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ABSTRACT
Control of key technological and benchmark flows of polymer fluids poses many challenges. Some of them are

nowadays under active investigation and rather far from a complete understanding. This review considers such
phenomena as both practically important and governed by fundamental laws of rheology and non-linear fluid mechanics.
We observe shear bands in polymeric and other complex structured fluids (like wormlike micellar solutions or soft
glassy materials), birefrigerent strands, peculiarities of stress and pressure losses in fluids moving through
complex shape domains. These and other processes involve inhomogeneity, instabilities and transient modes in creeping
flows. In practical aspect, this is of interest in such industrial process as polymer flooding for Enhanced Oil Recovery
(EOR), where a flow inhomogeneity affects a polymer solution injectivity and residual oil saturation. The value of
viscoelasticity in the polymer flooding is estimated. The observation is concluded through some new results on
relation between polymer concentration in solutions and viscoelastic traits of benchmark flows.
Keywords: Shear Banding; Birefrigerent Strands; Pressure Losses; Polymer Injectivity; Benchmark Flows

1. Introduction
The aim of this work is to look into some specific

viscoelastic phenomena of polymer fluids that can affect
control of flows. We are going to feature them as both
practically important and governed by common
fundamental laws of rheology and non-linear fluid
mechanics. It is important to emphasize that a great
many complex traits of non-Newtonian flows are not
independent. As suggested by[1], “viscoelasticity, yielding,
flow instabilities and turbulence, flow-induced structures,
shear banding and other types of shear localization, all
these phenomena and more show us various aspects of a
common fate”. Add to this list quasi-periodic regimes of
viscoelastic flows, flows reversals[2,3,4], and bifurcations
in stationary points of flows resulting from the flow
vorticity accumulation in these points[4,5]. We are going
to analyze some of these features and their
interconnections in experimental and industrial
conditions. In addition, some other representatives of the
soft matter - that are partly overlapped with polymeric
materials - will be considered. Such materials as
wormlike micellar surfactant solutions or soft glassy
materials undergo close dynamic processes and reveal
similar behavior.

The first section concerns the feature that is itself a
combination of a number of specific phenomena.

2. Share banding
We consider here formation of share bands, viz., the

zones where the fluid undergoes extremely high strains,
which considerably affects the flow structure and
properties. This phenomenon has been long ago
identified by specialists in geology and oil production.

Review[1] presents share banding as a sophisticated
subject composed of a set of specific nonlinear
phenomena. They are usually connected in a nontrivial
way so that it is not easy to isolate the cause from the
effect in such connections. Herein, these nonlinear traits
are usually so fundamental that they often predetermine
similar behavior of polymeric and soft glassy materials.

The polymeric fluids are often studied in terms of
continuous media mechanics treating soft matter as
sitting in between the ideal Hookean elastic solid, and
the ideal Newtonian viscous fluid. The mechanical
approach, however, is not self-sustained with respect to
such fluids as wormlike micellar surfactant solutions,
polymer solutions, star polymers, emulsions, and the list
goes on. They often have “mesoscopic” constituents with
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the length scale ranging between the molecular and the
flow scales. This combination of mechanical and
structural traits is admitted to be the reason of
shear banding phenomena. They are studied by direct
experimental observations and theoretically by means of
tube models, as well as specific mechanical models with
empiric information. Such information, in particular, can
have a form of diffusive terms accounting for
non-equilibrium transient microscopic restructuring
processes, for example, at the interface between the
shear bands[1,6]. Such are the diffusive Johnson-Segalman
model (d-JS) or the diffusive Giesekus model
(d-Giesekus). A compromise between microscopic and
continuum levels is the Rolie–Poly model. It incorporates
convected constraint release (CCR)[7] and tube stretching.
These models are able to successfully predict a
nonmonotonic constitutive curve, admittedly one of the
principal factors leading to shear banding[1,6,8,9].

The phenomenon is often a rich source of elastic
instabilities, like any flow feature involving large
strains[3]. It can provide rather specific forms of
instability, for example, jetting behavior of flows in
rectangular channels[10]. The principal hitherto observed
features of the instabilities induced by gradient and
vorticity bandings are: significant role of the normal
stresses gap across the bands interface, important value
of coupling to concentration of the fluid constituents, the
possibility of “narrowly localized but still unsteady
interfaces”[11].

