Organic polymers revolution: Applications and formation strategies, and future perspectives
Vol 6, Issue 1, 2023
VIEWS - 738 (Abstract) 185 (PDF)
Abstract
The history of organic polymers is a remarkable journey from the discovery of natural materials like rubber and silk to the development of sophisticated synthetic polymers that have transformed industries and modern life. This comprehensive review article presents a detailed account of the evolution of organic polymers. It begins with the early uses of natural polymers and explores key breakthroughs, including the invention of Bakelite, nylon, and neoprene. The theoretical foundations of polymer science, laid by Hermann Staudinger, are discussed, and the post-war surge in polymer development is examined, including the introduction of polyethylene, polypropylene, and PVC. Notable advances in polymer chemistry, such as isotactic polypropylene and silicone polymers, are highlighted. The article also delves into the development of high-performance polymers like Kevlar and carbon-based materials, offering insights into their applications. Moreover, it discusses the current trends in polymer science, emphasizing sustainability and biodegradability. As the world continues to rely on polymers for numerous applications, this review provides a historical perspective and a glimpse into the future of organic polymers, where innovations are expected to shape various aspects of technology, healthcare, and environmental protection.
Keywords
Full Text:
PDFReferences
1. Ha CS, Mathews AS. Polyimides and high performance organic polymers. In: Woo HG, Li H (editors). Advanced Functional Materials. Springer; 2011. pp. 1–36. doi: 10.1007/978-3-642-19077-3_1
2. Kenry, Liu B. Recent advances in biodegradable conducting polymers and their biomedical applications. Biomacromolecules 2018; 19(6): 1783–1803. doi: 10.1021/acs.biomac.8b00275
3. Haka AT. The development of composite materials within the context of 19th-century industrialization. engineered stability. In: Haka AT (editor). Engineered Stability—The History of Composite Materials in the 19th and 20th Centuries. Springer; 2023. pp. 75–111. doi: 10.1007/978-3-658-41408-5_3
4. Smith MJ. The Age of Plastic(s): Race, Religion, Ecology, and the Biopolitics of Conversion [PhD thesis]. Northwestern University; 2021.
5. Morris PJ. Polymer Pioneers: A Popular History of the Science and Technology of Large Molecules. Chemical Heritage Foundation; 2005.
6. Graves DF. Rubber. In: Kent JA (editor). Kent and Riegel’s Handbook of Industrial Chemistry and Biotechnology, 11th ed. Springer; 2007. pp. 689–718. doi: 10.1007/978-0-387-27843-8_16
7. Malpass DB, Band E. Introduction to Industrial Polypropylene: Properties, Catalysts Processes. John Wiley & Sons; 2012.
8. Carraher CE Jr. Introduction to Polymer Chemistry. CRC Press; 2017.
9. Kiparissides C. Polymerization reactor modeling: A review of recent developments and future directions. Chemical Engineering Science 1996; 51(10): 1637–1659. doi: 10.1016/0009-2509(96)00024-3
10. Gahleitner M, Paulik C. Polypropylene and other polyolefins. In: Gilbert M (editor). Brydson's Plastics Materials, 8th ed. Butterworth-Heinemann; 2017. pp. 279–309. doi: 10.1016/B978-0-323-35824-8.00011-6
