High-performance functional materials based on polymer nanocomposites—A review

Mohan Raj Krishnan, Edreese Housni Alsharaeh

Article ID: 3292
Vol 6, Issue 1, 2023

VIEWS - 183 (Abstract) 60 (PDF)

Abstract


Oil spill clean-up is a long-standing challenge for researchers to prevent serious environmental pollution. A new kind of oil-absorbent based on silicon-containing polymers (e.g., poly(dimethylsiloxane) (PDMS)) with high absorption capacity and excellent reusability was prepared and used for oil/water separation. The PDMS-based oil absorbents have highly interconnected pores with swellable skeletons, combining the advantages of porous materials and gels. On the other hand, polymer/silica composites have been extensively studied as high-performance functional coatings since, as an organic/inorganic composite material, they are expected to combine polymer flexibility and ease of processing with mechanical properties. The polymer composites with increased impact resistance and tensile strength, without decreasing the flexibility of the polymer matrix, can be achieved by incorporating the silica nanoparticles or nanosand or sand particles into the polymeric matrices. Therefore, polymer/silica composites have attracted great interest in many industries. Some potential applications, including high-performance coatings, electronics and optical applications, membranes, sensors, materials for metal uptake, etc., were comprehensively reviewed. In the first part of the review, we will cover the recent progress of oil absorbents based on silicon-containing polymers (PDMS). In the later detail of the review, we will discuss the recent developments of functional materials based on polymer/silica composite, sand, and nanosand systems.


Keywords


polymer; oil-spill; porous materials; composites; silica; nanoparticles

Full Text:

PDF


References


1. Shannon MA, Bohn PW, Elimelech M, et al. Science and technology for water purification in the coming decades. Nature 2008; 452: 301–310. doi: 10.1038/nature06599

2. Guerin TF. Heavy equipment maintenance wastes and environmental management in the mining industry. Journal of Environmental Management 2002; 66(2): 185–199. doi: 10.1006/jema.2002.0583

3. Gupta RK, Dunderdale GJ, England MW, Hozumi A. Oil/water separation techniques: A review of recent progresses and future directions. Journal of Materials Chemistry A 2017; 5(31): 16025–16058. doi: 10.1039/C7TA02070H

4. Gaaseidnes K, Turbeville J. Separation of oil and water in oil spill recovery operations. Pure and Applied Chemistry 1999; 71(1): 95–101. doi: 10.1351/pac199971010095

5. Wayment EC, Wagstaff B. Appropriate technology for oil spill management in developing nations. Pure and Applied Chemistry 1999; 71(1): 203–208. doi: 10.1351/pac199971010203

6. Lai J-C, Jia X-Y, Wang D-P, et al. Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers. Nature Communications 2019; 10: 1164. doi: 10.1038/s41467-019-09130-z

7. Hu Y, Liu X, Zou J, et al. Graphite/isobutylene-isoprene rubber highly porous cryogels as new sorbents for oil spills and organic liquids. ACS Applied Materials & Interfaces 2013; 5(16): 7737–7742. doi: 10.1021/am303294m

8. Wu J, Wang N, Wang L, et al. Electrospun porous structure fibrous film with high oil adsorption capacity. ACS Applied Materials & Interfaces 2012; 4(6): 3207–3212. doi: 10.1021/am300544d

9. Zhu Q, Chu Y, Wang Z, et al. Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material. Journal of Materials Chemistry A 2013; 1(17): 5386–5393. doi: 10.1039/C3TA00125C

10. Prathap A, Sureshan KM. A mannitol based phase selective supergelator offers a simple, viable and greener method to combat marine oil spills. Chemical Communications 2012; 48(43): 5250–5252. doi: 10.1039/C2CC31631E

11. Li C-H, Wang C, Keplinger C, et al. A highly stretchable autonomous self-healing elastomer. Nature Chemistry 2016; 8: 618–624. doi: 10.1038/nchem.2492

12. Zhu D, Handschuh-Wang S, Zhou X. Recent progress in fabrication and application of polydimethylsiloxane sponges. Journal of Materials Chemistry A 2017; 5(32): 16467–16497. doi: 10.1039/C7TA04577H

13. Zhang A, Chen M, Du C, et al. Poly(dimethylsiloxane) oil absorbent with a three-dimensionally interconnected porous structure and swellable skeleton. ACS Applied Materials & Interfaces 2013; 5(20): 10201–10206. doi: 10.1021/am4029203

14. Krishnan MR, Aldawsari YF, Alsharaeh EH. Three‐dimensionally cross‐linked styrene‐methyl methacrylate‐divinyl benzene terpolymer networks for organic solvents and crude oil absorption. Journal of Applied Polymer Science 2021; 138(9): 49942. doi: 10.1002/app.49942

15. Krishnan MR, Aldawsari YF, Alsharaeh EH. 3D-poly(styrene-methyl methacrylate)/divinyl benzene-2D-nanosheet composite networks for organic solvents and crude oil spill cleanup. Polymer Bulletin 2021; 79: 3779–3802. doi: 10.1007/s00289-021-03565-5

16. Krishnan MR, Almohsin A, Alsharaeh EH. Syntheses and fabrication of mesoporous styrene-co-methyl methacrylate-graphene composites for oil removal. Diamond and Related Materials 2022; 130: 109494. doi: 10.1016/j.diamond.2022.109494

17. Krishnan MR, Samitsu S, Fujii Y, Ichinose I. Hydrophilic polymer nanofibre networks for rapid removal of aromatic compounds from water. Chemical Communications 2014; 50(66): 9393–9396. doi: 10.1039/C4CC01786B

18. Samitsu S, Zhang R, Peng X, et al. Flash freezing route to mesoporous polymer nanofibre networks. Nature Communications 2013; 4: 2653. doi: 10.1038/ncomms3653

19. Syazmin NA, Shahadat M, Razali MR, Adnan R. PDMS‐supported composite materials as oil absorbent. In: Shahid-ul-Islam, Shalla AH, Shahadat M (editors). Green Chemistry for Sustainable Water Purification. Scrivener Publishing LLC; 2023. p. 203–221. doi: 10.1002/9781119852322.ch9

20. Uragami T. Structural design of polymer membranes for concentration of bio-ethanol. Polymer Journal 2008; 40: 485–494. doi: 10.1295/polymj.PJ2008015

21. Whitesides GM. The origins and the future of microfluidics. Nature 2006; 442: 368–373. doi: 10.1038/nature05058

22. Xia Y, Whitesides GM. Soft lithography. Angewandte Chemie International Edition 1998; 37(5): 550–575. doi: 10.1002/%28SICI%291521-3773%2819980316%2937%3A5<550%3A%3AAID-ANIE550>3.0.CO%3B2-G

23. Bélanger M, Marois Y. Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: A review. Journal of Biomedical Materials Research 2001; 58(5): 467–477. doi: 10.1002/jbm.1043

24. Mata A, Fleischman AJ, Roy S. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomedical Microdevices 2005; 7: 281–293. doi: 10.1007/s10544-005-6070-2

25. Yilgör E, Yilgör I. Silicone containing copolymers: Synthesis, properties and applications. Progress in Polymer Science 2014; 39(6): 1165–1195. doi: 10.1016/j.progpolymsci.2013.11.003

26. Dong C-H, He L, Xiao Y-F, et al. Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing. Applied Physics Letters 2009; 94(23): 231119. doi: 10.1063/1.3152791

27. Quake SR, Scherer A. From micro- to nanofabrication with soft materials. Science 2000; 290(5496): 1536–1540. doi: 10.1126/science.290.5496.1536

