human sound P-wave and S-wave velocities 
are 6.0 km/s and 4.00 km/s, which is less than the values for UDMA material. Zero-point energy, which is 
the lowest energy of an electron in a system, is 3.17 eV, which is the value normally observed for polymers. 
The bulk modulus for UDMA agrees with the experimentally reported value. 

3. Conclusion 
Abrasive wear, viscosity, optical absorption, radial distribution function, and elastic constants of 

UDMA have been computed using GULP, VMD, LAMMPS, and ORCA to understand their behaviour while 
they are used in dental treatments. Based on this, the following results emerge from our study: (i) Abrasive 
wear computed using cohesive energy indicates that there is a slight difference between the values for 
BisGMA and UDMA materials, and it is constant for a temperature range of 300 K–600 K. (ii) The value of 
abrasive wear is in the range of experimental values observed for polymers, which are small compared to 
metals. (iii) The experimental and computed absorption spectra of both BisGMA and UDMA are in total 
agreement, which justifies the strength of the computational physics carried out here. (iv) viscosity and its 
temperature variation bring out the differences in the values for BisGMA and UDMA. In both cases, it 
increases with temperature. (v) There is a broad agreement for the computed values of Young’s and Bulk's 
modulus for both UDMA and BisGMA materials with the reported experimental values, and (vi) a 3-D 
representation of Young’s modulus for UDMA and BisGMA shows the changes in the values along the 
different directions within the material. 
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Appendix 
Abrasive wear, viscosity, moduli and absorption spectra of UDMA molecule have been carried out and 

compared with reported experimental values. 

Moduli represented in 3-d space for UDMA and BisGMA are compared. 

Quantified wear and tear of these materials in dental composites will be an added advantage. 


