Reaction mechanism and kinetics of in-situ polymerization of pyrrole onto textiles: A review

Subhankar Maity

Article ID: 500
Vol 5, Issue 1, 2022

(Abstract)

Abstract


Research into electro-conductive textiles based on conductive polymers like polypyrrole has increased in recent years due to their high potential applications in various fields. Conductive polymers behave like insulators in their neutral states, with typical electrical conductivity in the range 10–10 to 10–25 Scm–1. These neutral polymers can be converted into semi-conductive or conductive states with conductivities ranging from 1 Scm–1 to 10–4 Scm–1 through chemical or electro-chemical redox reactions. By applying these polymers to a textile surface, we can obtain novel composites that are strong, flexible, lightweight, and highly electroconductive. These textile composites are suitable for applications such as heating pads, sensors, corrosion-protecting materials, actuators, electrochromic devices, EMI shielding, etc. The methods of application of conductive polymers onto the textile surface, such as in-situ chemical, in-situ electrochemical, in-situ vapor phase, in-situ polymerization in a supercritical fluid, and solution coating processes, are described here briefly. The merits and demerits of these methods are mentioned here. The reaction mechanisms of chemical and electrochemical polymerization proposed by the different researchers are described. Different factors affecting the kinetics of chemical and electrochemical polymerization are accounted for. The influence of textile materials on the kinetics of chemical polymerization is reviewed and reported.


Keywords


electro-conductive textiles; polypyrrole; conductive polymers; in-situ chemical polymerization; in-situ electro-chemical polymerization

Full Text:

PDF


References


1. Knittel D, Schollmeyer E. Electrically high-conductive textiles. Synthetic Metals 2009; 159(14): 1433–1437. doi: 10.1016/j.synthmet.2009.03.021

2. Kuhn HH, Kimbrell WC, Fowler JE, Barry CN. Properties and applications of conductive textiles. Synthetic Metals 1993; 57(1): 3707–3712. doi: 10.1016/0379-6779(93)90501-M

3. Hakansson E, Kaynak A, Lin T, et al. Characterization of conducting polymer coated synthetic fabrics for heat generation. Synthetic Metals 2004; 144(1): 21–28. doi: 10.1016/j.synthmet.2004.01.003

4. Kiebooms R, Menon R, Lee K. Synthesis, electrical, and optical properties of conjugated polymers. In: Nalwa HS (editor). Handbook of Advanced Electronic and Photonic Materials and Devices. Academic Press; 2001. Volume 8. pp. 1–102. doi: 10.1016/b978-012513745-4/50064-0

5. Della Pina C, Falletta E, Rossi M. Conductive materials by metal catalyzed polymerization☆. Catalysis Today 2011; 160(1): 11–27. doi: 10.1016/j.cattod.2010.05.023

6. Kim B, Koncar V, Devaux E. Electrical properties of conductive polymers: PET – nanocomposites’ fibres. AUTEX Research Journal 2004; 4(1): 9–13. doi: 10.1515/aut-2004-040102

7. Omastová M, Mičušík M. Polypyrrole coating of inorganic and organic materials by chemical oxidative polymerisation. Chemical Papers 2012; 66(5). doi: 10.2478/s11696-011-0120-4

8. McConnell RM, Godwin WE, Baker SE, et al. Polyfuran and co-polymers: A chemical synthesis. International Journal of Polymeric Materials 2004; 53(8): 697–708. doi: 10.1080/00914030490472908

9. Varesano A, Tonin C. Improving electrical performances of wool textiles: Synthesis of conducting polypyrrole on the fiber surface. Textile Research Journal 2008; 78(12): 1110–1115. doi: 10.1177/0040517507077488

10. Avloni J, Lau R, Ouyang M, et al. Polypyrrole-coated nonwovens for electromagnetic shielding. Journal of Industrial Textiles 2008; 38(1): 55–68. doi: 10.1177/1528083707087834

11. Avloni J, Ouyang M, Florio L, et al. Shielding effectiveness evaluation of metallized and polypyrrole-coated fabrics. Journal of Thermoplastic Composite Materials 2007; 20(3): 241–254. doi: 10.1177/0892705707076718

12. Kim HK, Kim MS, Chun SY, et al. Characteristics of electrically conducting polymer-coated textiles. Molecular Crystals and Liquid Crystals 2003; 405(1): 161–169. doi: 10.1080/15421400390263550