28. Lee JN, Park C, Whitesides GM. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Analytical Chemistry 2003; 75(23): 6544–6554. doi: 10.1021/ac0346712

29. Zhou X, Lau L, Lam WWL, et al. Nanoliter dispensing method by degassed poly(dimethylsiloxane) microchannels and its application in protein crystallization. Analytical Chemistry 2007; 79(13): 4924–4930. doi: 10.1021/ac070306p

30. Zhou X, Li J, Wu C, Zheng B. Constructing the phase diagram of an aqueous solution of poly(N-isopropyl acrylamide) by controlled microevaporation in a nanoliter microchamber. Macromolecular Rapid Communications 2008; 29(16): 1363–1367. doi: 10.1002/marc.200800229

31. Chen I-J, Lindner E. The stability of radio-frequency plasma-treated polydimethylsiloxane surfaces. Langmuir 2007; 23(6): 3118–3122. doi: 10.1021/la0627720

32. Hu S, Ren X, Bachman M, et al. Tailoring the surface properties of poly(dimethylsiloxane) microfluidic devices. Langmuir 2004; 20(13): 5569–5574. doi: 10.1021/la049974l

33. Zhou J, Ellis AV, Voelcker NH. Recent developments in PDMS surface modification for microfluidic devices. ELECTROPHORESIS 2010; 31(1): 2–16. doi: 10.1002/elps.200900475

34. Bauer WAC, Fischlechner M, Abell C, Huck WTS. Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions. Lab on a Chip 2010; 10(14): 1814–1819. doi: 10.1039/C004046K

35. Li X, Tanyan S, Xie S, et al. A 3D porous PDMS sponge embedded with carbon nanoparticles for solar driven interfacial evaporation. Separation and Purification Technology 2022; 292: 120985. doi: 10.1016/j.seppur.2022.120985

36. Yang X-Y, Chen L-H, Li Y, et al. Hierarchically porous materials: Synthesis strategies and structure design. Chemical Society Reviews 2017; 46(2): 481–558. doi: 10.1039/C6CS00829A

37. Das S, Heasman P, Ben T, Qiu S. Porous organic materials: Strategic design and structure–function correlation. Chemical Reviews 2017; 117(3): 1515–1563. doi: 10.1021/acs.chemrev.6b00439

38. Wu D, Xu F, Sun B, et al. Design and preparation of porous polymers. Chemical Reviews 2012; 112(7): 3959–4015. doi: 10.1021/cr200440z

39. Jiang W, Zhu Y, Zhu G, et al. Three-dimensional photocatalysts with a network structure. Journal of Materials Chemistry A 2017; 5(12): 5661–5679. doi: 10.1039/C7TA00398F

40. Yu M, Qiu W, Wang F, et al. Three dimensional architectures: Design, assembly and application in electrochemical capacitors. Journal of Materials Chemistry A 2015; 3(31): 15792–15823. doi: 10.1039/C5TA02743H

41. Krishnan MR, Almohsin A, Alsharaeh EH. Mechanically robust and thermally enhanced sand-polyacrylamide-2D nanofiller composite hydrogels for water shutoff applications. Journal of Applied Polymer Science 2023. doi: 10.1002/app.54953

42. Krishnan MR, Li W, Alsharaeh EH. Cross-linked polymer nanocomposite networks coated nano sand light-weight proppants for hydraulic fracturing applications. Characterization and Application of Nanomaterials 2023; 6(2): 3314. doi: 10.24294/can.v6i2.3314

43. Krishnan MR, Alsharaeh EH. Polymer gel amended sandy soil with enhanced water storage and extended release capabilities for sustainable desert agriculture. Journal of Polymer Science and Engineering 2023; 6(1): 2892. doi: 10.24294/jpse.v6i1.2892

44. Sanchez C, Belleville P, Popall M, Nicole L. Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chemical Society Reviews 2011; 40(2): 696–753. doi: 10.1039/C0CS00136H

45. Zou H, Wu S, Shen J. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chemical Reviews 2008; 108(9): 3893–3957. doi: 10.1021/cr068035q

46. Wei L, Hu N, Zhang Y. Synthesis of polymer—Mesoporous silica nanocomposites. Materials 2010; 3(7): 4066–4079. doi: 10.3390/ma3074066

47. Kickelbick G. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Progress in Polymer Science 2003; 28(1): 83–114. doi: 10.1016/S0079-6700(02)00019-9

48. Paul DR, Robeson LM. Polymer nanotechnology: Nanocomposites. Polymer 2008; 49(15): 3187–3204. doi: 10.1016/j.polymer.2008.04.017

49. Yang F, Nelson GL. Polymer/silica nanocomposites prepared via extrusion. Polymers for Advanced Technologies 2006; 17(4): 320–326. doi: 10.1002/pat.695

50. Ke Y, Stroeve P. Polymer-layered Silicate and Silica Nanocomposites. Elsevier Science; 2005. doi: 10.1016/B978-0-444-51570-4.X5000-9

51. Peters ST (editor). Handbook of Composites. Springer New York; 2013. doi: 10.1007/978-1-4615-6389-1

52. Yin P, Xu M, Liu W, et al. High efficient adsorption of gold ions onto the novel functional composite silica microspheres encapsulated by organophosphonated polystyrene. Journal of Industrial and Engineering Chemistry 2014; 20(2): 379–390. doi: 10.1016/j.jiec.2013.04.032

53. Neoh KG, Tan KK, Goh PL, et al. Electroactive polymer–SiO2 nanocomposites for metal uptake. Polymer 1999; 40(4): 887–893. doi: 10.1016/S0032-3861(98)00297-3

54. Javadian H, Sorkhrodi FZ, Koutenaei BB. Experimental investigation on enhancing aqueous cadmium removal via nanostructure composite of modified hexagonal type mesoporous silica with polyaniline/polypyrrole nanoparticles. Journal of Industrial and Engineering Chemistry 2014; 20(5): 3678–3688. doi: 10.1016/j.jiec.2013.12.066

55. Setshedi KZ, Bhaumik M, Onyango MS, Maity A. Breakthrough studies for Cr(VI) sorption from aqueous solution using exfoliated polypyrrole-organically modified montmorillonite clay nanocomposite. Journal of Industrial and Engineering Chemistry 2014; 20(4): 2208–2216. doi: 10.1016/j.jiec.2013.09.052

56. Taha AA, Wu Y, Wang H, Li F. Preparation and application of functionalized cellulose acetate/silica composite nanofibrous membrane via electrospinning for Cr(VI) ion removal from aqueous solution. Journal of Environmental Management 2012; 112: 10–16. doi: 10.1016/j.jenvman.2012.05.031

57. Mirzabe GH, Keshtkar AR. Application of response surface methodology for thorium adsorption on PVA/Fe3O4/SiO2/APTES nanohybrid adsorbent. Journal of Industrial and Engineering Chemistry 2015; 26: 277–285. doi: 10.1016/j.jiec.2014.11.040

58. Rosenberg E. Silica polyamine composites: Advanced materials for metal ion recovery and remediation. In: Abd-El-Aziz AS, Carraher Jr. CE, Pittman Jr. CU, Zeldin M (editors). Macromolecules Containing Metal and Metal‐Like Elements. John Wiley & Sons, Inc.; 2005. p. 51–78. doi: 10.1002/0471712566.ch4

59. Samart C, Prawingwong P, Amnuaypanich S, et al. Preparation of poly acrylic acid grafted-mesoporous silica as pH responsive releasing material. Journal of Industrial and Engineering Chemistry 2014; 20(4): 2153–2158. doi: 10.1016/j.jiec.2013.09.045

