Natural biopolymer for 3D printing
Vol 6, Issue 1, 2023
VIEWS - 789 (Abstract) 99 (PDF)
Abstract
Three-dimensional (3D) bioprinting is a promising technological approach for various applications in the biomedical field. Natural polymers, which comprise the majority of 3D printable “bioinks”, have played a crucial role in various 3D bioprinting technologies during the layered 3D manufacturing processes in the last decade. However, the polymers must be customized for printing and effector function needs in cancer, dental care, oral medicine and biosensors, cardiovascular disease, and muscle restoration. This review provides an overview of 3D bio-printed natural polymers—commonly employed in various medical fields—and their recent development.
Keywords
Full Text:
PDFReferences
1. Salim S, Kamalasanan K. Controlled drug delivery for alopecia: A review. Journal of Controlled Release 2020; 325: 84–99. doi: 10.1016/j.jconrel.2020.06.019
2. Gopinathan J, Noh I. Recent trends in bio inks for 3D printing. Biomaterials Research 2018; 22(1). doi: 10.1186/s40824-018-0122-1
3. Kaladhar K, Sharma CP. Supported cell mimetic monolayers and their interaction with blood. Langmuir 2004; 20(25): 11115–11122. doi: 10.1021/la048644y
4. Szymczyk-Ziółkowska P, Łabowska MB, Detyna J, et al. A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques. Biocybernetics and Biomedical Engineering 2020; 40(2): 624–638. doi: 10.1016/j.bbe.2020.01.015
5. Radmanesh S, Shabangiz S, Koupaei N, et al. 3D printed bio polymeric materials as a new perspective for wound dressing and skin tissue engineering applications: A review. Journal of Polymer Research 2022; 29(2). doi: 10.1007/s10965-022-02899-6
6. Wasyłeczko M, Krysiak ZJ, Łukowska E, et al. Three-dimensional scaffolds for bioengineering of cartilage tissue. Biocybernetics and Biomedical Engineering 2022; 42(2): 494–511. doi: 10.1016/j.bbe.2022.03.004
7. Babu RP, O’Connor K, Seeram R. Current progress on bio-based polymers and their future trends. Progress in Biomaterials 2013; 2(1): 8. doi: 10.1186/2194-0517-2-8
8. Rahman MH, Bhoi PR. An overview of non-biodegradable bioplastics. Journal of Cleaner Production 2021; 294: 126218. doi: 10.1016/j.jclepro.2021.126218
9. Hutmacher DW, Goh JCH, Teoh SH. An introduction to biodegradable materials for tissue engineering applications. Annals-Academy of Medicine Singapore 2001; 30(2): 183–191.
10. Arif ZU, Khalid MY, Noroozi R, et al. Additive manufacturing of sustainable biomaterials for biomedical applications. Asian Journal of Pharmaceutical Sciences 2023; 18(3): 100812. doi: 10.1016/j.ajps.2023.100812
11. Hölzl K, Lin S, Tytgat L, et al. Bioink properties before, during and after 3D bioprinting. Biofabrication 2016; 8(3): 032002. doi: 10.1088/1758-5090/8/3/032002
12. Lee HJ, Kim YB, Ahn SH, et al. A new approach for fabricating collagen/ECM‐based bioinks using preosteoblasts and human adipose stem cells. Advanced Healthcare Materials 2015; 4(9): 1359–1368. doi: 10.1002/adhm.201500193
13. Loo Y, Lakshmanan A, Ni M, et al. Peptide bioink: Self-assembling nanofibrous scaffolds for three-dimensional organotypic cultures. Nano Letters 2015; 15(10): 6919–6925. doi: 10.1021/acs.nanolett.5b02859
14. Datta S, Das A, Chowdhury AR, et al. Bioink formulations to ameliorate bioprinting-induced loss of cellular viability. Biointerphases 2019; 14(5). doi: 10.1116/1.5111392
15. Williams DF. Challenges with the development of biomaterials for sustainable tissue engineering. Frontiers in Bioengineering and Biotechnology 2019; 7. doi: 10.3389/fbioe.2019.00127
16. Farokhi M, Mottaghitalab F, Reis RL, et al. Functionalized silk fibroin nanofibers as drug carriers: Advantages and challenges. Journal of Controlled Release 2020; 321: 324–347. doi: 10.1016/j.jconrel.2020.02.022
17. Mathews S, Kaladhar K, Sharma CP. Cell mimetic monolayer supported chitosan‐haemocompatibility studies. Journal of Biomedical Materials Research Part A 2006; 79A(1): 147–152. doi: 10.1002/jbm.a.30710
18. Biswal T. Biopolymers for tissue engineering applications: A review. Materials Today: Proceedings 2021; 41: 397–402. doi: 10.1016/j.matpr.2020.09.628
19. Kamalasanan K. Affordable medicines exploring organ printing using “make in India” campaign. Trends in Biomaterials and Artificial Organs 2016; 30(2): 161–163.