Note the results of work[12] considering instability
of the Johnson-Segalman fluid involved in the Couette
flow with share banding. The profiles of the velocity
perturbations depicted in this work’s Figure 5 look
surprisingly similar to the distributions of velocity of the
accelerating Couette Upper Convected Maxwell flow
presented in Figure 7 of[13] even though these two flows
stay far apart. This is likely to point to ubiquitous
character of basic viscoelastic phenomena
(concurrency between the elastic factor and the
dissipation of the mechanical movement energy).

The soft glassy materials (SGM) involve “a
distribution of mesoscopic fluid elements that hop from
trap to trap at a rate which is enhanced by the work done
to strain the fluid element”[14]. From this perspective,

shear banding is therefore treated as a flow-induced
transition of fluid elements (i), or mutual effects of shear
and attractive interactions between the fluid elements (ii),
or interaction between the flow and concentration of the
fluid constituents (iii), The last point may show up in the
form of fragmentation of an initially solid sample
into blocks separated by fluidized regions. Other features
of shear banding in flows of SGM are significant wall
slip and sophisticated time-dependent flows restructuring.
For example, the Couette flow can involve intermittent
switching from plug-like flow to linear velocity
profiles[15].

Typical soft glassy materials revealing complex
heterogeneous flow behavior are glassy colloidal star
polymers and Laponite suspensions. The latter are
defined as “a synthetic clay of the hectorite type made of
heavily charged disc-shaped particles of diameter 25–30
nm, thickness 1 nm, and density 2.5 g·cm−3 ”[15].

3. Birefrigerent strands
Unlike shear bands – identified by high shear rate

interfaces – birefrigerent strands are flow zones of
anomalously high stresses located in the flow down the
local zones of significant fluid strains[16]. Because of
limited relaxation time in a viscoelastic fluid, such zones
are often go far downstream from the sources of high
strains (obstacles, stagnation points etc.). The
contraction/expansion flows where this phenomenon is
observed are encountered in a number of important
physiological and industrial processes[17], “including
porous media flow, which is relevant to Enhanced Oil
Recovery”[18]. Enhanced Oil Recovery is covered in
Section 4.

Birefrigerent strands in conjunction with
microfluidic oscillating stagnation flows (cf. Section 5)
are considered in paper[18]. In such flows multiple
stagnation points along the stream are observed. The
situation is close to conditions in porous media. It turns
out that the lower a stagnation point down the flow, the
more distinct the strand near it is (in terms of higher local
viscosity and enhanced pressure drop). This is
explained by the transfer of pre-stretched material from
one stagnation point to another thus facilitating further
stretching downstream.

The cross-slot experiments were performed with
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0.03 wt. % solutions of atactic polystyrene (aPS) in
dioctyl phthalate (DOP). As “DOP is a fairly viscous (η
= 0.046 Pa·s) theta solvent for aPS at close to room
temperature”[18], the mixture proved fairly viscous and
elastic.

Mention the value of finite polymer extensibility in
highly strained flows. As reported in work[19], it is
supposed to be the reason of such specific phenomenon
as back switch from turbulent to laminar regime in
creeping highly elastic flows.

Apparently, account of limited extensibility is also
important in theoretical and numerical studies. For this,
in particular, the Finitely Extensible Nonlinear Elastic
(FENE) model is highly applicable nowadays to the
flows with birefrigerent strands.

One more point of computational studies is failures
to reach convergence of numerical solutions in high
deformation zones. This sometimes results from
improper omission of convective terms in rheological
models and the momentum equation when a highly
elastic fluid flow is considered “inertialess”. With respect
to such structural elements as birefrigerent strands,
convective terms may be of order of other terms because,
however slow a flow is, the space derivatives of
velocities are high enough in the relevant zones. This
point is discussed in much detail in[4,20,21].