60. Pourjavadi A, Tehrani ZM, Jokar S. Functionalized mesoporous silica-coated magnetic graphene oxide by polyglycerol-g-polycaprolactone with pH-responsive behavior: Designed for targeted and controlled doxorubicin delivery. Journal of Industrial and Engineering Chemistry 2015; 28: 45–53. doi: 10.1016/j.jiec.2015.01.021

61. Jang J, Ha J, Lim B. Synthesis and characterization of monodisperse silica–polyaniline core–shell nanoparticles. Chemical Communications 2006; 2006(15): 1622–1624. doi: 10.1039/B600167J

62. Su Y-L. Preparation of polydiacetylene/silica nanocomposite for use as a chemosensor. Reactive and Functional Polymers 2006; 66(9): 967–973. doi: 10.1016/j.reactfunctpolym.2006.01.021

63. Wong CP, Bollampally RS. Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. Journal of Applied Polymer Science 1999; 74(14): 3396–3403. doi: 10.1002/(SICI)1097-4628(19991227)74:14<3396::AID-APP13>3.0.CO;2-3

64. Gonon P, Sylvestre A, Teysseyre J, Prior C. Dielectric properties of epoxy/silica composites used for microlectronic packaging, and their dependence on post-curing. Journal of Materials Science: Materials in Electronics 2001; 12: 81–86. doi: 10.1023/A:1011241818209

65. Devoldere N, Bosc D, Loisel B. Mixed Silica/Polymer Active Directional Coupler, in Integrated Optics. U.S. Patent US5,857,039A, 5 January 1999.

66. Jiguet S, Bertsch A, Hofmann H, Renaud P. Conductive SU8 photoresist for microfabrication. Advanced Functional Materials 2005; 15(9): 1511–1516. doi: 10.1002/adfm.200400575

67. Jang J-H, Ullal CK, Maldovan M, et al. 3D micro- and nanostructures via interference lithography. Advanced Functional Materials 2007; 17(16): 3027–3041. doi: 10.1002/adfm.200700140

68. Cho J-D, Ju H-T, Park Y-S, Hong J-W. Kinetics of cationic photopolymerizations of UV-curable epoxy-based SU8-negative photoresists with and without silica nanoparticles. Macromolecular Materials and Engineering 2006; 291(9): 1155–1163. doi: 10.1002/mame.200600124

69. Battaglin G, Cattaruzza E, Gonella F, et al. Structural and optical properties of Cu:silica nanocomposite films prepared by co-sputtering deposition. Applied Surface Science 2004; 226(1–3): 52–56. doi: 10.1016/j.apsusc.2003.11.030

70. Yu Y-Y, Chen W-C. Transparent organic–inorganic hybrid thin films prepared from acrylic polymer and aqueous monodispersed colloidal silica. Materials Chemistry and Physics 2003; 82(2): 388–395. doi: 10.1016/S0254-0584(03)00259-1

71. Chang C-C, Chen W-C. Synthesis and optical properties of polyimide-silica hybrid thin films. Chemistry of Materials 2002; 14(10): 4242–4248. doi: 10.1021/cm0202310

72. Kashiwagi T, Morgan AB, Antonucci JM, et al. Thermal and flammability properties of a silica–poly(methylmethacrylate) nanocomposite. Journal of Applied Polymer Science 2003; 89(8): 2072–2078. doi: 10.1002/app.12307

73. Chiang C-L, Ma C-CM. Synthesis, characterization, and properties of novel ladderlike phosphorus-containing polysilsesquioxanes. Journal of Polymer Science, Part A: Polymer Chemistry 2003; 41(9): 1371–1379. doi: 10.1002/pola.10684

74. Mishra AK, Kuila T, Kim D-Y, et al. Protic ionic liquid-functionalized mesoporous silica-based hybrid membranes for proton exchange membrane fuel cells. Journal of Materials Chemistry 2012; 22(46): 24366–24372. doi: 10.1039/C2JM33288D

75. Jang S-Y, Han S-H. Sulfonated polySEPS/hydrophilic-SiO2 composite membranes for polymer electrolyte membranes (PEMs). Journal of Industrial and Engineering Chemistry 2015; 23: 285–289. doi: 10.1016/j.jiec.2014.08.030

76. Wang H, Holmberg BA, Huang L, et al. Nafion-bifunctional silica composite proton conductive membranes. Journal of Materials Chemistry 2002; 12(4): 834–837. doi: 10.1039/B107498A

77. Liu H, Gong C, Wang J, et al. Chitosan/silica coated carbon nanotubes composite proton exchange membranes for fuel cell applications. Carbohydrate Polymers 2016; 136: 1379–1385. doi: 10.1016/j.carbpol.2015.09.085

78. Kim DJ, Jo MJ, Nam SY. A review of polymer–nanocomposite electrolyte membranes for fuel cell application. Journal of Industrial and Engineering Chemistry 2015; 21: 36–52. doi: 10.1016/j.jiec.2014.04.030

79. Weng C-J, Chang C-H, Lin I-L, et al. Advanced anticorrosion coating materials prepared from fluoro-polyaniline-silica composites with synergistic effect of superhydrophobicity and redox catalytic capability. Surface and Coatings Technology 2012; 207: 42–49. doi: 10.1016/j.surfcoat.2012.04.097

80. Ghanbari A, Attar MM. A study on the anticorrosion performance of epoxy nanocomposite coatings containing epoxy-silane treated nano-silica on mild steel substrate. Journal of Industrial and Engineering Chemistry 2015; 23: 145–153. doi: 10.1016/j.jiec.2014.08.008

81. Golestaneh M, Amini G, Najafpour GD, Beygi MA. Evaluation of mechanical strength of epoxy polymer concrete with silica powder as filler. World Applied Sciences Journal 2010; 9(2): 216–220.

82. Yeh J-M, Chang K-C. Polymer/layered silicate nanocomposite anticorrosive coatings. Journal of Industrial and Engineering Chemistry 2008; 14(3): 275–291. doi: 10.1016/j.jiec.2008.01.011

83. Cho YK, Park EJ, Kim YD. Removal of oil by gelation using hydrophobic silica nanoparticles. Journal of Industrial and Engineering Chemistry 2014; 20(4): 1231–1235. doi: 10.1016/j.jiec.2013.08.005

84. Nguyen ST, Feng J, Ng SK, et al. Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2014; 445: 128–134. doi: 10.1016/j.colsurfa.2014.01.015

85. Salernitano E, Migliaresi C. Composite materials for biomedical applications: A review. Journal of Applied Biomaterials & Biomechanics 2003; 1(1): 3–18.