11. Utracki LA. Commercial Polymer Blends. Springer Science & Business Media; 2013.
12. Satoh K, Kamigaito M. Stereospecific living radical polymerization: Dual control of chain length and tacticity for precision polymer synthesis. Chemical Reviews 2009; 109(11): 5120–5156. doi: 10.1021/cr900115u
13. Covas JA, Pessan LA, Machado AV, Larocca NM. Polymer blend compatibilization by copolymers and functional polymers. In: Isayev AI (editor). Encyclopedia of Polymer Blends. John Wiley & Sons; 2011. pp. 315–356. doi: 10.1002/9783527805242.ch7
14. Dhanorkar RJ, Mohanty S, Gupta VK. Synthesis of functionalized styrene butadiene rubber and its applications in SBR—Silica composites for high performance tire applications. Industrial & Engineering Chemistry Research 2021; 60(12): 4517–4535. doi: 10.1021/acs.iecr.1c00013
15. Rutkowski JV, Levin BC. Acrylonitrile–butadiene–styrene copolymers (ABS): Pyrolysis and combustion products and their toxicity—A review of the literature. Fire and Materials 1986; 10(3–4): 93–105. doi: 10.1002/fam.810100303
16. Abenojar J, Torregrosa-Coque R, Martínez MA, Martín-Martínez JM. Surface modifications of polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) copolymer by treatment with atmospheric plasma. Surface and Coatings Technology 2009; 203(16): 2173–2180. doi: 10.1016/j.surfcoat.2009.01.037
17. Yokozawa T, Ohta Y. Transformation of step-growth polymerization into living chain-growth polymerization. Chemical Reviews 2016; 116(4): 1950–1968. doi: 10.1021/acs.chemrev.5b00393
18. Ravve A, Ravve A. Step-growth polymerization and step-growth polymers. In: Principles of Polymer Chemistry. Springer; 2012; pp. 403–535. doi: 10.1007/978-1-4614-2212-9_7
19. Sousa AF, Patrício R, Terzopoulou Z, et al. Recommendations for replacing PET on packaging, fiber, and film materials with biobased counterparts. Green Chemistry 2021; 23: 8795–8820. doi: 10.1039/D1GC02082J
20. Lundberg H, Tinnis F, Selander N, Adolfsson H. Catalytic amide formation from non-activated carboxylic acids and amines. Chemical Society Reviews 2014; 43(8): 2714–2742. doi: 10.1039/C3CS60345H
21. Schaffer MA, Marchildon EK, McAuley KB, Cunningham MF. Thermal nonoxidative degradation of nylon 6,6. Journal of Macromolecular Science, Part C: Polymer Reviews 2000; 40(4): 233–272. doi: 10.1081/MC-100102398
22. Yilmaz G, Yagci Y. Light-induced step-growth polymerization. Progress in Polymer Science 2020; 100: 101178. doi: 10.1016/j.progpolymsci.2019.101178
23. Ouchi M, Terashima T, Sawamoto M. Transition metal-catalyzed living radical polymerization: Toward perfection in catalysis and precision polymer synthesis. Chemical Reviews 2009; 109(11): 4963–5050. doi: 10.1021/cr900234b
24. Senkovskyy V, Tkachov R, Komber H, et al. Chain-growth polymerization of unusual anion-radical monomers based on naphthalene diimide: A new route to well-defined n-type conjugated copolymers. Journal of the American Chemical Society 2011; 133(49): 19966–19970. doi: 10.1021/ja208710x
25. Michaudel Q, Kottisch V, Fors BP. Cationic polymerization: From photoinitiation to photocontrol. Angewandte Chemie International Edition 2017; 56(33): 9670–9679. doi: 10.1002/anie.201701425
26. Paul WG, Bier PN. New high-heat polycarbonates: Structure, properties, and applications. In: Luise RR (editor). Applications of High Temperature Polymers, 1st ed. CRC Press; 1997. pp. 203–219.
27. Mindemark J, Lacey MJ, Bowden T, Brandell D. Beyond PEO—Alternative host materials for Li+-conducting solid polymer electrolytes. Progress in Polymer Science 2018; 81: 114–143. doi: 10.1016/j.progpolymsci.2017.12.004
28. Chatani Y, Okita Y, Tadokoro H, Yamashita Y. Structural studies of polyesters. III. Crystal structure of poly-ε-caprolactone. Polymer Journal 1970; 1: 555–562. doi: 10.1295/polymj.1.555
29. Guillaume SM, Kirillov E, Sarazin Y, Carpentier JF. Beyond Stereoselectivity, switchable catalysis: Some of the last frontier challenges in ring‐opening polymerization of cyclic esters. Chemistry–A European Journal 2015; 21(22): 7988–8003. doi: 10.1002/chem.201500613
30. Olatunji O. Natural Polymers: Industry Techniques and Applications. Springer; 2015. doi: 10.1007/978-3-319-26414-1