13. Abdi MM, Kassim AB, Ekramul Mahmud HNM, et al. Electromagnetic interference shielding effectiveness of new conducting polymer composite. Journal of Macromolecular Science, Part A 2009; 47(1): 71–75. doi: 10.1080/10601320903399834

14. Chen HC, Lee KC, Lin JH, et al. Comparison of electromagnetic shielding effectiveness properties of diverse conductive textiles via various measurement techniques. Journal of Materials Processing Technology 2007; 192–193: 549–554. doi: 10.1016/j.jmatprotec.2007.04.023

15. Wu J, Zhou D, Too CO, et al. Conducting polymer coated lycra. Synthetic Metals 2005; 155(3): 698–701. doi: 10.1016/j.synthmet.2005.08.032

16. Cochrane C, Lewandowski M, Koncar V. A flexible strain sensor based on a conductive polymer composite for in situ measurement of parachute canopy deformation. Sensors 2010; 10(9): 8291–8303. doi: 10.3390/s100908291

17. Tjahyono AP, Aw KC, Travas-Sejdic J. A novel polypyrrole and natural rubber based flexible large strain sensor. Sensors and Actuators B: Chemical 2012; 166–167: 426–437. doi: 10.1016/j.snb.2012.02.083

18. Rajagopalan S, Sawan M, Ghafar-Zadeh E, et al. A polypyrrole-based strain sensor dedicated to measure bladder volume in patients with urinary dysfunction. Sensors 2008; 8(8): 5081–5095. doi: 10.3390/s8085081

19. Zhang H, Tao X, Yu T, et al. Conductive knitted fabric as large-strain gauge under high temperature. Sensors and Actuators A: Physical 2006; 126(1): 129–140. doi: 10.1016/j.sna.2005.10.026

20. Li X, Wang Y, Yang X, et al. Conducting polymers in environmental analysis. TrAC Trends in Analytical Chemistry 2012; 39: 163–179. doi: 10.1016/j.trac.2012.06.003

21. Koncar V, Cochrane C, Lewandowski M, et al. Electro‐conductive sensors and heating elements based on conductive polymer composites. International Journal of Clothing Science and Technology 2009; 21(2/3): 82–92. doi: 10.1108/09556220910933808

22. Wu Y, Xing S, Jing S, et al. Examining the use of Fe3O4 nanoparticles to enhance the NH3 sensitivity of polypyrrole films. Polymer Bulletin 2007; 59(2): 227–234. doi: 10.1007/s00289-007-0763-z

23. Ihm DW, Woo HY, Hwang CR, et al. Fabrication of polypyrrole–phenylalanine nano-films with NH3 gas sensitivity. Sensors and Actuators B: Chemical 2011; 153(2): 421–426. doi: 10.1016/j.snb.2010.11.009

24. De Souza JE, Dos Santos FL, Neto BB, et al. Free-grown polypyrrole thin films as aroma sensors. Sensors and Actuators B: Chemical 2003; 88(3): 246–259. doi: 10.1016/S0925-4005(02)00344-1

25. Schwarz A, Cardoen J, Westbroek P, et al. Steps towards a textile-based transistor: development of the gate and insulating layer. Textile Research Journal 2010; 80(16): 1738–1746. doi: 10.1177/0040517510365948

26. Wilson SA, Jourdain RPJ, Zhang Q, et al. New materials for micro-scale sensors and actuators. Materials Science and Engineering: R: Reports 2007; 56(1–6): 1–129. doi: 10.1016/j.mser.2007.03.001

27. Li C, Shi G. Synthesis and electrochemical applications of the composites of conducting polymers and chemically converted graphene. Electrochimica Acta 2011; 56(28): 10737–10743. doi: 10.1016/j.electacta.2010.12.081

28. Pron A, Rannou P. Processible conjugated polymers: From organic semiconductors to organic metals and superconductors. Progress in Polymer Science 2002; 27(1): 135–190. doi: 10.1016/S0079-6700(01)00043-0

29. Zarras P, Anderson N, Webber C, et al. Progress in using conductive polymers as corrosion-inhibiting coatings. Radiation Physics and Chemistry 2003; 68(3–4): 387–394. doi: 10.1016/S0969-806X(03)00189-0