86. McInnes SJP, Irani Y, Williams KA, Voelcker NH. Controlled drug delivery from composites of nanostructured porous silicon and poly(L-lactide). Nanomedicine 2012; 7(7): 995–1016. doi: 10.2217/nnm.11.176

87. Rho W-Y, Kim H-M, Kyeong S, et al. Facile synthesis of monodispersed silica-coated magnetic nanoparticles. Journal of Industrial and Engineering Chemistry 2014; 20(5): 2646–2649. doi: 10.1016/j.jiec.2013.12.014

88. Wu H, Zhao Y, Mu X, et al. A silica–polymer composite nano system for tumor-targeted imaging and p53 gene therapy of lung cancer. Journal of Biomaterials Science, Polymer Edition 2015; 26(6): 384–400. doi: 10.1080/09205063.2015.1012035

89. Zhang T, Zhang L, Li C. Study of the preparation and properties of PBT/Epoxy/SiO2 nanocomposites. Journal of Macromolecular Science, Part B 2011; 50(5): 967–974. doi: 10.1080/00222348.2010.497112

90. Liu H, Xu J, Guo B, He X. Preparation and performance of silica/polypropylene composite separator for lithium-ion batteries. Journal of Materials Science 2014; 49: 6961–6966. doi: 10.1007/s10853-014-8401-2

91. Raveh M, Liu L, Mandler D. Electrochemical co-deposition of conductive polymer–silica hybrid thin films. Physical Chemistry Chemical Physics 2013; 15(26): 10876–10884. doi: 10.1039/C3CP50457C

92. Lee DW, Yoo BR. Advanced silica/polymer composites: Materials and applications. Journal of Industrial and Engineering Chemistry 2016; 38: 1–12. doi: 10.1016/j.jiec.2016.04.016

93. Tong H, Chen H, Zhao Y, et al. Robust PDMS-based porous sponge with enhanced recyclability for selective separation of oil-water mixture. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022; 648: 129228. doi: 10.1016/j.colsurfa.2022.129228

94. Zhao X, Li L, Li B, et al. Durable superhydrophobic/superoleophilic PDMS sponges and their applications in selective oil absorption and in plugging oil leakages. Journal of Materials Chemistry A 2014; 2(43): 18281–18287. doi: 10.1039/C4TA04406A

95. Choi S-J, Kwon T-H, Im H, et al. A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Applied Materials & Interfaces 2011; 3(12): 4552–4556. doi: 10.1021/am201352w

96. Yu C, Yu C, Cui L, et al. Facile preparation of the porous PDMS oil-absorbent for oil/water separation. Advanced Materials Interfaces 2017; 4(3): 1600862. doi: 10.1002/admi.201600862

97. He X, Mu X, Wen Q, et al. Flexible and transparent triboelectric nanogenerator based on high performance well-ordered porous PDMS dielectric film. Nano Research 2016; 9: 3714–3724. doi: 10.1007/s12274-016-1242-3

98. Chen M, Zhang L, Duan S, et al. Highly stretchable conductors integrated with a conductive carbon nanotube/graphene network and 3D porous poly(dimethylsiloxane). Advanced Functional Materials 2014; 24(47): 7548–7556. doi: 10.1002/adfm.201401886

99. Lee KY, Chun J, Lee J-H, et al. Hydrophobic sponge structure-based triboelectric nanogenerator. Advanced Materials 2014; 26(29): 5037–5042. doi: 10.1002/adma.201401184

100. Wang J, Guo J, Si P, et al. Polydopamine-based synthesis of an In(OH)3–PDMS sponge for ammonia detection by switching surface wettability. RSC Advances 2016; 6(6): 4329–4334. doi: 10.1039/C5RA23484K

101. Jiao K, Graham CL, Wolff J, et al. Modulating molecular and nanoparticle transport in flexible polydimethylsiloxane membranes. Journal of Membrane Science 2012; 401–402: 25–32. doi: 10.1016/j.memsci.2012.01.015

102. Li J, Zhang Y. Porous polymer films with size-tunable surface pores. Chemistry of Materials 2007; 19(10): 2581–2584. doi: 10.1021/cm070197v

103. Peng S, Hartley PG, Hughes TC, Guo Q. Controlling morphology and porosity of porous siloxane membranes through water content of precursor microemulsion. Soft Matter 2012; 8(40): 10493–10501. doi: 10.1039/C2SM26312B

104. Liang S, Li Y, Yang J, et al. 3D stretchable, compressible, and highly conductive metal-coated polydimethylsiloxane sponges. Advanced Materials Technologies 2006; 1(7): 1600117. doi: 10.1002/admt.201600117

105. Jung S, Kim JH, Kim J, et al. Reverse-micelle-induced porous pressure-sensitive rubber for wearable human–machine interfaces. Advanced Materials 2014; 26(28): 4825–4830. doi: 10.1002/adma.201401364

106. Giustiniani A, Guégan P, Marchand M, et al. Generation of silicone poly-HIPEs with controlled pore sizes via reactive emulsion stabilization. Macromolecular Rapid Communications 2016; 37(18): 1527–1532. doi: 10.1002/marc.201600281

107. Kovalenko A, Zimny K, Mascaro B, et al. Tailoring of the porous structure of soft emulsion-templated polymer materials. Soft Matter 2016; 12(23): 5154–5163. doi: 10.1039/C6SM00461J

108. Grosse MT, Lamotte M, Birot M, Deleuze H. Preparation of microcellular polysiloxane monoliths. Journal of Polymer Science Part A: Polymer Chemistry 2008; 46(1): 21–32. doi: 10.1002/pola.22351

109. Lee H, Yoo J-K, Park J-H, et al. A stretchable polymer–carbon nanotube composite electrode for flexible lithium-ion batteries: Porosity engineering by controlled phase separation. Advanced Energy Materials 2012; 2(8): 976–982. doi: 10.1002/aenm.201100725

110. Zhao J, Luo G, Wu J, Xia H. Preparation of microporous silicone rubber membrane with tunable pore size via solvent evaporation-induced phase separation. ACS Applied Materials & Interfaces 2013; 5(6): 2040–2046. doi: 10.1021/am302929c

111. Hinton TJ, Hudson A, Pusch K, et al. 3D printing PDMS elastomer in a hydrophilic support bath via freeform reversible embedding. ACS Biomaterials Science & Engineering 2016; 2(10): 1781–1786. doi: 10.1021/acsbiomaterials.6b00170

112. Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA. Three-dimensional bioprinting of thick vascularized tissues. PNAS 2016; 113(12): 3179–3184. doi: 10.1073/pnas.1521342113

113. Qin Z, Compton BG, Lewis JA, Buehler MJ. Structural optimization of 3D-printed synthetic spider webs for high strength. Nature Communications 2015; 6: 7038. doi: 10.1038/ncomms8038

114. Guo J, Wang J, Wang W, et al. The fabrication of 3D porous PDMS sponge for oil and organic solvent absorption. Environmental Progress & Sustainable Energy 2019; 38(S1): S86–S92. doi: 10.1002/ep.12924

115. Tan D, Fan W, Xiong W, et al. Study on adsorption performance of conjugated microporous polymers for hydrogen and organic solvents: The role of pore volume. European Polymer Journal 2012; 48(4): 705–711. doi: 10.1016/j.eurpolymj.2012.01.012

116. You L, Temiyasathit S, Tao E, et al. 3D microfluidic approach to mechanical stimulation of osteocyte processes. Cellular and Molecular Bioengineering 2008; 1: 103–107. doi: 10.1007/s12195-008-0010-1

117. Li N, Li T, Lei X, et al. Preparation and characterization of porous PDMS beads for oil and organic solvent sorption. Polymer Engineering & Science 2014; 54(12): 2965–2969. doi: 10.1002/pen.23860

118. Hayase G, Kanamori K, Hasegawa G, et al. A superamphiphobic macroporous silicone monolith with marshmallow-like flexibility. Angewandte Chemie International Edition 2013; 52(41): 10788–10791. doi: 10.1002/anie.201304169

119. Verdejo R, Barroso-Bujans F, Rodriguez-Perez MA, et al. Functionalized graphene sheet filled silicone foam nanocomposites. Journal of Materials Chemistry 2008; 18(19): 2221–2226. doi: 10.1039/B718289A

120. Li L, Li B, Wu L, et al. Magnetic, superhydrophobic and durable silicone sponges and their applications in removal of organic pollutants from water. Chemical Communications 2014; 50(58): 7831–7833. doi: 10.1039/C4CC03045A