31. Philip S, Keshavarz T, Roy I. Polyhydroxyalkanoates: Biodegradable polymers with a range of applications. Journal of Chemical Technology & Biotechnology 2007, 82(3): 233–247. doi: 10.1002/jctb.1667
32. Al-Azzawi AGS, Aziz SB, Dannoun EMA, et al. A mini review on the development of conjugated polymers: Steps towards the commercialization of organic solar cells. Polymers 2022; 15(1): 164. doi: 10.3390/polym15010164
33. Haque SKM, Ardila-Rey JA, Umar Y, et al. Polymeric materials for conversion of electromagnetic waves from the sun to electric power. Polymers 2018; 10(3): 307. doi: 10.3390/polym10030307
34. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011; 3(3): 1377–1397. doi: 10.3390/polym3031377
35. Niu Y, Chen KC, He T, et al. Scaffolds from block polyurethanes based on poly (ɛ-caprolactone)(PCL) and poly(ethylene glycol) (PEG) for peripheral nerve regeneration. Biomaterials 2014; 35(14): 4266–4277. doi: 10.1016/j.biomaterials.2014.02.013
36. Khan S, Rahman FU, Zahoor M, et al. The DNA threat probing of some chromophores using UV/VIS spectroscopy. World Journal of Biology and Biotechnology 2023; 8(2): 19–22. doi: 10.33865/wjb.008.02.0962
37. Li Z, Feng X, Gao S, et al. Porous organic polymer-coated band-aids for phototherapy of bacteria-induced wound infection. ACS Applied Bio Materials 2019; 2(2): 613–618. doi: 10.1021/acsabm.8b00676
38. Li Q, Zhang G, Liu F, et al. Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. Energy & Environmental Science 2015; 8(3): 922–931. doi: 10.1039/C4EE02962C
39. Prateek, Thakur VK, Gupta RK. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: Synthesis, dielectric properties, and future aspects. Chemical Reviews 2016; 116(7): 4260–4317. doi: 10.1021/acs.chemrev.5b00495
40. Yao Z, Song Z, Hao H, et al. Homogeneous/inhomogeneous‐structured dielectrics and their energy‐storage performances. Advanced Materials 2017; 29(20): 1601727. doi: 10.1002/adma.201601727
41. Li Q, Yao F Z, Liu Y, et al. High-temperature dielectric materials for electrical energy storage. Annual Review of Materials Research 2018; 48: 219–243. doi: 10.1146/annurev-matsci-070317-124435
42. Liu Y, Aziguli H, Zhang B, et al. Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary. Nature 2018; 562: 96–100. doi: 10.1038/s41586-018-0550-z
43. Johnson RW, Evans JL, Jacobsen P, et al. The changing automotive environment: High-temperature electronics. IEEE Transactions on Electronics Packaging Manufacturing 2004; 27(3): 164–176. doi: 10.1109/TEPM.2004.843109
44. Li Q, Han K, Gadinski MR, et al. High energy and power density capacitors from solution‐processed ternary ferroelectric polymer nanocomposites. Advanced Materials 2014; 26(36): 6244–6249. doi: 10.1002/adma.201402106
45. Huan TD, Boggs S, Teyssedre G, et al. Advanced polymeric dielectrics for high energy density applications. Progress in Materials Science 2016; 83: 236–269. doi: 10.1016/j.pmatsci.2016.05.001
46. Jiang J, Shen Z, Cai X, et al. Polymer nanocomposites with interpenetrating gradient structure exhibiting ultrahigh discharge efficiency and energy density. Advanced Energy Materials 2019; 9(15): 1803411. doi: 10.1002/aenm.201803411
47. Khan S, Zahoor M, Rahman MU, et al. Cocrystals; basic concepts, properties and formation strategies. International Journal of Research in Physical Chemistry and Chemical Physics 2023; 237(3): 273–332. doi: 10.1515/zpch-2022-0175
48. Chu B, Zhou X, Ren K, et al. A dielectric polymer with high electric energy density and fast discharge speed. Science 2006; 313(5785): 334–336. doi: 10.1126/science.112779
49. Khan S, Ajmal S, Hussain T, Rahman MU. Clay-based materials for enhanced water treatment: Adsorption mechanisms, challenges, and future directions. Journal of Umm Al-Qura University for Applied Sciences 2023. doi: 10.1007/s43994-023-00083-0
50. Gul Z, Salman M, Khan S, et al. Single organic ligands act as a bifunctional sensor for subsequent detection of metal and cyanide ions, a statistical approach toward coordination and sensitivity. Critical Reviews in Analytical Chemistry 2023. doi: 10.1080/10408347.2023.2186165
51. Guan F, Wang J, Pan J, et al. Time and poling history dependent energy storage and discharge behaviors in poly (vinylidene fluoride-co-hexafluoropropylene) random copolymers. Chinese Journal of Polymer Science 2011; 29: 65–80. doi: 10.1007/s10118-010-1020-8