30. Chiarelli P, Santa AD, de Rossi D, et al. Actuation properties of electrochemically driven polypyrrole free-standing films. Journal of Intelligent Material Systems and Structures 1995; 6(1): 32–37. doi: 10.1177/1045389x9500600105

31. Okuzaki H, Funasaka K. Electrically driven polypyrrole film actuator working in air. Journal of Intelligent Material Systems and Structures 1999; 10(6): 465–469. doi: 10.1106/6crb-fk02-fx04-4pcg

32. Wessling B. Dispersion as the link between basic research and commercial applications of conductive polymers (polyaniline). Synthetic Metals 1998; 93(2): 143–154. doi: 10.1016/S0379-6779(98)00017-4

33. Salamone MM, Silvestri F, Sassi M, et al. Role played by chain length and polarity of n-substitutents in electrochromic polymers from the tri-heterocyclic monomer pyrrole-thiophene-pyrrole. Solar Energy Materials and Solar Cells 2012; 99: 101–108. doi: 10.1016/j.solmat.2011.07.024

34. Jolly R, Petrescu C, Thieblemont JC, et al. Heating panels for accomodation obtained from textiles made electrically conductive by polypyrrole deposit. Journal of Coated Fabrics 1994; 23(3): 228–236. doi: 10.1177/152808379402300304

35. Kaynak A, Håkansson E. Short-term heating tests on doped polypyrrole-coated polyester fabrics. Synthetic Metals 2008; 158(8–9): 350–354. doi: 10.1016/j.synthmet.2008.02.004

36. Oh KW, Park HJ, Kim SH. Stretchable conductive fabric for electrotherapy. Journal of Applied Polymer Science 2003; 88(5): 1225–1229. doi: 10.1002/app.11783

37. Wang J, Kaynak A, Wang L, et al. Thermal conductivity studies on wool fabrics with conductive coatings. Journal of the Textile Institute 2006; 97(3): 265–270. doi: 10.1533/joti.2005.0298

38. Kaynak A, Håkansson E. Generating heat from conducting polypyrrole‐coated PET fabrics. Advances in Polymer Technology 2005; 24(3): 194–207. doi: 10.1002/adv.20040

39. Maity S, Chatterjee A, Singh B, Pal Singh A. Polypyrrole based electro-conductive textiles for heat generation. The Journal of The Textile Institute 2014; 105(8): 887–893. doi: 10.1080/00405000.2013.861149

40. Andreeva DV, Pientka Z, Brozová L, et al. Effect of polymerization conditions of pyrrole on formation, structure and properties of high gas separation thin polypyrrole films. Thin Solid Films 2002; 406(1–2): 54–63. doi: 10.1016/S0040-6090(01)01719-9

41. Varesano A, Vineis C, Aluigi A, et al. Antibacterial efficacy of polypyrrole in textile applications. Fibers and Polymers 2013; 14(1): 36–42. doi: 10.1007/s12221-013-0036-4

42. Harlin A, Ferenets M. Introduction to conductive materials. In: Mattila H (editor). Intelligent Textiles and Clothing. Woodhed Puhlishing in Textiles; 2006. pp. 217–237. doi: 10.1533/9781845691622.3.217

43. Berlin A, Canavesi A, Pagani G, et al. Low band-gap pyrrole-based conducting polymers. Synthetic Metals 1997; 84(1–3): 451–452. doi: 10.1016/S0379-6779(97)80827-2

44. Yakhmi JV, Saxena V, Aswal DK. Conducting polymer sensors, actuators and field-effect transistors. In: Banerjee S, Tyagi AK (editors). Functional Materials: Preparation, Processing and Applications, 1st ed. Elsevier; 2012. pp 61–110. doi: 10.1016/b978-0-12-385142-0.00002-7

45. Bakhshi AK, Bhalla G. Electrically conducting polymers: Materials of the twentyfirst century. Journal of Scientific & Industrial Research 2004; 63(9): 715–728.