121. Moitra N, Kanamori K, Shimada T, et al. Synthesis of hierarchically porous hydrogen silsesquioxane monoliths and embedding of metal nanoparticles by on-site reduction. Advanced Functional Materials 2013; 23(21): 2714–2722. doi: 10.1002/adfm.201202558

122. Si P, Wang J, Zhao C, et al. Preparation and morphology control of three-dimensional interconnected microporous PDMS for oil sorption. Polymers for Advanced Technologies 2015; 26(9): 1091–1096. doi: 10.1002/pat.3538

123. Wang C-F, Lin S-J. Robust superhydrophobic/superoleophilic sponge for effective continuous absorption and expulsion of oil pollutants from water. ACS Applied Materials & Interfaces 2013; 5(18): 8861–8864. doi: 10.1021/am403266v

124. Jiang G, Hu R, Xi X, et al. Facile preparation of superhydrophobic and superoleophilic sponge for fast removal of oils from water surface. Journal of Materials Research 2013; 28: 651–656. doi: 10.1557/jmr.2012.410

125. Krishnan M, Michal F, Alsoughayer S, et al. Thermodynamic and kinetic investigation of water absorption by PAM composite hydrogel. In: SPE Kuwait Oil & Gas Show and Conference; 13–16 October 2019; Mishref, Kuwait. doi: 10.2118/198033-MS

126. Almohsin A, Krishnan MR, Alsharaeh E, Harbi B. Preparation and properties investigation on sand-polyacrylamide composites with engineered interfaces for water shutoff applications. In: Middle East Oil, Gas and Geosciences Show; 19–21 February 2023; Manama, Bahrain. doi: 10.2118/213481-MS

127. Almohsin A, Michal F, Alsharaeh E, et al. Self-healing PAM composite hydrogel for water shutoff at high temperatures: Thermal and rheological investigations. In: SPE Gas & Oil Technology Showcase and Conference; 21–23 October 2019; Dubai, UAE. doi: 10.2118/198664-MS

128. Almohsin A, Alsharaeh E, Michael FM, Krishnan MR. Polymer-Nanofiller Hydrogels. U.S. Patent US20,220,290,033A1, 15 September 2022.

129. Almohsin A, Alsharaeh E, Krishnan MR, Alghazali M. Coated Nanosand as Relative Permeability Modifier. U.S. Patent US11,499,092B2, 15 November 2022.

130. Keishnan MR, Michael FM, Almohsin AM, Alsharaeh EH. Thermal and rheological investigations on N,N’-methylenebis acrylamide cross-linked polyacrylamide nanocomposite hydrogels for water shutoff applications. In: Offshore Technology Conference Asia; 2–6 November 2020; Kuala Lumpur, Malaysia. doi: 10.4043/30123-MS

131. Michael FM, Krishnan MR, Fathima A, et al. Zirconia/graphene nanocomposites effect on the enhancement of thermo-mechanical stability of polymer hydrogels. Materials Today Communications 2019; 21: 100701. doi: 10.1016/j.mtcomm.2019.100701

132. Michael FM, Krishnan MR, AlSoughayer S, et al. Thermo-elastic and self-healing polyacrylamide -2D nanofiller composite hydrogels for water shutoff treatment. Journal of Petroleum Science and Engineering 2020; 193: 107391. doi: 10.1016/j.petrol.2020.107391

133. Lee SG, Ham DS, Lee DY, et al. Transparent superhydrophobic/translucent superamphiphobic coatings based on silica–fluoropolymer hybrid nanoparticles. Langmuir 2013; 29(48): 15051–15057. doi: 10.1021/la404005b

134. Sriram S, Kumar A. Separation of oil-water via porous PMMA/SiO2 nanoparticles superhydrophobic surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019; 563: 271–279. doi: 10.1016/j.colsurfa.2018.12.017

135. Zhong M, Zhang Y, Li X, Wu X. Facile fabrication of durable superhydrophobic silica/epoxy resin coatings with compatible transparency and stability. Surface and Coatings Technology 2018; 347: 191–198. doi: 10.1016/j.surfcoat.2018.04.063

136. Ebert D, Bhushan B. Transparent, superhydrophobic, and wear-resistant coatings on glass and polymer substrates using SiO2, ZnO, and ITO nanoparticles. Langmuir 2012; 28(31): 11391–11399. doi: 10.1021/la301479c

137. Manoudis P, Papadopoulou S, Karapanagiotis I, et al. Polymer-silica nanoparticles composite films as protective coatings for stone-based monuments. Journal of Physics: Conference Series 2007; 61: 1361. doi: 10.1088/1742-6596/61/1/269

138. Krishnan MR, Aldawsari Y, Michael FM, et al. Mechanically reinforced polystyrene-polymethyl methacrylate copolymer-graphene and Epoxy-Graphene composites dual-coated sand proppants for hydraulic fracture operations. Journal of Petroleum Science and Engineering 2021; 196: 107744. doi: 10.1016/j.petrol.2020.107744

139. Krishnan MR, Michael FM, Almohsin A, Alsharaeh EH. Polyacrylamide hydrogels coated super-hydrophilic sand for enhanced water storage and extended release. SSRN 2022.

140. Krishnan MR, Aldawsari Y, Michael FM, et al. 3D-Polystyrene-polymethyl methacrylate/divinyl benzene networks-Epoxy-Graphene nanocomposites dual-coated sand as high strength proppants for hydraulic fracture operations. Journal of Natural Gas Science and Engineering 2021; 88: 103790. doi: 10.1016/j.jngse.2020.103790

141. Krishnan MR, Omar H, Aldawsari Y, et al. Insight into thermo-mechanical enhancement of polymer nanocomposites coated microsand proppants for hydraulic fracturing. Heliyon 2022; 8(12): e12282. doi: 10.1016/j.heliyon.2022.e12282

142. Krishnan MR, Li W, Alsharaeh EH. Ultra-lightweight nanosand/polymer nanocomposite materials for hydraulic fracturing operations. Polymer Nanocomposite Materials for Hydraulic Fracturing Operations 2022.

143. Krishnan MR, Omar H, Almohsin A, Alsharaeh EH. An overview on nanosilica–polymer composites as high-performance functional materials in oil fields. Polymer Bulletin 2023. doi: 10.1007/s00289-023-04934-y

144. 68. Li W, Alsharaeh E, Krishnan MR. Coated Proppant and Methods of Making and Use Thereof. U.S. Patent 20,230,313,027A1, 5 October 2023.

145. 70. Li W, Alsharaeh E, Krishnan MR. Methods for Making Proppant Coatings. U.S. Patent 11,459,503, 4 October 2022.

