Application of vegetable oil-based biopolyols in manufacturing of rigid polyurethane foams – Short review
Vol 1, Issue 1, 2018
VIEWS - 882 (Abstract) 567 (PDF)
Abstract
Full Text:
PDFReferences
1. Statista.com [Internet, 30.01.2017]. Global plastic production from 1950 to 2015 (in million metric tons), https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/
2. Plasticseurope.org [Internet, 30.01.2017]. Plastics – the Facts 2015, http://www.plasticseurope.org/documents/document/20151216062602-plastics_the_facts_2015_final_30pages_14122015.pdf
3. Ekonomia.rp.pl [Internet, 27.02.2015]. Rośnie popyt na tworzywa sztuczne w Polsce, http://www.ekonomia.rp.pl/artykul/1111287.html
4. Utech-polyurethane.com [Internet, 27.02.2015]. Shifting production in CASE market highlighted at conference, http://utech-polyurethane.com/information/shifting-production-in-case-market-highlighted-at-conferencecase/
5. Ialconsultants.com [Internet, 30.01.2017]. Polyurethane chemicals and products in Europe, Middle East & Africa (EMEA), 2014, http://www.ialconsultants.com/uploads/CUBE_press_release/2014-09-30/polyurethane_EMEA_press_release_2014.pdf
6. Polyurethanes.org [Internet, 30.01.2017]. More facts and figures, http://www.polyurethanes.org/en/what-is-it/fact-figures/more-facts-and-figures
7. Plastemart.com [Internet, 27.02.2015]. Global PP foams market growing at CAGR of 11%, PU foams market at CAGR of 6.9% from 2013 to 2018, http://www.plastemart.com/Plastic-Technical-Article.asp?LiteratureID=2070&Paper=global-Polypropylene-polyurethane-PP-PUFoams-market-2013-to-2018
8. Sipur.pl [Internet, 30.01.2017]. Oszczędność energii a ochrona środowiska, http://sipur.pl/rola_izolacji/oszczednosc_energii/
9. Eko-pur.pl [Internet, 12.03.2015]. Pianka poliuretanowa – wszechstronny materiał izolacyjny, http://www.eko-pur.pl/pianka-poliuretanowa.htm
10. organika.pl [Internet, 12.03.2015]. Aneks nr 1 z dnia 13 lutego 2014 r. do Memorandum Informacyjnego Obligacji na okaziciela serii D Malborskich Zakładów Chemicznych „Organika” S.A., s. 7, www.organika.pl/files/dokument2014.pdf
11. globenewswire.com [Internet, 27.02.2015]. Bio-Based Polyurethane (PU) Market Analysis By Product (Rigid Foams, Flexible Foams, CASE), By End-Use (Furniture & Interiors, Construction, Automotive, Footwear) And Segment Forecasts To 2020: New Report By Grand View Research, Inc, http://globenewswire.com/news-release/2015/01/12/696610/10114872/en/Bio-Based-Polyurethane-PU-Market-Analysis-By-Product-Rigid-Foams-Flexible-Foams-CASE-By-End-Use-Furniture-Interiors-Construction-Automotive-Footwear-And-Segment-Forecasts-To-2020-N.html
12. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC (23.04.2009).
13. ec.europa.eu [Internet, 2015.06.25]. The 2020 climate and energy package, http://ec.europa.eu/clima/policies/package/index_en.htm.
14. Bogoczek R, Kociołek-Balawejder E. Technologia chemiczna organiczna, surowce i półprodukty [M]. Wrocław: Wydawnictwo Akademii Ekonomicznej we Wrocławiu, 1992.
15. Petrović Z. Polyurethanes from vegetable oils [J]. Polym. Review., 2008, 48: 109-155.
16. Prociak A. Properties of polyurethane foams modified with natural oil-based polyols [J]. Cell. Polymer., 2007, 26: 381-392.
17. Lee C S, Ooi T L, Chuah C H, et al. Rigid polyurethane foam production from palm oil-based epoxidized diethanoloamides [J]. J. Amer. Oil Chem. Soc., 2007, 84: 1161-1167.
18. Chian K S, Gan L H. Development of a rigid polyurethane foam from palm oil [J]. J. Appl. Polym. Sci., 1998, 68: 509-515.
19. Zlatanic A, Javni I, Ionescu M, et al. Polyurethane molded foams with high content of hyperbranched polyols from soybean oil [J]. J. Cell. Plast., 2015, 51: 289-306.
20. Zlatanic A, Lava C, Zhang W, et al. Effect of structure on properties of polyols and polyurethanes based on different vegetable oils [J]. J. Polym. Sci B: Polym. Phys., 2004, 42: 809-819.
21. Ionescu M. Chemistry and Technology of Polyols for Polyurethanes [M]. Shawbury, Shrewsbury, Shropshire: Rapra Technology Limited, 2005.
