Application of vegetable oil-based biopolyols in manufacturing of rigid polyurethane foams – short review

Aleksander Hejna

Article ID: 648
Vol 1, Issue 1, 2018

VIEWS - 1129 (Abstract) 436 (PDF)

Abstract


The development of polyurethane foams’ market, as well as ongoing trends associated with sustainable development cause increasingly growing interest in the utilization of materials from renewable resources. Great example of such phenomenon is the use of vegetable oils in manufacturing of foamed polyurethanes. These materials can be applied directly or after previous modifications in production of biopolyols, main constituents of polyurethanes. In this paper, analysis of polyurethane foams’ market was presented and forecasts pointing to the potentially increasing position of so-called bio-polyurethanes in the future. Moreover, this paper summarizes previously published reports related to the manufacturing of vegetable oil-based biopolyols and their further incorporation into formulations of rigid polyurethane foams.

Full Text:

PDF


References


1. statista.com [Internet, 30.01.2017]. Global plastic production from 1950 to 2015 (in million metric tons), https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/

2. plasticseurope.org [Internet, 30.01.2017]. Plastics – the Facts 2015, http://www.plasticseurope.org/documents/document/20151216062602-plastics_the_facts_2015_final_30pages_14122015.pdf

3. ekonomia.rp.pl [Internet, 27.02.2015]. Rośnie popyt na tworzywa sztuczne w Polsce, http://www.ekonomia.rp.pl/artykul/1111287.html

4. utech-polyurethane.com [Internet, 27.02.2015]. Shifting production in CASE market highlighted at conference, http://utech-polyurethane.com/information/shifting-production-in-case-market-highlighted-at-conferencecase/

5. ialconsultants.com [Internet, 30.01.2017]. Polyurethane chemicals and products in Europe, Middle East & Africa (EMEA), 2014, http://www.ialconsultants.com/uploads/CUBE_press_release/2014-09-30/polyurethane_EMEA_press_release_2014.pdf

6. polyurethanes.org [Internet, 30.01.2017]. More facts and figures, http://www.polyurethanes.org/en/what-is-it/fact-figures/more-facts-and-figures

7. plastemart.com [Internet, 27.02.2015]. Global PP foams market growing at CAGR of 11%, PU foams market at CAGR of 6.9% from 2013 to 2018, http://www.plastemart.com/Plastic-Technical-Article.asp?LiteratureID=2070&Paper=global-Polypropylene-polyurethane-PP-PUFoams-market-2013-to-2018

8. sipur.pl [Internet, 30.01.2017]. Oszczędność energii a ochrona środowiska, http://sipur.pl/rola_izolacji/oszczednosc_energii/

9. eko-pur.pl [Internet, 12.03.2015]. Pianka poliuretanowa – wszechstronny materiał izolacyjny, http://www.eko-pur.pl/pianka-poliuretanowa.htm

10. organika.pl [Internet, 12.03.2015]. Aneks nr 1 z dnia 13 lutego 2014 r. do Memorandum Informacyjnego Obligacji na okaziciela serii D Malborskich Zakładów Chemicznych „Organika” S.A., s. 7, www.organika.pl/files/dokument2014.pdf

11. globenewswire.com [Internet, 27.02.2015]. Bio-Based Polyurethane (PU) Market Analysis By Product (Rigid Foams, Flexible Foams, CASE), By End-Use (Furniture & Interiors, Construction, Automotive, Footwear) And Segment Forecasts To 2020: New Report By Grand View Research, Inc, http://globenewswire.com/news-release/2015/01/12/696610/10114872/en/Bio-Based-Polyurethane-PU-Market-Analysis-By-Product-Rigid-Foams-Flexible-Foams-CASE-By-End-Use-Furniture-Interiors-Construction-Automotive-Footwear-And-Segment-Forecasts-To-2020-N.html

12. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC (23.04.2009).