46. Rubner M, Cukor P, Jopson H, et al. Electrically conducting poly (para-phenylene sulfide) prepared by doping with nitrosyl salts from solution. Journal of Electronic Materials 1982; 11(2): 261–272. doi: 10.1007/bf02654671

47. Bhattacharya A, De A. Conducting composites of polypyrrole and polyaniline a review. Progress in Solid State Chemistry 1996; 24(3): 141–181. doi: 10.1016/0079-6786(96)00002-7

48. Plantard G, Papini-Arconada M. Analysis of the radiative properties of insulating and conducting granular polymers and of their mixtures. Powder Technology 2002; 128(2–3): 287–295. doi: 10.1016/S0032-5910(02)00176-6

49. Kaynak A, Foitzik R. Methods of coating textiles with soluble conducting polymers. Research Journal of Textile and Apparel 2011; 15(2): 107–113. doi: 10.1108/rjta-15-02-2011-b012

50. Amol JP, Pandey AK. A novel approach for in situ polymerization of polypyrrole on cotton substrates. Indian Journal of Fibre & Textile Research 2012; 37: 107–113.

51. Bhadra S, Khastgir D, Singha NK, et al. Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science 2009; 34(8): 783–810. doi: 10.1016/j.progpolymsci.2009.04.00

52. Kumar D, Sharma RC. Advances in conductive polymers. European Polymer Journal 1998; 34(8): 1053–1060. doi: 10.1016/S0014-3057(97)00204-8

53. Long YZ, Li MM, Gu C, et al. Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Progress in Polymer Science 2011; 36(10): 1415–1442. doi: 10.1016/j.progpolymsci.2011.04.001

54. Luo S, Van Ooij WJ. Surface modification of textile fibers for improvement of adhesion to polymeric matrices: A review. Journal of Adhesion Science and Technology 2002; 16(13): 1715–1735. doi: 10.1163/156856102320396102

55. Malinauskas A. Chemical deposition of conducting polymers. Polymer 2001; 42(9): 3957–3572. doi: 10.1016/S0032-3861(00)00800-4

56. Zinger B, Kijel D. Electrically conducting polyethylene/polypyrrole films. Synthetic Metals 1991; 41(3): 1013–1023. doi: 10.1016/0379-6779(91)91548-O

57. Stejskal J, Sapurina I, Prokeš J, Zemek J. In-situ polymerized polyaniline films. Synthetic Metals 1999; 105(3): 195–202. doi: 10.1016/S0379-6779(99)00105-8

58. Maity S, Chatterjee A. Preparation and characterization of electro-conductive rotor yarn by in situ chemical polymerization of pyrrole. Fibers and Polymers 2013; 14(8): 1407–1413. doi: 10.1007/s12221-013-1407-6

59. Lin T, Wang L, Wang X, et al. Polymerising pyrrole on polyester textiles and controlling the conductivity through coating thickness. Thin Solid Films 2005; 479(1–2): 77–82. doi: 10.1016/j.tsf.2004.11.146

60. Ding C, Qian X, Shen J, et al. Preparation and characterization of conductive paper via in-situ polymerization of pyrrole. BioResources 2009; 5(1): 303–315. doi: 10.15376/biores.5.1.303-315

61. Balkan T, Sezai Sarac A. Synthesis and characterization of electrically conductive composite films of polypyrrole/poly(acrylonitrile-co-styrene). Fibers and Polymers 2011; 12(5): 565–571. doi: 10.1007/s12221-011-0565-7

62. Beneventi D, Alila S, Boufi S, et al. Polymerization of pyrrole on cellulose fibres using a FeCl3 impregnation- pyrrole polymerization sequence. Cellulose 2006; 13(6): 725–734. doi: 10.1007/s10570-006-9077-9

63. Nicolas M. Fabrication of Superhydrophobic Surfaces by Electropolymerization of Thiophene and Pyrrole Derivatives. Journal of Adhesion Science and Technology 2008; 22(3–4): 365–377. doi: 10.1163/156856108x295446

64. Park YH, Jeon YJ, Lee Y, et al. Growth of poly(pyrrole) copolymer films by electrochemical method and their electrical conductivity. Molecular Crystals and Liquid Crystals Science and Technology Section A Molecular Crystals and Liquid Crystals 1998; 316(1): 305–308. doi: 10.1080/10587259808044515

65. Kim HK, Byun SW, Jeong SH, et al. Environmental staility of emi shielding pet fabric/polypyrrole composite. Molecular Crystals and Liquid Crystals 2002; 377(1): 369–372. doi: 10.1080/713738488

66. Tietje-Girault J, Ponce de León C, Walsh FC. Electrochemically deposited polypyrrole films and their characterization. Surface and Coatings Technology 2007; 201(12): 6025–6034. doi: 10.1016/j.surfcoat.2006.11.009