4. Pressure losses of flows in
complex domains

Choice of a correct value of the pressure is often
crucial in situations of complex flows. Correct pressure
is necessary to ensure an optimal chemical regime of
polymerization[22]. High flow rates of polymer melts in
dies and molds sometimes require pressure as high as
100 MPa[23]. It is natural to seek opportunities of
escaping exceptional costs on setting too high pressure.
In this, the pressure needed for optimal organization of
the flow significantly depends in many cases on viscous
and elastic forces inside a flow. This dependency is thus
an important research subject.

Such is the case of viscoelastic flows in capillaries.
As per paper[24], however simple capillaries’ geometry is,
it poses rather complicated problems in
setting/determination of pressure inlet-outlet losses. Due
to small cross-section area, high strains are developed in

the flow. This invokes significant viscoelastic features so
that the shear stresses and the pressure needed to
compensate them depend upon the relation between the
period of the flow restructuring and the polymer
relaxation time. According to the authors of the cited
paper, correct choice of the pressure requires
construction of a universal dependency between pressure
losses and the fluid macrostructures relaxation time. In
this, consideration of continuous spectrum of the
relaxation times is needed[25] based on thorough
measurements and precise and sophisticated
mathematical models.

A very different example of viscoelasticity
manifestation in dynamic conditions is motion of water
in topologically complex domains. Such are branched
Y-shaped pipelines made of high density polyethylene
(HDPE) and conducting water[26,27]. Action of water
hammers can bring about pressure waves whose behavior
evidently requires strict control. Under the highly
changeable pressure, the material of a tube turns out to
reveal viscoelastic behavior. Account of viscoelasticity
makes it possible to determine very refined patterns of
flows propagation and reflection to ensure pressure
control in practice.

5. Flooding in oil industry
The above considered point of pressure losses play

a significant economic role in oil production: “the energy
required to transport heavy viscous crude oil in long
pipes can be considerably reduced by the addition of
small amounts of water to the crude resulting in reduced
pumping costs”[28].

Another way to diminish pressure losses is to
reduce the oil viscosity by addition of surfactant and
stabilizing polymer components. Significant results on
diminishing viscosity of heavy oils by this way are
reported in[29].

Enhanced Oil Recovery (EOR) is a regular effective
technique in oil industry. It aims at increase of the
amount of crude oil that can be extracted from an oil
field. Present some conclusions of survey[30] that
provides comparative analyses of EOR based on water
and polymer flooding. One of the main points of this
work is as follows: “Because it has a higher success rate,
polymer flooding is the most commonly applied
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chemical EOR technique”. This survey suggests that it is
viscoelasticity that plays significant role in EOR with
polymer flooding. This is confirmed by[31].

Four mechanisms to reduce residual oil saturation
specific for a viscoelastic polymer solution have been
identified. They are:
1. the pulling mechanism,
2. the stripping mechanism,
3. the mechanism of the oil-thread flow,
4. the mechanism of the shear-thickening effect.

Consider in more detail the third and fourth
mechanisms as being the most specific for viscoelastic
mixtures.

The third mechanism consists in formation of
down-flowing oil threads out of the residual oil and onset
of oil banks as a result of their interaction with the oil
flowing up. The normal force of viscoelastic polymer
solution “helps the oil thread to maintain its uniform
cylindrical shape that prevents breakage”[30].

The fourth mechanism, the most crucial, is due to
significantly elongational or extensional nature of a
polymer solution flow past the structures of a porous
medium yielding high shear rates. According to the
survey, if the polymer is viscoelastic the apparent
viscosity is increased (dilatant behavior). Experiments
with polyacrylamide detected this behavior in porous
materials, while it was not observed in rheometric flows
at comparable shear rates

Likewise, in industrial polymer flooding apparent
viscosity of a polymer solution is increased in
high-permeability zones. The solution is therefore
directed into low-permeability zones thus improving the
sweep efficiency.