52. Luo J, Mao J, Sun W, et al. Research progress of all organic polymer dielectrics for energy storage from the classification of organic structures. Macromolecular Chemistry and Physics 2021; 222(11): 2100049. doi: 10.1002/macp.202100049
53. Singh M, Apata IE, Samant S, et al. Nanoscale strategies to enhance the energy storage capacity of polymeric dielectric capacitors: Review of recent advances. Polymer Reviews 2022; 62(2): 211–260. doi: 10.1080/15583724.2021.1917609
54. Mannodi‐Kanakkithodi A, Treich GM, Huan TD, et al. Rational co‐design of polymer dielectrics for energy storage. Advanced Materials 2016; 28(30): 6277–6291. doi: 10.1002/adma.201600377
55. Ho JS, Greenbaum SG. Polymer capacitor dielectrics for high temperature applications. ACS Applied Materials & Interfaces 2018; 10(35): 29189–29218. doi: 10.1021/acsami.8b07705
56. Tan D, Zhang L, Chen Q, Irwin P. High-temperature capacitor polymer films. Journal of Electronic Materials 2014; 43: 4569–4575. doi: 10.1007/s11664-014-3440-7
57. Li D, Zeng X, Li Z, et al. Progress and perspectives in dielectric energy storage ceramics. Journal of Advanced Ceramics 2021; 10: 675–703. doi: 10.1007/s40145-021-0500-3
58. Wei X, Yan H, Wang T, et al. Reverse boundary layer capacitor model in glass/ceramic composites for energy storage applications. Journal of Applied Physics 2013; 113(2): 024103. doi: 10.1063/1.4775493
59. Zhang L, Wu P, Li Y, et al. Preparation process and dielectric properties of Ba0.5Sr0.5TiO3–P(VDF–CTFE) nanocomposites. Composites Part B: Engineering 2014; 56: 284–289. doi: 10.1016/j.compositesb.2013.08.029
60. Huang X, Jiang P. Core–shell structured high‐k polymer nanocomposites for energy storage and dielectric applications. Advanced Materials 2015; 27(3): 546–554. doi: 10.1002/adma.201401310
61. Huang X, Sun B, Zhu Y, et al. High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Progress in Materials Science 2019; 100: 187–225. doi: 10.1016/j.pmatsci.2018.10.003
62. Li H, Zhou Y, Liu Y, et al. Dielectric polymers for high-temperature capacitive energy storage. Chemical Society Reviews 2021; 50(11): 6369–6400. doi: 10.1039/D0CS00765J
63. Diaham S, Zelmat S, Locatelli ML, et al. Dielectric breakdown of polyimide films: Area, thickness and temperature dependence. IEEE Transactions on Dielectrics and Electrical Insulation 2010; 17(1): 18–27. doi: 10.1109/TDEI.2010.5411997
64. Treufeld I, Wang DH, Kurish BA, et al. Enhancing electrical energy storage using polar polyimides with nitrile groups directly attached to the main chain. Journal of Materials Chemistry A 2014; 2(48): 20683–20696. doi: 10.1039/C4TA03260H
65. Ali Khan MU, Raad R, Tubbal F, et al. Bending analysis of polymer-based flexible antennas for wearable, general IoT applications: A review. Polymers 2021; 13(3): 357. doi: 10.3390/polym13030357
66. Ritamäki M, Rytöluoto I, Lahti K. Performance metrics for a modern BOPP capacitor film. IEEE Transactions on Dielectrics and Electrical Insulation 2019; 26(4): 1229–1237. doi: 10.1109/TDEI.2019.007970
67. Rabuffi M, Picci G. Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE Transactions on Plasma Science 2002; 30(5): 1939–1942. doi: 10.1109/TPS.2002.805318
68. Barshaw EJ, White J, Chait MJ, et al. High energy density (HED) biaxially-oriented poly-propylene (BOPP) capacitors for pulse power applications. IEEE Transactions on Magnetics 2007; 43(1): 223–225. doi: 10.1109/TMAG.2006.887682
69. Yuan X, Matsuyama Y, Chung TCM. Synthesis of functionalized isotactic polypropylene dielectrics for electric energy storage applications. Macromolecules 2010; 43: 4011–4015. doi: 10.1021/ma100209d
70. Chen X, Wang Y, He D, Deng Y. Enhanced dielectric performances of polypropylene films via polarity adjustment by maleic anhydride‐grafted polypropylene. Journal of Applied Polymer Science 2017; 134(27): 45029. doi: 10.1002/app.45029
71. Cheng L, Liu W, Liu H, Li S. Evolution of dielectric relaxation under elevated electric field of polypropylene-based films. Journal of Physics D: Applied Physics 2020; 53(44): 445502. doi: 10.1088/1361-6463/ab9d58