67. Molina J, del Río AI, Bonastre J, et al. Electrochemical polymerisation of aniline on conducting textiles of polyester covered with polypyrrole/AQSA. European Polymer Journal 2009; 45(4): 1302–1315. doi: 10.1016/j.eurpolymj.2008.11.003

68. Gao Z, Bobacka J, Lewenstam A, Ivaska A. Electrochemical properties of polypyrrole films polymerized in the presence of Methylene Blue. Synthetic Metals 1994; 62(2): 117–123. doi: 10.1016/0379-6779(94)90302-6

69. Molina J, Fernández J, Del Rio AI, et al. Electrochemical synthesis of polyaniline on conducting fabrics of polyester covered with polypyrrole/PW12O403−. Chemical and electrochemical characterization. Synthetic Metals 2011; 161(11–12): 953–963. doi: 10.1016/j.synthmet.2011.02.029

70. Maiti S, Das D, Sen K. Studies on electro‐conductive yarns prepared by in situ chemical and electrochemical polymerization of pyrrole. Journal of Applied Polymer Science 2011; 123(1): 455–462. doi: 10.1002/app.34299

71. Seshadri DT, Bhat NV. Synthesis and properties of cotton fabrics modified with polypyrrole. Sen i Gakkaishi 2005; 61(4): 103–108. doi: 10.2115/fiber.61.103

72. Kim J, Sohn D, Sung Y, Kim ER. Fabrication and characterization of conductive polypyrrole thin film prepared by in situ vapor-phase polymerization. Synthetic Metals 2003; 132(3): 309–313. doi: 10.1016/S0379-6779(02)00462-9

73. Esfandiari A. PPy covered cellulosic and protein fibres using novel covering methods to improve the electrical property. World Applied Sciences Journal 2008; 3(3): 470–475.

74. Kaynak A, Najar SS, Foitzik RC. Conducting nylon, cotton and wool yarns by continuous vapor polymerization of pyrrole. Synthetic Metals 2008; 158(1–2): 1–5. doi: 10.1016/j.synthmet.2007.10.016

75. Najar SS, Kaynak A, Foitzik RC. Conductive wool yarns by continuous vapour phase polymerization of pyrrole. Synthetic Metals 2007; 157(1): 1–4. doi: 10.1016/j.synthmet.2006.11.003

76. Xue P, Tao XM, Kwok KWY, et al. Electromechanical behavior of fibers coated with an electrically conductive polymer. Textile Research Journal 2004; 74(10): 929–936. doi: 10.1177/004051750407401013

77. Dall’Acqua L, Tonin C, Varesano A, et al. Vapour phase polymerisation of pyrrole on cellulose-based textile substrates. Synthetic Metals 2006; 156(5–6): 379–386. doi: 10.1016/j.synthmet.2005.12.021

78. Wang JP, Xue P, Tao XM. Strain sensing behavior of electrically conductive fibers under large deformation. Materials Science and Engineering: A 2011; 528(6): 2863–2869. doi: 10.1016/j.msea.2010.12.057

79. Bleha M, Kůdela V, Rosova EY, et al. Synthesis and characterization of thin polypyrrole layers on polyethylene microporous films. European Polymer Journal 1999; 35(4): 613–620. doi: 10.1016/S0014-3057(98)00161-X

80. Patil AJ, Deogaonkar SC. A novel method of in situ chemical polymerization of polyaniline for synthesis of electrically conductive cotton fabrics. Textile Research Journal 2012; 82(15): 1517–1530. doi: 10.1177/0040517512452930

81. Gong Y, Ren D, Yuan Y. Neural networks modeling signal responses and taxol production of cultured Taxus chinensis cells induced by bio-elicitor. Frontiers of Chemical Engineering in China 2007; 1(2): 118–122. doi: 10.1007/s11705-007-0022-8

82. Song MK, Kim YT, Kim BS, et al. Synthesis and characterization of soluble polypyrrole doped with alkylbenzenesulfonic acids. Synthetic Metals 2004; 141(3): 315–319. doi: 10.1016/j.synthmet.2003.07.015

83. Jang KS, Lee H, Moon B. Synthesis and characterization of water soluble polypyrrole doped with functional dopants. Synthetic Metals 2004; 143(3): 289–294. doi: 10.1016/j.synthmet.2003.12.013

84. Yanılmaz M, Karakaş H, Saraç AS, Kalaoğlu F. Studies on increasing conductivity of polyurethane films and nanofibers. In: Proceedings of the World Congress on Engineering 2011; 6–8 July 2011; London, UK. Volume 3.