It is of interest to look into the reasons of the
apparent viscosity increase and manifestation of
viscoelasticity in general. In that regard, mention
research[32], whose subject matter is a purely elastic
instability of viscoelastic flows in complex small
channels. An interesting mechanism of elastic energy
accumulation has been observed there. The thing is that a
streamline obviously follows the shape of the
channel’s boundary the more closely, the closer it is to
the boundary. At the same time, the further the streamline
from the boundary, the smoother it is, the less it
“preserves the image of the boundary”. Thus, the shapes

of adjacent streamlines are different. When a
macromolecule moves along such streamlines, it gets
strained, for different parts of the molecule move
differently. The elastic energy is thus accumulated. That
not only brings about instability of the flow with small
inertia, but also increases the apparent viscosity. This
is because a strained macromolecule applies higher
resistance to the flow. In this way, the apparent viscosity
rises to bring about dilatant behavior.

Note that a similar microstructural mechanism, a
coil-stretch transition, proved a salient feature of
stagnation flows[33]. In particular, it may be responsible
for formation of vortices at some stages of the flows.
Two kinds of the stagnation flows will be considered in
Section 5.

Materials used in polymer flooding. As per [30],
synthetic polymers and biopolymers are mostly used in
this field, with typical synthetic polymers being partially
hydrolyzed polyacrylamide (HPAM) and its derivatives,
and a typical biopolymer being xanthan gum. The most
of the field projects use HPAM due to its low cost and
greater viscoelasticity compared to the xanthan solutions.
This work also discusses use of such materials as
salinity-tolerant polyacrylamide (KYPAM),
2-acrylamide-2-methyl propane-sulphonate (AMPS), and
cross-linked polymer gels in various aspects.

Close the EOL topic by mentioning some
limitations of polymeric materials. They may undergo
physical and mechanical degradation, perform worse at
high salinity and high temperatures[34]. In that regard,
wormlike micellar solutions are a perspective alternate to
polymers in EOL. Having advantages of viscoelasticity
and free from most of the polymers’ limitations, they are
expected to have edge over polymers[35].

6. On quasi-periodic nature of
viscoelastic flows with Newtonian
components

Lastly, we will consider some specific traits
of benchmark viscoelastic flows, in particular, onset of
secondary flows and oscillatory regimes in their
dependence on injection of a Newtonian component.

The already cited survey[30], among other aspects of
Enhanced Oil Recovery with viscoelastic polymer fluids,
discusses the facility problems related to such
viscoelastic feature of polymer solutions flows as
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development of oscillations. Oscillating stresses cause
the pump to vibrate so that, to mitigate the vibration, an
increase of the main pipe size is needed. However,
viscoelastic behavior of a polymer solution turns out to
decrease with an increase of the solvent concentration
and vice versa.

In this connection, regard now arising of oscillatory
vortex-like structures in benchmark flows of viscoelastic
mixtures as well as influence of a Newtonian solvent on
such flows. Earlier this problem was investigated for the
counterflows in cross slots[3,4] (Figure 1, right part). The

rheology was described by the models that proved
precise in simulation of benchmark flows. The case of a
mono-component fluid was simulated by upper
convected Maxwell (UCM) constitutive state equation[3,5].
To describe injection of a Newtonian component
Oldroyd-B model was used. Work[3] suggests “that even
minimum viscosity of a Newtonian solvent present in the
fluid can ‘extinct’ (partly or totally) the oscillatory
phenomena brought to the mixture by a viscoelastic
component”.

Figure 1; Forms of two benchmark flows of viscoelastic fluid: flow against a wall and counterflows within cross slots.

Another benchmark case, a viscoelastic flow against
a wall (Figure 1, left part) was also previously studied
for a mono-component fluid meeting the upper
convected Maxwell rheological model[4,21]. Present
results of this benchmark flow numerical simulation
when the fluid is a polymer-solvent mixture.

Problem statement. We thus consider a flow along
a horizontal slot (Figure 1, left part) reaching the wall of
a vertical one to spread over it. In terms of the
dimensionless variables normalized on the problem
natural scales (asymptotic stationary inlet pressure pinlet ,
the fluid density ρ, the velocity scale U = , and the
horizontal slot semi-width d), together with the
momentum and continuity equations (here and later, the
Einstein notation is used meaning summation on the
repeated indices)

iji i
j

j i j

v v pv
t x x x

  
   
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0i

i

v
x



 , (2)
, 1,2i j  ,

we will use two rheological models.
Oldroyd-B model (cf.[3]) describes a mixture of a

polymer component (p) and a Newtonian solvent (s) with
viscosity

  s p    . (3)
The solvent’s viscosity obeys the Newtonian law:

1
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For the polymer viscosity, we have the Maxwell
rheological state equation:
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Here the upper convected Maxwell derivative of the

stress tensor is

, , , 1,2.
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The Reynolds numbers for the solvent and polymer

components, and the polymer Deborah number are

inletp

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expressed through the correspondent viscosities and the
polymer elastic relaxation time ϑp, respectively:

, , .
Upper convected Maxwell (UCM) model is actually

the Oldroyd-B model applied to a mono-component fluid
with :

1 1 , , 1,2.
i j

ij
ij j i

D v v i j
Dt De Re De x x



  

      
(7)

As initial conditions, zero values are set for all the
dependent variables.

Boundary conditions consist in no-slip constraints
at the walls uwall = vwall = 0, setting the outlet pressure to
0, and increase of the inlet pressure from 0 up to 1 on the
exponential law to reach stationary flow conditions:

( ) 1 exp( )inletp t t   .
The numerical results below are all obtained for α =

1. Varying α did not principally change the results. When
6.5t   , then the time derivative of the inlet pressure

is less than 0.15% of its initial value. So later on, the
flow conditions are considered near-stationary.

System of equations (1)-(7) with the initial
and boundary conditions was solved by means of the
numerical procedure described in detail in[4,20]. It is
essentially based on pressure correction method.

As with the counterflows[3,4], it took this flow
significantly more time - compared to τ - to get stabilized
with moderate and high Deborah numbers. During the
stabilization, the spread also involved flow reversals. So
that the flow resembled a freely oscillating elastic spring.
This is illustrated in Figure 2: its left and right parts
show the flows moving in opposite directions. The
middle part presents the change in direction
accompanied by a significant decrease of the fluid
inlet/outlet volume fluxes, and arising of large-scale
circular structures. Some residual vortices may persist
for certain time after the flow reversal as seen in the
figure right part.

Figure 2; Flow reversal: three snapshots of the Oldroyd-B fluid spreading on the wall. Rep = 0.1, Res = 5, De = 4; t = 1, 1.9, 2.1.

A classical work on computational fluid
mechanics[36] suggests using the so-called diagnostic
functionals to describe integral characteristics of flows. It
proved useful to characterize the degree of the numerical
solutions non-stationarity by a functional

,

1 ij ij

i j

u v
F t

P t t
  

    
( )

(8)
expressed through the partial time derivatives of the
velocities mesh node values. P is the total number of the
nodes. The time dependencies of this functional are
shown in Figure 3 (blue curves for the Oldroyd-B fluid).
The figure also shows dependencies of the fluid volume

fluxes through the inlet section (magenta curves are for
the Oldroyd-B fluid). Evidently, those two kinds of
dependencies are closely correlated: at the times of the
fluxes’ local minima and maxima the flow is mostly
stationary and stable, whereas when the fluxes values are
somewhere midway between their extrema, the flow
reaches the highest degree of non-stationarity. Its
structure is most complicated, in particular, because of
the circular structures. We can also see that not every
fluxes’ local maximum brings about a flow reversal. This
only happens to the Oldroyd-B fluids with Res 5, 10, and
100. With lower Reynolds numbers, or higher viscosities

/s sRe Ud  /p pRe Ud 

 ,  ,  0p p sRe Re     
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of the solvent relative to the polymer component
( 0.1/p sRe Re  ), the non-stationarity functional has
weak oscillations, and the flux has no oscillations at all.
It turns out that still lower relative viscosities of the
solvent ( 0. 2/ 0p sRe Re  ) result in a non-oscillating
flux.

Therefore, injection of a low-viscous Newtonian
solvent is able to substantially suppress dynamic elastic
features of the flow. This conclusion is close to the
situation of another benchmark task, the counterflows
within the cross slots, as pointed out above.

Figure 3; Time dependencies of the non-stationarity

functional (8) (solid lines) and inlet fluid volume fluxes

(dashed lines). The blue solid lines (in ascending order) and

magenta dashed lines (in descending order) correspond to

Oldroyd-B fluids with De=4, Rep=0.1, and Res respectively, 0.1,

1, 5, 10, 100. The red (top and bottom) lines are pertinent to the

UCM fluid with De=4, Re=0.1.