22. Sharma V, Kundu P P. Condensation polymers from natural oils. Prog. Polym. Sci., 2008, 33: 1199-1215.
23. Lye O T, Ahmad S, Hassan H A, et al. An Overview of R&D in Palm Oil-Based Polyols and Polyurethanes in MPOB [J]. Palm Oil Dev., 2006, 44: 1-7.
24. Lligadas G, Ronda J C, Galia C, et al. Oleic and undecylenic acids as renewable feedstocks in the synthesis of polyols and polyurethanes [J]. Polym., 2010, 2: 440-453.
25. Wang C, Zheng Y, Xie Y, et al. Synthesis of bio-castor oil polyurethane flexible foams and the influence of biotic component on their performance [J]. J. Polym. Res., 2015, 22: 145
26. Haponiuk J T, Hejna A, Piszczyk Ł. Wykorzystanie surowców odnawialnych i odpadowych w syntezie poliuretanów [J]. Elastomery, 2014, 18: 21-30.
27. Prociak A. Poliuretanowe materiały termoizolacyjne nowej generacji [M]. Kraków: Wydawnictwo Politechniki Krakowskiej, 2008.
28. Vlcek T, Petrovic Z S. Optimization of the chemoenzymatic epoxidation of soybean oil [J]. J. Amer. Oil Chem. Soc., 2006, 83: 247-252.
29. Szałajko U, Fiszer S. Modyfikacja chemiczna olejów roślinnych w aspekcie ich wykorzystanie w produkcji paliw silnikowych i środków smarowych [J]. Przem. Chem., 2003, 82: 18-21.
30. Chen R, Zhang C, Kessler M R. Polyols and polyurethanes prepared from epoxidized soybean oil ring‐opened by polyhydroxy fatty acids with varying OH numbers [J]. J. Appl. Polym. Sci., 2015, 132: 41213.
31. Zhang C, Ding R, Kessler M R. Reduction of epoxidized vegetable oils: a novel method to prepare bio-based polyols for polyurethanes [J]. Macromol. Rapid Commun., 2014, 35: 1068-1074.
32. Karadeniz K, Aki H, Sen M Y, et al. Ring Opening of Epoxidized Soybean Oil with Compounds Containing Two Different Functional Groups [J]. J. Am. Oil Chem. Soc., 2015, 92: 725-731.
33. Sinadinovic-Fiser S, Jankovic M, Petrovic Z S. Kinetics of in situ epoxidation of soybean oil in bulk catalyzed by ion exchange resin [J]. J. Amer. Oil Chem. Soc., 2001, 78: 725-731.
34. Gu R, Konar S, Sain M. Preparation and characterization of sustainable polyurethane foams from soybean oils [J]. J. Am. Oil Chem. Soc., 2012, 89: 2103-2111.
35. Petrovic Z S, Zlatanic A, Lava C C, et al. Epoxidation of soybean oil in toluene with peroxoacatic and peroxoformic acids – kinetics and side reactions [J]. Eur. J. Lipid Sci. Technol., 2002, 104: 293-299.
36. Campanella A, Bonnaillie L M, Wool R P. Polyurethane foams from soyoil-based polyols [J]. J. Appl. Polym. Sci., 2009, 112: 2567-2578.
37. Guo A, Cho Y, Petrovic Z S. Structure and properties of halogenated and nonhalogenated soy-based polyols [J]. J. Polym. Sci. Part A: Polym. Chem., 2000, 38: 3900-3910.
38. Pawlik H, Prociak A, Pielichowski J. Synteza polioli z oleju palmowego przeznaczonych do otrzymywania elastycznych pianek poliuretanowych [J]. Czasopismo Techniczne, 2009, 106: 111-117.
39. Petrovic Z S, Guo A, Javni I, et al. Polyurethane networks from polyols obtained by hydroformylation of soybean oil [J]. Polym. Int., 2008, 57: 275-281.
40. Vanbesien T, Monflier E, Hapiot F. Hydroformylation of vegetable oils: More than 50 years of technical innovation, successful research, and development [J]. Eur. J. Lipid Sci. Technol., 2016, 118: 26-35.
41. Alagi P, Hong S C. Vegetable oil-based polyols for sustainable polyurethanes [J]. Macromol. Res., 2015, 23: 1079-1086.
42. Kandanarachchi P, Guo A, Petrovic Z S. The hydroformylation of vegetable oils and model compounds by ligand modified rhodium catalysis [J]. J. Mol. Catal. A-Chem., 2002, 184: 65-71.
43. Kandanarachchi P, Guo A, Demydov D, et al. Kinetics of the hydroformylation of soybean oil by ligand-modified homogenous rhodium catalysis [J]. J. Amer. Oil Chem. Soc., 2002, 79: 1221-1225.
44. Guo A, Demydov D, Zhang W, et al. Polyols and polyurethanes from hydroformylation of soybean oil [J]. J. Polym. Environ., 2002, 10: 49-52.
45. Petrovic Z S, Zhang W, Javni I. Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis [J]. Biomacromolecules, 2005, 6: 713-719.