13. ec.europa.eu [Internet, 2015.06.25]. The 2020 climate and energy package, http://ec.europa.eu/clima/policies/package/index_en.htm.

14. Bogoczek R, Kociołek-Balawejder E. Technologia chemiczna organiczna, surowce i półprodukty [M]. Wrocław: Wydawnictwo Akademii Ekonomicznej we Wrocławiu, 1992.

15. Petrović Z. Polyurethanes from vegetable oils [J]. Polym. Review., 2008, 48: 109-155.

16. Prociak A. Properties of polyurethane foams modified with natural oil-based polyols [J]. Cell. Polymer., 2007, 26: 381-392.

17. Lee C S, Ooi T L, Chuah C H, et al. Rigid polyurethane foam production from palm oil-based epoxidized diethanoloamides [J]. J. Amer. Oil Chem. Soc., 2007, 84: 1161-1167.

18. Chian K S, Gan L H. Development of a rigid polyurethane foam from palm oil [J]. J. Appl. Polym. Sci., 1998, 68: 509-515.

19. Zlatanic A, Javni I, Ionescu M, et al. Polyurethane molded foams with high content of hyperbranched polyols from soybean oil [J]. J. Cell. Plast., 2015, 51: 289-306.

20. Zlatanic A, Lava C, Zhang W, et al. Effect of structure on properties of polyols and polyurethanes based on different vegetable oils [J]. J. Polym. Sci B: Polym. Phys., 2004, 42: 809-819.

21. Ionescu M. Chemistry and Technology of Polyols for Polyurethanes [M]. Shawbury, Shrewsbury, Shropshire: Rapra Technology Limited, 2005.

22. Sharma V, Kundu P P. Condensation polymers from natural oils. Prog. Polym. Sci., 2008, 33: 1199-1215.

23. Lye O T, Ahmad S, Hassan H A, et al. An Overview of R&D in Palm Oil-Based Polyols and Polyurethanes in MPOB [J]. Palm Oil Dev., 2006, 44: 1-7.

24. Lligadas G, Ronda J C, Galia C, et al. Oleic and undecylenic acids as renewable feedstocks in the synthesis of polyols and polyurethanes [J]. Polym., 2010, 2: 440-453.

25. Wang C, Zheng Y, Xie Y, et al. Synthesis of bio-castor oil polyurethane flexible foams and the influence of biotic component on their performance [J]. J. Polym. Res., 2015, 22: 145

26. Haponiuk J T, Hejna A, Piszczyk Ł. Wykorzystanie surowców odnawialnych i odpadowych w syntezie poliuretanów [J]. Elastomery, 2014, 18: 21-30.

27. Prociak A. Poliuretanowe materiały termoizolacyjne nowej generacji [M]. Kraków: Wydawnictwo Politechniki Krakowskiej, 2008.

28. Vlcek T, Petrovic Z S. Optimization of the chemoenzymatic epoxidation of soybean oil [J]. J. Amer. Oil Chem. Soc., 2006, 83: 247-252.

29. Szałajko U, Fiszer S. Modyfikacja chemiczna olejów roślinnych w aspekcie ich wykorzystanie w produkcji paliw silnikowych i środków smarowych [J]. Przem. Chem., 2003, 82: 18-21.

30. Chen R, Zhang C, Kessler M R. Polyols and polyurethanes prepared from epoxidized soybean oil ring‐opened by polyhydroxy fatty acids with varying OH numbers [J]. J. Appl. Polym. Sci., 2015, 132: 41213.

31. Zhang C, Ding R, Kessler M R. Reduction of epoxidized vegetable oils: a novel method to prepare bio-based polyols for polyurethanes [J]. Macromol. Rapid Commun., 2014, 35: 1068-1074.

32. Karadeniz K, Aki H, Sen M Y, et al. Ring Opening of Epoxidized Soybean Oil with Compounds Containing Two Different Functional Groups [J]. J. Am. Oil Chem. Soc., 2015, 92: 725-731.