The conclusion is also close to the statement
from[28]. This book, in particular, presents a
quasi-periodic behavior of a viscoelastic fluid Poiseuille
flow in terms of UCM and Oldroyd-B models and refers
to a number of experimental works with direct
observations of these phenomena. It suggests: “Even a
small Newtonian viscosity component can considerably
diminish the resonance amplitude, especially for small
tube radii, which is interpreted as the result of viscous
damping”.

We will state, therefore, that significant suppression
of viscoelastic oscillatory behavior by a small portion of
a Newtonian solvent can be thought of as a universal trait
of viscoelasticity. Evidently, this may be of practical
interest in the technological processes where stability and
regularity of flows are important.

Peculiarities of the UCM fluid flow. As seen in
Figure 3, all the five curves of the non-stationarity

functional (8) for the Oldroyd-B fluid tend to zero, which
means that the flows reach a stationary state after
establishing stationary flow conditions. However, this is
not the case of the upper curve corresponding to the
UCM fluid. Tending to get stabilized at the beginning,
later on (at t >12) the UCM fluid flow becomes less and
less stationary.

Figure 4; Time dependencies of the non-stationarity

functional (8) for the UCM fluid flow with De=4, Re=0.1. The

calculations are performed on mashes of different fineness: 900,

1296, 1600 nodes in order of the curves increase.

This curve is also shown in Figure 4 together with
two more curves obtained with the domain partitions of
other fineness. Therefore, the rate of non-stationarity rise
depends significantly on the computational procedure.
Figure 5 shows the flow field in the vicinity of the
stagnation point at the wall, the region of high strains. It
contains a number of small-scale vortex-like structures.
Further calculation, up to t=30, resulted in a burst of
instability.

Figure 5; Vicinity of the stagnation point of very

non-stationary UCM fluid flow. De=4, Re=0.1, t=20. The

computational mesh is 1600 nodes.
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Presently it is hard to figure out whether this is a
natural or computational instability. In fact, it might be a
loss of computational solution depending on numerical
configuration because three curves related to three
different domain partitions look differently. Much more
mesh sizes were actually tried, and they also gave
different rates of non-stationarity functional increase (or
no increase at all).

However, all the curves almost coincide up to some
point ( ). Later on, the curves still look smooth
enough. In that regard, there is a possibility that the
difference in the curves rise might be due to emergence
of small-scale vortices. The finer the mesh, the more
precisely they can be apparently described by the
numerical solution to make the curve grow more
intensively. If there emerges a cascade of vortices with
different scales, the observed behavior may indicate
development of elastic turbulence[37]. This sophisticated
point is worth further detailed investigation.
7. Conclusion

In this manner, by considering five important
subjects of modern rheology we try to extend the point
formulated at the beginning: phenomena encountered in
complex fluids flows are often mutually connected and
governed by common laws of viscoelastisity. The variety
of the traits involved is underlain by the variety of the
scales a complex fluid elastic constituents have. The
scales range between the molecular and the flow levels.
In this, the variety of relationships between elastic and
viscous factors is material-specific.

As a result, we can observe shear bands when the
flow curve of a viscoelastic material is non-monotonic.

Specific manifestation of viscoelasticity in zones of
high strain formed by obstacles, stagnation points or in
porous media gives rise to anomalies and instabilities in
such zones. Due to finite relaxation times in the fluid,
these zones often spread downstream, and interact with
one another.

When a special form of the flow domain dictates
non-stationary restructuring of the whole of the flow (the
case of capillaries), to account for elastic forces very
precise knowledge of relaxation times – their spectrum –
is needed.

In various experimental and industrial situations,
manifestation of viscoelasticity essentially depends on

the presence of a Newtonian solvent. The ability of
solvents to effectively “extinct” viscoelastic traits seems
to be their universal hallmark.

The main point of this work can therefore be
formulated as follows: good understanding of
viscoelasticity fundamental nature is a key to
understanding of a large variety of polymeric and other
complex fluids behavior. It also provides means to
control many industrial processes.
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