46. Tran P, Graiver D, Narayan R. Ozone-mediated polyol synthesis from soybean oil [J]. J. Amer. Oil Chem. Soc., 2005, 82: 653-659.
47. Graiver D, Tran P, Laura P, et al. Degradable Polymers and Materials. Principles and Practice [M]. New York: Oxford Univ. Press, 2005.
48. Desroches M, Escouvois M, Auvergne R, et al. From vegetable oils to polyurethanes: Synthetic routes to polyols and main industrial products [J]. Polym. Rev., 2012, 52: 38-79.
49. Desai S D, Patel J V, Sinha V K. Polyurethane adhesive system from biomaterial-based polyol for bonding wood [J]. Int. J. Adhes. Adhes., 2003, 23: 393-399.
50. Ibrahim S, Ahmad A, Mohamed N S. Synthesis and characterization of castor oil-based polyurethane for potential application as host in polymer electrolytes [J]. B. Mater. Sci., 2015, 38: 1155-1161.
51. Schuchardt U, Sercheli R, Vargas R M. Transesterification of vegetable oils: A review [J]. J. Brazil. Chem. Soc., 1998, 9: 199-210.
52. Hoydonckx H E, Vos D E D, Chavan S A, et al. Esterification and transesterification of renewable chemicals [J]. Topics in Catalysis, 2004, 27: 83-96.
53. Somani K, Kansara S, Parmar R, et al. High solids polyurethane coatings from castor-oil-based polyester-polyols [J]. Int. J. Polym. Mater. Po., 2004, 53: 283-293.
54. Tanaka R, Hireose S, Hatakeyama H. Preparation and characterization of polyurethane foams using palm oil-based polyol [J]. Bioresource Technol., 2008, 99:3810-3816.
55. Hejna A, Kosmela P, Klein M, et al. Two-step Conversion of Crude Glycerol Generated by Biodiesel Production into Biopolyols: Synthesis, Structural and Physical Chemical Characterization [J]. J. Polym. Environ., 2018, doi: 10.1007/s10924-018-1217-4
56. Pielichowski J, Marek M, Prociak A. Możliwości wykorzystania gliceryny w doborze składu piankowych układów poliuretanowych [J]. Polimery, 2005, 50: 723-727.
57. Guo A, Javni I, Petrovic Z. Rigid polyurethane foams based on soybean oil [J]. J. Appl. Polym. Sci, 2000, 77: 467-473
58. Malewska E, Bąk S, Kurańska M, et al. The effect of various rapeseed oil-based polyols on selected properties of flexible polyurethane foams [J]. Polimery, 2016, 61: 799-806.
59. Zieleniewska M, Leszczyński M K, Kurańska M, et al. Preparation and characterisation of rigid polyurethane foams using a rapeseed oil-based polyol [J]. Ind. Crop. Prod., 2015, 74: 887-897.
60. Prociak A. Właściwości termoizolacyjne sztywnych pianek poliuretanowych syntetyzowanych z udziałem polioli z olejów roślinnych [J]. Polimery, 2008, 53: 195-200.
61. Tu Y C, Kiatsimkul P, Suppes G, et al. Physical properties of water-blown rigid polyurethane foams from vegetable oil-based polyols [J]. J. Appl. Polym. Sci., 2007, 105: 453-459.
62. Narine S S, Kong X, Bouzidi L, et al. Physical properties of polyurethanes produced from polyols from seed oils: II. Foams [J]. J. Amer. Oil Chem. Soc., 2007, 84: 65-72.
63. Septevani A A, Evans D A C, Chaleat C, et al. A systematic study substituting polyether polyol with palm kernel oil based polyester polyol in rigid polyurethane foam [J]. Ind. Crop. Prod., 2015, 66: 16-26.
64. Zhang L, Zhang M, Hu L, et al. Synthesis of rigid polyurethane foams with castor oil-based flame retardant polyols [J]. Ind. Crop. Prod., 2014, 52: 380-388.
65. Li Q F, Feng Y L, Wang J W, et al. Preparation and properties of rigid polyurethane foam based on modified castor oil [J]. Plast. Rubber Compos., 2016, 45: 16-21.
66. Hejna A, Kosmela P, Kirpluks M, et al. Structure, Mechanical, Thermal and Fire Behavior Assessments of Environmentally Friendly Crude Glycerol-Based Rigid Polyisocyanurate Foams [J]. J. Polym, Environ., 2017, doi: 10.1007/s10924-017-1086-2
67. Hejna A, Kirpluks M, Kosmela P, et al. The influence of crude glycerol and castor oil-based polyol on the structure and performance of rigid polyurethane-polyisocyanurate foams [J]. Ind. Crop. Prod., 2017, 95: 113-125.
68. Ionescu M, Radojcic D, Wan X, et al. Highly functional polyols from castor oil for rigid polyurethanes [J]. Eur. Polym. J. 2016, 84: 736-749.
DOI: https://doi.org/10.24294/jpse.v1i1.648
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Journal of Polymer Science and Engineering
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.