85. Kim DY, Cho HN, Kim CY. Mechanism of redox reaction on polypyrrole. Journal of Intelligent Material Systems and Structures 1994; 5(5): 626–630. doi: 10.1177/1045389x9400500505

86. Skotheim TA, Reynolds J (editors). Handbook of Conducting Polymers, 2 Volume Set, 3rd ed. CRC Press; 2007. 1680p. doi: 10.1201/b12346

87. Wallace GG, Teasdale PR, Spinks GM, et al. Conductive Electroactive Polymers: Intelligent Polymer Systems, 3rd ed. CRC Press; 2008. 263p. doi: 10.1201/9781420067156

88. Faguy PW, Lucas RA, Ma W. An FT-IR-ATR spectroscopic study of the spontaneous polymerization of pyrrole in iron-exchanged montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1995; 105(1): 105–112. doi: 10.1016/0927-7757(95)03328-0

89. Garfias-García E, Romero-Romo M, Ramírez-Silva MT, et al. Mechanism and kinetics of the electrochemical formation of polypyrrole under forced convection conditions. Journal of Electroanalytical Chemistry 2008; 613(1): 67–79. doi: 10.1016/j.jelechem.2007.10.013

90. Fermin DJ, Scharifker BR. Products in solution during electrodeposition of polypyrrole. Journal of Electroanalytical Chemistry 1993; 357(1–2): 273–287. doi: 10.1016/0022-0728(93)80385-U

91. Licona-Sánchez TD, Álvarez-Romero GA, Mendoza-Huizar LH, et al. Kinetics of polypyrrole films doped with sulphate ions electrodeposited over graphite-epoxy resin electrode. ECS Transactions 2009; 20(1): 385–392. doi: 10.1149/1.3268406

92. Serra Moreno J, Panero S, Scrosati B. Electrochemical polymerization of polypyrrole–heparin nanotubes: Kinetics and morphological properties. Electrochimica Acta 2008; 53(5): 2154–2160. doi: 10.1016/j.electacta.2007.09.045

93. Otero TF, González-Tejera MJ. Polypyrrole+ polyacrylate composites, kinetic study. Journal of Electroanalytical Chemistry 1997; 429(1–2): 19–25. doi: 10.1016/S0022-0728(97)00148-4

94. Otero TF, Vázquez MV. Electrogeneration of a composite polypyrrole-carboxymethylcellulose: Kinetic study. Journal of Electroanalytical Chemistry 1995; 397(1–2): 171–176. doi: 10.1016/0022-0728(95)04168-4

95. Otero TF, Sansinena JM. Influence of synthesis conditions on polypyrrole-poly (styrenesulphonate) composite electroactivity. Journal of Electroanalytical Chemistry 1996; 412(1–2): 109–116. doi: 10.1016/0022-0728(96)04615-3

96. Villarreal I, Morales E, Otero TF, Acosta JL. Electropolymerization kinetics of pyrrole in aqueous solution on graphite felt electrodes. Synthetic Metals 2001; 123(3): 487–492. doi: 10.1016/S0379-6779(01)00343-5

97. Cosnier S, Karyakin A (editors). Electropolymerization: Concepts, Materials and Applications. Wiley‐VCH Verlag GmbH & Co. KGaA; 2010. doi: 10.1002/9783527630592

98. Otero TF, Santamaria C. Kinetics of the polypyrrole electrogeneration from aqueous solution. An ex situ microgravimetric study. Electrochimica Acta 1992; 37(2): 297–307. doi: 10.1016/0013-4686(92)85016-E

99. Otero TF, Arias-Pardilla J, Chermak E. Reactive polymer films. Synthetic Metals 2010; 160(5–6): 425–431. doi: 10.1016/j.synthmet.2009.11.024

100. Li Y, Qian R. Studies on the electrode kinetics of polypyrrole in aqueous solution by ac impedance measurement. Synthetic Metals 1994; 64(2–3): 241–245. doi: 10.1016/0379-6779(94)90118-X

101. Gregory RV, Kimbrell WC, Kuhn HH. Conductive textiles. Synthetic Metals 1989; 28(1–2): 823–835. doi: 10.1016/0379-6779(89)90610-3