146. Michael FM, Krishnan MR, Li W, Alsharaeh EH. A review on polymer-nanofiller composites in developing coated sand proppants for hydraulic fracturing. Journal of Natural Gas Science and Engineering 2020; 83: 103553. doi: 10.1016/j.jngse.2020.103553

147. Fielding LA, Tonnar J, Armes SP. All-acrylic film-forming colloidal polymer/silica nanocomposite particles prepared by aqueous emulsion polymerization. Langmuir 2011; 27(17): 11129–11144. doi: 10.1021/la202066n

148. Zhou C, Xu S, Pi P, et al. Polyacrylate/silica nanoparticles hybrid emulsion coating with high silica content for high hardness and dry-wear-resistant. Progress in Organic Coatings 2018; 121: 30–37. doi: 10.1016/j.porgcoat.2018.04.001

149. Zhang S-W, Zhou S-X, Weng Y-M, Wu L-M. Synthesis of SiO2/polystyrene nanocomposite particles via miniemulsion polymerization. Langmuir 2005; 21(6): 2124–2128. doi: 10.1021/la047652b

150. Monteil V, Stumbaum J, Thomann R, Mecking S. Silica/polyethylene nanocomposite particles from catalytic emulsion polymerization. Macromolecules 2006; 39(6): 2056–2062. doi: 10.1021/ma052737k

151. Kim D, Lee JS, Barry CMF, Mead JL. Effect of fill factor and validation of characterizing the degree of mixing in polymer nanocomposites. Polymer Engineering and Science 2007; 47(12): 2049–2056. doi: 10.1002/pen.20920

152. Mittal V (editor). Synthesis Techniques for Polymer Nanocomposites. Wiley-VCH Verlag GmbH & Co. KGaA; 2015. doi: 10.1002/9783527670307

153. Yang F, Nelson GL. PMMA/silica nanocomposite studies: Synthesis and properties. Journal of Applied Polymer Science 2004; 91(6): 3844–3850. doi: 10.1002/app.13573

154. Ou C-F, Hsu M-C. Preparation and characterization of cyclo olefin copolymer (COC)/silica nanoparticle composites by solution blending. Journal of Polymer Research 2007; 14: 373–378. doi: 10.1007/s10965-007-9119-5

155. Huang J-W, Wen Y-L, Kang C-C, Yeh M-Y. Preparation of polyimide-silica nanocomposites from nanoscale colloidal silica. Polymer Journal 2007; 39(7): 654–658.

156. Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science 1968; 26(1): 62–69. doi: 10.1016/0021-9797(68)90272-5

157. Shang X, Zhu Z, Yin J, Ma X. Compatibility of soluble polyimide/silica hybrids induced by a coupling agent. Chemistry of Materials 2002; 14(1): 71–77. doi: 10.1021/cm010088v

158. Zhang S, Yu A, Song X, Liu S. Synthesis and characterization of waterborne UV-curable polyurethane nanocomposites based on the macromonomer surface modification of colloidal silica. Progress in Organic Coatings 2013; 76(7–8): 1032–1039. doi: 10.1016/j.porgcoat.2013.02.019

159. Zhang Y-L, Xia H, Kim E, Sun H-B. Recent developments in superhydrophobic surfaces with unique structural and functional properties. Soft Matter 2012; 8(44): 11217–11231. doi: 10.1039/C2SM26517F

160. Liu M, Zheng Y, Zhai J, Jiang L. Bioinspired super-antiwetting interfaces with special liquid−solid adhesion. Accounts of Chemical Research 2010; 43(3): 368–377. doi: 10.1021/ar900205g

161. Li Y, Lee EJ, Cho SO. Superhydrophobic coatings on curved surfaces featuring remarkable supporting force. The Journal of Physical Chemistry C 2007; 111(40): 14813–14817. doi: 10.1021/jp073672l

162. Voronov RS, Papavassiliou DV, Lee LL. Review of fluid slip over superhydrophobic surfaces and its dependence on the contact angle. Industrial & Engineering Chemistry Research 2008; 47(8): 2455–2477. doi: 10.1021/ie0712941

163. Koc Y, de Mello AJ, McHale G, et al. Nano-scale superhydrophobicity: suppression of protein adsorption and promotion of flow-induced detachment. Lab on a Chip 2008; 8(4): 582–586. doi: 10.1039/B716509A

164. Feng L, Li S, Li Y, et al. Super-hydrophobic surfaces: From natural to artificial. Advanced Materials 2002; 14(24): 1857–1860. doi: 10.1002/adma.200290020

165. Cao L, Jones AK, Sikka VK, et al. Anti-icing superhydrophobic coatings. Langmuir 2009; 25(21): 12444–12448. doi: 10.1021/la902882b

166. Kulinich SA, Farzaneh M. How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces. Langmuir 2009; 25(16): 8854–8856. doi: 10.1021/la901439c

167. Wu D, Wu S-Z, Chen Q-D, et al. Curvature-driven reversible in situ switching between pinned and roll-down superhydrophobic states for water droplet transportation. Advanced Materials 2011; 23(4): 545–549. doi: 10.1002/adma.201001688

168. Wang M, Chen C, Ma J, Xu J. Preparation of superhydrophobic cauliflower-like silica nanospheres with tunable water adhesion. Journal of Materials Chemistry 2011; 21(19): 6962–6967. doi: 10.1039/C1JM10283D

169. Bravo J, Zhai L, Wu Z, et al. Transparent superhydrophobic films based on silica nanoparticles. Langmuir 2007; 23(13): 7293–7298. doi: 10.1021/la070159q

170. Ming W, Wu D, van Benthem R, de With G. Superhydrophobic films from raspberry-like particles. Nano Letters 2005; 5(11): 2298–2301. doi: 10.1021/nl0517363

171. Yang S, Wang L, Wang C-F, et al. Superhydrophobic thermoplastic polyurethane films with transparent/fluorescent performance. Langmuir 2010; 26(23): 18454–18458. doi: 10.1021/la103496t

172. Tang X, Wang T, Yu F, et al. Simple, robust and large-scale fabrication of superhydrophobic surfaces based on silica/polymer composites. RSC Advances 2013; 3(48): 25670–25673. doi: 10.1039/C3RA44502J

173. Wang S-D, Shu Y-Y. Superhydrophobic antireflective coating with high transmittance. Journal of Coatings Technology and Research 2013; 10: 527–535. doi: 10.1007/s11998-012-9468-9

174. Xu Y, Wu D, Sun YH, et al. Comparative study on hydrophobic anti-reflective films from three kinds of methyl-modified silica sols. Journal of Non-Crystalline Solids 2005; 351(3): 258–266. doi: 10.1016/j.jnoncrysol.2004.11.011

175. Chang K-C, Chen Y-K, Chen H. Fabrication of highly transparent and superhydrophobic silica-based surface by TEOS/PPG hybrid with adjustment of the pH value. Surface and Coatings Technology 2008; 202(16): 3822–3831. doi: 10.1016/j.surfcoat.2008.01.028

176. Krishnan M, Chen H-Y, Ho R-M. Switchable structural colors from mesoporous polystyrene films. In: ACS 252nd National Meeting; 18–26 August 2016; Philadelphia.

177. Krishnan MR, Rajendran V, Alsharaeh E. Anti-reflective and high-transmittance optical films based on nanoporous silicon dioxide fabricated from templated synthesis. Journal of Non-Crystalline Solids 2023; 606: 122198. doi: 10.1016/j.jnoncrysol.2023.122198

178. Lin T-X, Hsu F-M, Lee Y-L, et al. Biomimetic synthesis of antireflective silica/polymer composite coatings comprising vesicular nanostructures. ACS Applied Materials & Interfaces 2016; 8(39): 26309–26318. doi: 10.1021/acsami.6b07874

179. Xu L, He J. Antifogging and antireflection coatings fabricated by integrating solid and mesoporous silica nanoparticles without any post-treatments. ACS Applied Materials & Interfaces 2012; 4(6): 3293–3299. doi: 10.1021/am300658e

180. Hammer P, dos Santos FC, Cerrutti BM, et al. Highly corrosion resistant siloxane-polymethyl methacrylate hybrid coatings. Journal of Sol-Gel Science and Technology 2012; 63: 266–274. doi: 10.1007/s10971-011-2672-8

181. dos Santos FC, Harb SV, Menu M-J, et al. On the structure of high performance anticorrosive PMMA–siloxane–silica hybrid coatings. RSC Advances 2015; 5(129): 106754–106763. doi: 10.1039/C5RA20885H