72. Li Q, Wang Q. Ferroelectric polymers and their energy‐related applications. Macromolecular Chemistry and Physics 2016; 217(11): 1228–1244. doi: 10.1002/macp.201500503
73. Zhu L, Wang Q. Novel ferroelectric polymers for high energy density and low loss dielectrics. Macromolecules 2012; 45(7): 2937–2954. doi: 10.1021/ma2024057
74. Wu S, Shao M, Burlingame Q, et al. A high-k ferroelectric relaxor terpolymer as a gate dielectric for organic thin film transistors. Applied Physics Letters 2013; 102: 013301. doi: 10.1063/1.4773186
75. Khanchaitit P, Han K, Gadinski MR, et al. Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage. Nature Communications 2013; 4: 2845. doi: 10.1038/ncomms3845
76. Chaipo S, Putson C. Preparation and enhanced electrical breakdown strength of PVDF-TrFE-CTFE/PVDF-HFP film composites. Journal of Physics: Conference Series 2021; 1719(1): 012065. doi: 10.1088/1742-6596/1719/1/012065
77. Jiang Y, Zhou M, Shen Z, et al. Ferroelectric polymers and their nanocomposites for dielectric energy storage applications. APL Materials 2021; 9: 020905. doi: 10.1063/5.0039126
78. Meng N, Zhu X, Mao R, et al. Nanoscale interfacial electroactivity in PVDF/PVDF-TrFE blended films with enhanced dielectric and ferroelectric properties. Journal of Materials Chemistry C 2017; 5: 3296–3305. doi: 10.1039/C7TC00162B
79. Meng N, Ren X, Santagiuliana G, et al. Ultrahigh β-phase content poly(vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors. Nature Communications 2019; 10: 4535. doi: 10.1038/s41467-019-12391-3
80. Mao P, Wang J, Zhang L, et al. Tunable dielectric polarization and breakdown behavior for high energy storage capability in P(VDF–TrFE–CFE)/PVDF polymer blended composite films. Physical Chemistry Chemical Physics 2020; 22(23): 13143–13153. doi: 10.1039/D0CP01071E
81. Zhang L, Liu Z, Lu X, et al. Nano-clip based composites with a low percolation threshold and high dielectric constant. Nano Energy 2016; 26: 550–557. doi: 10.1016/j.nanoen.2016.06.022
82. Sun Z, Wang Z, Tian Y, et al. Progress, outlook, and challenges in lead‐free energy‐storage ferroelectrics. Advanced Electronic Materials 2020; 6(1): 1900698. doi: 10.1002/aelm.201900698
83. Barber P, Balasubramanian S, Anguchamy Y, et al. Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2009; 2(4): 1697–1733. doi: 10.3390/ma2041697
84. Jiang J, Shen Z, Qian J, et al. Ultrahigh discharge efficiency in multilayered polymer nanocomposites of high energy density. Energy Storage Materials 2019; 18: 213–221. doi: 10.1016/j.ensm.2018.09.013
85. Khan S, Rahman M, Marwani HM, et al. Bicomponent polymorphs of salicylic acid, their antibacterial potentials, intermolecular interactions, DFT and docking studies. International Journal of Research in Physical Chemistry and Chemical Physics 2023. doi: 10.1515/zpch-2023-0378
86. Zhang C, Zhang T, Feng M, et al. Significantly improved energy storage performance of PVDF ferroelectric films by blending PMMA and filling PCBM. ACS Sustainable Chemistry & Engineering 2021; 9(48): 16291–16303. doi: 10.1021/acssuschemeng.1c05597
87. Khan S. Phase engineering and impact of external stimuli for phase tuning in 2D materials. Advanced Energy Conversion Materials 2023; 5(1): 40–55. doi: 10.37256/aecm.5120243886
88. Xie B, Zhang Q, Zhang L, et al. Ultrahigh discharged energy density in polymer nanocomposites by designing linear/ferroelectric bilayer heterostructure. Nano Energy 2018; 54: 437–446. doi: 10.1016/j.nanoen.2018.10.041
89. Li J, Liu X, Feng Y, Yin J. Recent progress in polymer/two-dimensional nanosheets composites with novel performances. Progress in Polymer Science 2022; 126: 101505. doi: 10.1016/j.progpolymsci.2022.101505
90. Rahman FU, Khan S, Rahman MU, et al. Effect of ionic strength on DNA–dye interactions of Victoria blue B and methylene green using UV-visible spectroscopy. International Journal of Research in Physical Chemistry and Chemical Physics 2023. doi: 10.1515/zpch-2023-0365
DOI: https://doi.org/10.24294/jpse.v6i1.3125
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Shahab Khan, Aroosa Iqbal
License URL: https://creativecommons.org/licenses/by-nc/4.0
This site is licensed under a Creative Commons Attribution 4.0 International License.