33. Sinadinovic-Fiser S, Jankovic M, Petrovic Z S. Kinetics of in situ epoxidation of soybean oil in bulk catalyzed by ion exchange resin [J]. J. Amer. Oil Chem. Soc., 2001, 78: 725-731.

34. Gu R, Konar S, Sain M. Preparation and characterization of sustainable polyurethane foams from soybean oils [J]. J. Am. Oil Chem. Soc., 2012, 89: 2103-2111.

35. Petrovic Z S, Zlatanic A, Lava C C, et al. Epoxidation of soybean oil in toluene with peroxoacatic and peroxoformic acids – kinetics and side reactions [J]. Eur. J. Lipid Sci. Technol., 2002, 104: 293-299.

36. Campanella A, Bonnaillie L M, Wool R P. Polyurethane foams from soyoil-based polyols [J]. J. Appl. Polym. Sci., 2009, 112: 2567-2578.

37. Guo A, Cho Y, Petrovic Z S. Structure and properties of halogenated and nonhalogenated soy-based polyols [J]. J. Polym. Sci. Part A: Polym. Chem., 2000, 38: 3900-3910.

38. Pawlik H, Prociak A, Pielichowski J. Synteza polioli z oleju palmowego przeznaczonych do otrzymywania elastycznych pianek poliuretanowych [J]. Czasopismo Techniczne, 2009, 106: 111-117.

39. Petrovic Z S, Guo A, Javni I, et al. Polyurethane networks from polyols obtained by hydroformylation of soybean oil [J]. Polym. Int., 2008, 57: 275-281.

40. Vanbesien T, Monflier E, Hapiot F. Hydroformylation of vegetable oils: More than 50 years of technical innovation, successful research, and development [J]. Eur. J. Lipid Sci. Technol., 2016, 118: 26-35.

41. Alagi P, Hong S C. Vegetable oil-based polyols for sustainable polyurethanes [J]. Macromol. Res., 2015, 23: 1079-1086.

42. Kandanarachchi P, Guo A, Petrovic Z S. The hydroformylation of vegetable oils and model compounds by ligand modified rhodium catalysis [J]. J. Mol. Catal. A-Chem., 2002, 184: 65-71.

43. Kandanarachchi P, Guo A, Demydov D, et al. Kinetics of the hydroformylation of soybean oil by ligand-modified homogenous rhodium catalysis [J]. J. Amer. Oil Chem. Soc., 2002, 79: 1221-1225.

44. Guo A, Demydov D, Zhang W, et al. Polyols and polyurethanes from hydroformylation of soybean oil [J]. J. Polym. Environ., 2002, 10: 49-52.

45. Petrovic Z S, Zhang W, Javni I. Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis [J]. Biomacromolecules, 2005, 6: 713-719.

46. Tran P, Graiver D, Narayan R. Ozone-mediated polyol synthesis from soybean oil [J]. J. Amer. Oil Chem. Soc., 2005, 82: 653-659.

47. Graiver D, Tran P, Laura P, et al. Degradable Polymers and Materials. Principles and Practice [M]. New York: Oxford Univ. Press, 2005.

48. Desroches M, Escouvois M, Auvergne R, et al. From vegetable oils to polyurethanes: Synthetic routes to polyols and main industrial products [J]. Polym. Rev., 2012, 52: 38-79.

49. Desai S D, Patel J V, Sinha V K. Polyurethane adhesive system from biomaterial-based polyol for bonding wood [J]. Int. J. Adhes. Adhes., 2003, 23: 393-399.

50. Ibrahim S, Ahmad A, Mohamed N S. Synthesis and characterization of castor oil-based polyurethane for potential application as host in polymer electrolytes [J]. B. Mater. Sci., 2015, 38: 1155-1161.

51. Schuchardt U, Sercheli R, Vargas R M. Transesterification of vegetable oils: A review [J]. J. Brazil. Chem. Soc., 1998, 9: 199-210.