182. Sarmento VHV, Schiavetto MG, Hammer P, et al. Corrosion protection of stainless steel by polysiloxane hybrid coatings prepared using the sol–gel process. Surface and Coatings Technology 2010; 204(16–17): 2689–2701. doi: 10.1016/j.surfcoat.2010.02.022

183. Mishra AK, Bose S, Kuila T, et al. Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells. Progress in Polymer Science 2012; 37(6): 842–869. doi: 10.1016/j.progpolymsci.2011.11.002

184. Bae I, Oh K-H, Yun S-H, Kim H. Asymmetric silica composite polymer electrolyte membrane for water management of fuel cells. Journal of Membrane Science 2017; 542: 52–59. doi: 10.1016/j.memsci.2017.07.058

185. Sambandam S, Ramani V. SPEEK/functionalized silica composite membranes for polymer electrolyte fuel cells. Journal of Power Sources 2007; 170(2): 259–267. doi: 10.1016/j.jpowsour.2007.04.026

186. Wen S, Gong C, Tsen W-C, et al. Sulfonated poly(ether sulfone)/silica composite membranes for direct methanol fuel cells. Journal of Applied Polymer Science 2010; 116(3): 1491–1498. doi: 10.1002/app.31699

187. Shaari N, Kamarudin SK. Recent advances in additive-enhanced polymer electrolyte membrane properties in fuel cell applications: An overview. International Journal of Energy Research 2019; 43(7): 2756–2794. doi: 10.1002/er.4348

188. Lee C, Na H, Jeon Y, et al. Poly(ether imide) nanofibrous web composite membrane with SiO2/heteropolyacid ionomer for durable and high-temperature polymer electrolyte membrane (PEM) fuel cells. Journal of Industrial and Engineering Chemistry 2019; 74: 7–13. doi: 10.1016/j.jiec.2019.01.034

189. Tripathi BP, Shahi VK. Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Progress in Polymer Science 2011; 36(7): 945–979. doi: 10.1016/j.progpolymsci.2010.12.005

190. Chen C-Y, Garnica-Rodriguez JI, Duke MC, et al. Nafion/polyaniline/silica composite membranes for direct methanol fuel cell application. Journal of Power Sources 2007; 166(2): 324–330. doi: 10.1016/j.jpowsour.2006.12.102

191. Su Y-H, Liu Y-L, Sun Y-M, et al. Using silica nanoparticles for modifying sulfonated poly(phthalazinone ether ketone) membrane for direct methanol fuel cell: A significant improvement on cell performance. Journal of Power Sources 2006; 155(2): 111–117. doi: 10.1016/j.jpowsour.2005.03.233

192. Antonucci PL, Aricò AS, Cretı̀ P, et al. Investigation of a direct methanol fuel cell based on a composite Nafion®-silica electrolyte for high temperature operation. Solid State Ionics 1999; 125(1–4): 431–437. doi: 10.1016/S0167-2738(99)00206-4

193. Saxena A, Tripathi BP, Shahi VK. Sulfonated poly(styrene-co-maleic anhydride)−poly(ethylene glycol)−silica nanocomposite polyelectrolyte membranes for fuel cell applications. The Journal of Physical Chemistry B 2007; 111(43): 12454–12461. doi: 10.1021/jp072244c

194. Kanamura K, Mitsui T, Munakata H. Preparation of composite membrane between a uniform porous silica matrix and injected proton conductive gel polymer. Chemistry of Materials 2005; 17(19): 4845–4851. doi: 10.1021/cm047979y

195. Wang Y-Y, Hsieh T-E. Effect of UV curing on electrical properties of a UV-curable co-polyacrylate/silica nanocomposite as a transparent encapsulation resin for device packaging. Macromolecular Chemistry and Physics 2007; 208(22): 2396–2402. doi: 10.1002/macp.200700229

196. Wijesiri RP, Knowles GP, Yeasmin H, et al. CO2 capture from air using pelletized polyethylenimine impregnated MCF silica. Industrial & Engineering Chemistry Research 2019; 58(8): 3293–3303. doi: 10.1021/acs.iecr.8b04973

197. Chaikittisilp W, Khunsupat R, Chen TT, Jones CW. Poly(allylamine)–mesoporous silica composite materials for CO2 capture from simulated flue gas or ambient air. Industrial & Engineering Chemistry Research 2011; 50(24): 14203–14210. doi: 10.1021/ie201584t

198. Holewinski A, Sakwa-Novak MA, Carrillo J-MY, et al. Aminopolymer mobility and support interactions in silica-PEI composites for CO2 capture applications: A quasielastic neutron scattering study. The Journal of Physical Chemistry B 2017; 121(27): 6721–6731. doi: 10.1021/acs.jpcb.7b04106

199. Sujan AR, Pang SH, Zhu G, et al. Direct CO2 capture from air using poly(ethylenimine)-loaded polymer/silica fiber sorbents. ACS Sustainable Chemistry & Engineering 2019; 7(5): 5264–5273. doi: 10.1021/acssuschemeng.8b06203

200. Rezaei F, Lively RP, Labreche Y, et al. Aminosilane-grafted polymer/silica hollow fiber adsorbents for CO2 capture from flue gas. ACS Applied Materials & Interfaces 2013; 5(9): 3921–3931. doi: 10.1021/am400636c

201. Lu X, Manners I, Winnik MA. Polymer/silica composite films as luminescent oxygen sensors. Macromolecules 2001; 34(6): 1917–1927. doi: 10.1021/ma001454j

202. Timin AS, Solomonov AV, Kumagai A, et al. Magnetic polymer-silica composites as bioluminescent sensors for bilirubin detection. Materials Chemistry and Physics 2016; 183: 422–429. doi: 10.1016/j.matchemphys.2016.08.048

203. Comes M, Dolores Marcos M, Martínez-Máñez R, et al. Hybrid functionalised mesoporous silica–polymer composites for enhanced analyte monitoring using optical sensors. Journal of Materials Chemistry 2008; 18(47): 5815–5823. doi: 10.1039/B810992C

204. Shi Y, Seliskar CJ. Optically transparent polyelectrolyte−silica composite materials: Preparation, characterization, and application in optical chemical sensing. Chemistry of Materials 1997; 9(3): 821–829. doi: 10.1021/cm960495k

205. Rastogi PK, Ganesan V, Krishnamoorthi S. Palladium nanoparticles incorporated polymer-silica nanocomposite based electrochemical sensing platform for nitrobenzene detection. Electrochimica Acta 2014; 147: 442–450. doi: 10.1016/j.electacta.2014.09.128

206. Liang F, Sayed M, Al-Muntasheri GA, et al. A comprehensive review on proppant technologies. Petroleum 2016; 2(1): 26–39. doi: 10.1016/j.petlm.2015.11.001

207. Zoveidavianpoor M, Gharibi A. Application of polymers for coating of proppant in hydraulic fracturing of subterraneous formations: A comprehensive review. Journal of Natural Gas Science and Engineering 2015; 24: 197–209. doi: 10.1016/j.jngse.2015.03.024

208. Nguyen PD, Dusterhoft RG, Dewprashad BT, Weaver JD. New guidelines for applying curable resin-coated proppants. In: SPE Formation Damage Control Conference; 18–19 February 1998; Lafayette, Louisiana. doi: 10.2118/39582-MS

209. Nguyen PD, Weaver JD, Desai BD. Methods of Coating Resin and Blending Resin-Coated Proppant. U.S. Patent 20,040,221,992A1, 11 November 2004.

210. Dewprashad B, Abass H, Meadows DL, et al. A method to select resin-coated proppants. In: SPE Annual Technical Conference and Exhibition; 3–6 October 1993; Houston, Texas. doi: 10.2118/26523-MS

211. Hussain H, McDaniel RR, Callanan MJ. Proppants with Fiber Reinforced Resin Coatings. U.S. Patent 6,528,157, 4 March 2003.