102. Molina J, Fernández J, del Río AI, et al. Stability of conducting polyester/polypyrrole fabrics in different pH solutions. Chemical and electrochemical characterization. Polymer Degradation and Stability 2010; 95(12): 2574–2583. doi: 10.1016/j.polymdegradstab.2010.07.028

103. Järvinen K, Puolakka A. Weathering of polyaniline-treated polyester filter fabrics. Textile Research Journal 2003; 73(7): 593–596. doi: 10.1177/004051750307300706

104. Blinova NV, Stejskal J, Trchová M, et al. Polyaniline and polypyrrole: A comparative study of the preparation. European Polymer Journal 2007; 43(6): 2331–2341. doi: 10.1016/j.eurpolymj.2007.03.045

105. Chitte HK, Bhat NV, Gore MrAV, et al. Synthesis of polypyrrole using ammonium peroxy disulfate (APS) as oxidant together with some dopants for use in gas sensors. Materials Sciences and Applications 2011; 2(10): 1491–1498. doi: 10.4236/msa.2011.210201

106. Kuhn HH. Adsorption at the liquid/solid interface: Conductive textiles based on polypyrrole. Textile Chemist and Colorist 1997; 29(12): 17–20.

107. Ding C, Qian X, Yu G, et al. Dopant effect and characterization of polypyrrole-cellulose composites prepared by in situ polymerization process. Cellulose 2010; 17(6): 1067–1077. doi: 10.1007/s10570-010-9442-6

108. Molina J, del Río AI, Bonastre J, et al. Chemical and electrochemical polymerisation of pyrrole on polyester textiles in presence of phosphotungstic acid. European Polymer Journal 2008; 44(7): 2087–2098. doi: 10.1016/j.eurpolymj.2008.04.007

109. Puanglek N, Sittattrakul A, Lerdwijitjarud W. Enhancement of Electrical Conductivity of Polypyrrole and Its Derivative. Science Journal Ubonratchathani University 2010; 1(1): 35–42.

110. Kudoh Y. Properties of polypyrrole prepared by chemical polymerization using aqueous solution containing Fe2(SO4)3 and anionic surfactant. Synthetic Metals 1996; 79(1): 17–22. doi: 10.1016/0379-6779(96)80124-X

111. Shen Y, Wan M. In situ doping polymerization of pyrrole with sulfonic acid as a dopant. Synthetic Metals 1998; 96(2): 127–132. doi: 10.1016/S0379-6779(98)00076-9

112. Omastová M, Trchová M, Kovářová J, Stejskal J. Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synthetic Metals 2003; 138(3): 447–455. doi: 10.1016/S0379-6779(02)00498-8

113. Stejskal J, Omastova M, Fedorova S, et al. Polyaniline and polypyrrole prepared in the presence of surfactants: A comparative conductivity study. Polymer 2003; 44(5): 1353–1358. doi: 10.1016/S0032-3861(02)00906-0

114. Xing S, Zhao G. Morphology and thermostability of polypyrrole prepared from SDBS aqueous solution. Polymer Bulletin 2006; 57(6): 933–943. doi: 10.1007/s00289-006-0663-7

115. Jakab E, Mészáros E, Omastová M. Thermal decomposition of polypyrroles. Journal of Thermal Analysis and Calorimetry 2007; 88(2): 515–521. doi: 10.1007/s10973-006-8241-7

116. Brezoi DV. Polypyrrole films prepared by chemical oxidation of pyrrole in aqueous FeCl3 solution. Journal of Science and Arts 2010; 10(2): 53–58.

117. Wang PC, Huang Z, MacDiarmid AG. Critical dependency of the conductivity of polypyrrole and polyaniline films on the hydrophobicity/hydrophilicity of the substrate surface. Synthetic Metals 1999; 101(1–3): 852–853. doi: 10.1016/S0379-6779(98)01329-0

118. Subianto S, Will GD, Kokot S. Electropolymerization of pyrrole on cotton fabrics. International Journal of Polymeric Materials 2005; 54(2): 141–150. doi: 10.1080/00914030390246252

119. Ferrero F, Napoli L, Tonin C, et al. Pyrrole chemical polymerization on textiles: Kinetics and operating conditions. Journal of Applied Polymer Science 2006; 102(5): 4121–4126. doi: 10.1002/app.24149




DOI: https://doi.org/10.24294/jpse.v5i1.500

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Subhankar Maity

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.