52. Hoydonckx H E, Vos D E D, Chavan S A, et al. Esterification and transesterification of renewable chemicals [J]. Topics in Catalysis, 2004, 27: 83-96.

53. Somani K, Kansara S, Parmar R, et al. High solids polyurethane coatings from castor-oil-based polyester-polyols [J]. Int. J. Polym. Mater. Po., 2004, 53: 283-293.

54. Tanaka R, Hireose S, Hatakeyama H. Preparation and characterization of polyurethane foams using palm oil-based polyol [J]. Bioresource Technol., 2008, 99:3810-3816.

55. Hejna A, Kosmela P, Klein M, et al. Two-step Conversion of Crude Glycerol Generated by Biodiesel Production into Biopolyols: Synthesis, Structural and Physical Chemical Characterization [J]. J. Polym. Environ., 2018, doi: 10.1007/s10924-018-1217-4

56. Pielichowski J, Marek M, Prociak A. Możliwości wykorzystania gliceryny w doborze składu piankowych układów poliuretanowych [J]. Polimery, 2005, 50: 723-727.

57. Guo A, Javni I, Petrovic Z. Rigid polyurethane foams based on soybean oil [J]. J. Appl. Polym. Sci, 2000, 77: 467-473

58. Malewska E, Bąk S, Kurańska M, et al. The effect of various rapeseed oil-based polyols on selected properties of flexible polyurethane foams [J]. Polimery, 2016, 61: 799-806.

59. Zieleniewska M, Leszczyński M K, Kurańska M, et al. Preparation and characterisation of rigid polyurethane foams using a rapeseed oil-based polyol [J]. Ind. Crop. Prod., 2015, 74: 887-897.

60. Prociak A. Właściwości termoizolacyjne sztywnych pianek poliuretanowych syntetyzowanych z udziałem polioli z olejów roślinnych [J]. Polimery, 2008, 53: 195-200.

61. Tu Y C, Kiatsimkul P, Suppes G, et al. Physical properties of water-blown rigid polyurethane foams from vegetable oil-based polyols [J]. J. Appl. Polym. Sci., 2007, 105: 453-459.

62. Narine S S, Kong X, Bouzidi L, et al. Physical properties of polyurethanes produced from polyols from seed oils: II. Foams [J]. J. Amer. Oil Chem. Soc., 2007, 84: 65-72.

63. Septevani A A, Evans D A C, Chaleat C, et al. A systematic study substituting polyether polyol with palm kernel oil based polyester polyol in rigid polyurethane foam [J]. Ind. Crop. Prod., 2015, 66: 16-26.

64. Zhang L, Zhang M, Hu L, et al. Synthesis of rigid polyurethane foams with castor oil-based flame retardant polyols [J]. Ind. Crop. Prod., 2014, 52: 380-388.

65. Li Q F, Feng Y L, Wang J W, et al. Preparation and properties of rigid polyurethane foam based on modified castor oil [J]. Plast. Rubber Compos., 2016, 45: 16-21.

66. Hejna A, Kosmela P, Kirpluks M, et al. Structure, Mechanical,

67. Thermal and Fire Behavior Assessments of Environmentally Friendly Crude Glycerol-Based Rigid Polyisocyanurate Foams [J]. J. Polym, Environ., 2017, doi: 10.1007/s10924-017-1086-2

68. Hejna A, Kirpluks M, Kosmela P, et al. The influence of crude glycerol and castor oil-based polyol on the structure and performance of rigid polyurethane-polyisocyanurate foams [J]. Ind. Crop. Prod., 2017, 95: 113-125.

69. Ionescu M, Radojcic D, Wan X, et al. Highly functional polyols from castor oil for rigid polyurethanes [J]. Eur. Polym. J. 2016, 84: 736-749.




DOI: https://doi.org/10.24294/jpse.v1i3.648

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Journal of Polymer Science and Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.