212. Stevens B. Fracking what makes it tick: Demystifying the Why’s, technology and science behind unconventional oil and shale gas extraction behind unconventional oil and shale gas extraction. Presented at Fracking What Makes it Tick?–Demystifying the Why’s, Technology and Science; 23 September 2014; Online.

213. Men X, Ge B, Li P, et al. Facile fabrication of superhydrophobic sand: Potential advantages for practical application in oil–water separation. Journal of the Taiwan Institute of Chemical Engineers 2016; 60: 651–655. doi: 10.1016/j.jtice.2015.11.015

214. Chen L, Wu Y, Guo Z. Superhydrophobic sand grains structured with aligned Cu(OH)2 nano-needles for efficient oily water treatment. Materials & Design 2017; 135: 377–384. doi: 10.1016/j.matdes.2017.09.047

215. Liu P, Niu L, Tao X, et al. Preparation of superhydrophobic-oleophilic quartz sand filter and its application in oil-water separation. Applied Surface Science 2018; 447: 656–663. doi: 10.1016/j.apsusc.2018.04.030

216. Atta AM, Abdullah M, Al-Lohedan HA, Mohamed NH. Coating sand with new hydrophobic and superhydrophobic silica/paraffin wax nanocapsules for desert water storage and transportation. Coatings 2019; 9(2): 124. doi: 10.3390/coatings9020124

217. Montesano FF, Parente A, Santamaria P, et al. Biodegradable superabsorbent hydrogel increases water retention properties of growing media and plant growth. Agriculture and Agricultural Science Procedia 2015; 4: 451–458. doi: 10.1016/j.aaspro.2015.03.052

218. Khodadadi Dehkordi D. Effect of superabsorbent polymer on soil and plants on steep surfaces. Water and Environment Journal 2018; 32(2): 158–163. doi: 10.1111/wej.12309

219. Liao R, Wu W, Ren S, Yang P. Effects of superabsorbent polymers on the hydraulic parameters and water retention properties of soil. Journal of Nanomaterials 2016; 2016: 5403976. doi: 10.1155/2016/5403976

220. Chen L, Si Y, Guo Z, Liu W. Superhydrophobic sand: A hope for desert water storage and transportation projects. Journal of Materials Chemistry A 2017; 5(14): 6416–6423. doi: 10.1039/C7TA00962C

221. Sivasubramanian M, Nedunjezhian K, Murugesan S, Kalpoondi Sekar R. Sub-micron dispersions of sand in water prepared by stirred bead milling and ultrasonication: A potential coolant. Applied Thermal Engineering 2012; 44: 1–10. doi: 10.1016/j.applthermaleng.2012.04.004

222. Manikandan S, Shylaja A, Rajan KS. Thermo-physical properties of engineered dispersions of nano-sand in propylene glycol. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2014; 449: 8–18. doi: 10.1016/j.colsurfa.2014.02.040

223. Phuong N, Andisetiawan A, Van Lam D, et al. Nano sand filter with functionalized nanoparticles embedded in anodic aluminum oxide templates. Scientific Reports 2016; 6: 37673. doi: 10.1038/srep37673

224. Zheng Y, Chonung K, Wang G, et al. Epoxy/nano-silica composites: Curing kinetics, glass transition temperatures, dielectric, and thermal–mechanical performances. Journal of Applied Polymer Science 2009; 111(2): 917–927. doi: 10.1002/app.28875

225. Ahmad T, Mamat O, Ahmad R. Studying the effects of adding silica sand nanoparticles on epoxy based composites. Journal of Nanoparticles 2013; 2013: 603069. doi: 10.1155/2013/603069

226. Rizlan Z, Mamat O. Mechanical milling of Tronoh silica sand nanoparticles using low speed ball milling process. Applied Mechanics and Materials 2014; 465–466: 998–1002. doi: 10.4028/www.scientific.net/AMM.465-466.998

227. Ahmad T, Mamat O. Tronoh silica sand nanoparticle production and applications design for composites. Defect and Diffusion Forum 2012; 330: 39–47. doi: 10.4028/www.scientific.net/DDF.330.39

228. Ahmad T, Ahmad R, Kamran M, et al. Effect of Thal silica sand nanoparticles and glass fiber reinforcements on epoxy-based hybrid composite. Iranian Polymer Journal 2015; 24: 21–27. doi: 10.1007/s13726-014-0296-x

229. Sui G, Jana S, Salehi-khojin A, et al. Preparation and properties of natural sand particles reinforced epoxy composites. Macromolecular Materials and Engineering 2007; 292(4): 467–473. doi: 10.1002/mame.200600479

230. Ahmed T, Mamat O. The development and properties of polypropylene-silica sand nanoparticles composites. In: 2011 IEEE Colloquium on Humanities, Science and Engineering; 5–6 December 2011; Penang, Malaysia. pp. 172–177. doi: 10.1109/CHUSER.2011.6163710

231. Schneider J. Nanostructured Sand, Process for Producing Nano Structured Sand, Process for Separating a Pollutant-Water Mixture with the Nanostructured Sand and Further Uses. U.S. Patent 20,170,065,961, 26 February 2019.

232. Krishnan MR, Alsharaeh E. Potential removal of benzene-toluene-xylene toxic vapors by nanoporous poly(styrene-r-methylmethacrylate) copolymer composites. Environmental Nanotechnology, Monitoring & Management 2023; 20: 100860. doi: 10.1016/j.enmm.2023.100860.

233. Krishnan MR, Chien Y-C, Cheng C-F, Ho R-M. Fabrication of mesoporous polystyrene films with controlled porosity and pore size by solvent annealing for templated syntheses. Langmuir 2017; 33(34): 8428–8435. doi: 10.1021/acs.langmuir.7b02195

234. Krishnan MR, Lu K-Y, Chiu W-Y, et al. Directed self‐assembly of star‐block copolymers by topographic nanopatterns through nucleation and growth mechanism. Small 2018; 14(16): 1704005. doi: 10.1002/smll.201704005

235. Lo T-Y, Krishnan MR, Lu K-Y, Ho R-M. Silicon-containing block copolymers for lithographic applications. Progress in Polymer Science 2018; 77: 19–68. doi: 10.1016/j.progpolymsci.2017.10.002

236. Alsharaeh EH, Othman AA. Microwave irradiation synthesis and characterization of RGO‐AgNPs/polystyrene nanocomposites. Polymer Composites 2014; 35(12): 2318–2323. doi: 10.1002/pc.22896

237. Bongu CS, Krishnan MR, Soliman A, et al. Flexible and freestanding MoS2/graphene composite for high-performance supercapacitors. ACS Omega 2023; 8(40): 36789–36800. doi: 10.1021/acsomega.3c03370

238. Cheng C-F, Chen Y-M, Zou F, et al. Li-ion capacitor integrated with nano-network-structured Ni/NiO/C anode and nitrogen-doped carbonized metal–organic framework cathode with high power and long cyclability. ACS Applied Materials & Interfaces 2019; 11(34): 30694–30702. doi: 10.1021/acsami.9b06354

239. Chien Y-C, Huang L-Y, Yang K-C, et al. Fabrication of metallic nanonetworks via templated electroless plating as hydrogenation catalyst. Emergent Materials 2021; 4: 493–501. doi: 10.1007/s42247-020-00108-y




DOI: https://doi.org/10.24294/jpse.v6i1.3292

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Mohan Raj Krishnan, Edreese Housni Alsharaeh

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.