20. Osidak EO, Kozhukhov VI, Osidak MS, et al. Collagen as bioink for bioprinting: A comprehensive review. International Journal of Bioprinting 2020; 6(3): 270. doi: 10.18063/ijb.v6i3.270
21. Taghizadeh M, Taghizadeh A, Yazdi MK, et al. Chitosan-based inks for 3D printing and bioprinting. Green Chemistry 2022; 24(1): 62–101. doi: 10.1039/d1gc01799c
22. Axpe E, Oyen M. Applications of alginate-based bioinks in 3D bioprinting. International Journal of Molecular Sciences 2016; 17(12): 1976. doi: 10.3390/ijms17121976
23. Noh I, Kim N, Tran HN, et al. 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering. Biomaterials Research 2019; 23(1). doi: 10.1186/s40824-018-0152-8
24. Gauss C, Pickering KL, Muthe LP. The use of cellulose in bio-derived formulations for 3D/4D printing: A review. Composites Part C: Open Access 2021; 4: 100113. doi: 10.1016/j.jcomc.2021.100113
25. Malik S, Sundarrajan S, Hussain T, et al. Sustainable nanofibers in tissue engineering and biomedical applications. Material Design & Processing Communications 2020; 3(6). doi: 10.1002/mdp2.202
26. Bedian L, Villalba-Rodríguez AM, Hernández-Vargas G, et al. Bio-based materials with novel characteristics for tissue engineering applications—A review. International Journal of Biological Macromolecules 2017; 98: 837–846. doi: 10.1016/j.ijbiomac.2017.02.048
27. Thrivikraman S, Salim S, Kamalasanan K. Remote loading of minoxidil in nano-reservoirs leads to polymorphism and controlled release. Applied Nanoscience 2023; 13(9): 6373–6391. doi: 10.1007/s13204-023-02934-y
28. Bergonzi C, Bianchera A, Remaggi G, et al. 3D printed chitosan/alginate hydrogels for the controlled release of silver sulfadiazine in wound healing applications: Design, characterization and antimicrobial activity. Micromachines 2023; 14(1): 137. doi: 10.3390/mi14010137
29. Giri TK, Thakur A, Alexander A, et al. Modified chitosan hydrogels as drug delivery and tissue engineering systems: Present status and applications. Acta Pharmaceutica Sinica B 2012; 2(5): 439–449. doi: 10.1016/j.apsb.2012.07.004
30. Ji C, Annabi N, Khademhosseini A, et al. Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomaterialia 2011; 7(4): 1653–1664. doi: 10.1016/j.actbio.2010.11.043
31. Yao X, Yang Y, Zhou Z. Non-mulberry silk fiber-based composite scaffolds containing millichannels for auricular cartilage regeneration. ACS Omega 2022; 7(17): 15064–15073. doi: 10.1021/acsomega.2c00846
32. Ahmadi F, Oveisi Z, Samani SM, et al. Chitosan based hydrogels: Characteristics and pharmaceutical applications. Research in Pharmaceutical Sciences 2015; 10(1): 1–16.
33. Sacco P, Furlani F, de Marzo G, et al. Concepts for developing physical gels of chitosan and of chitosan derivatives. Gels 2018; 4(3): 67. doi: 10.3390/gels4030067
34. Galante R, Rediguieri CF, Kikuchi IS, et al. About the sterilization of chitosan hydrogel nanoparticles. Plos One 2016; 11(12): e0168862. doi: 10.1371/journal.pone.0168862
35. Bryuzgin E, Bryuzgina E, Yartseva V, et al. Biodegradation control of chitosan materials by surface modification with copolymers of glycidyl methacrylate and alkyl methacrylates. Fibers and Polymers 2022; 23(9): 2502–2510. doi: 10.1007/s12221-022-4954-x
36. Lee KY, Mooney DJ. Alginate: Properties and biomedical applications. Progress in Polymer Science 2012; 37(1): 106–126. doi: 10.1016/j.progpolymsci.2011.06.003
37. Noroozi R, Shamekhi MA, Mahmoudi R, et al. In vitro static and dynamic cell culture study of novel bone scaffolds based on 3D-printed PLA and cell-laden alginate hydrogel. Biomedical Materials 2022; 17(4): 045024. doi: 10.1088/1748-605x/ac7308
38. You C, Ning L, Wu H, et al. A biocompatible and pH-responsive nanohydrogel based on cellulose nanocrystal for enhanced toxic reactive oxygen species generation. Carbohydrate Polymers 2021; 258: 117685. doi: 10.1016/j.carbpol.2021.117685
39. Malekmohammadi S, Sedghi Aminabad N, Sabzi A, et al. Smart and biomimetic 3D and 4D printed composite hydrogels: Opportunities for different biomedical applications. Biomedicines 2021; 9(11): 1537. doi: 10.3390/biomedicines9111537
40. Madadian E, Naseri E, Legault R, et al. Development of 3D-printable albumin–alginate foam for wound dressing applications. 3D Printing and Additive Manufacturing 2023. doi: 10.1089/3dp.2022.0241
41. Beheshtizadeh N, Farzin A, Rezvantalab S, et al. 3D printing of complicated GelMA-coated Alginate/Tri-calcium silicate scaffold for accelerated bone regeneration. International Journal of Biological Macromolecules 2023; 229: 636–653. doi: 10.1016/j.ijbiomac.2022.12.267
42. Rezvani Ghomi E, Nourbakhsh N, Akbari Kenari M, et al. Collagen‐based biomaterials for biomedical applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2021; 109(12): 1986–1999. doi: 10.1002/jbm.b.34881
43. Heo DN, Hospodiuk M, Ozbolat IT. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Acta Biomaterialia 2019; 95: 348–356. doi: 10.1016/j.actbio.2019.02.046
44. Chen S, Liu B, Carlson MA, et al. Recent advances in electrospun nanofibers for wound healing. Nanomedicine 2017; 12(11): 1335–1352. doi: 10.2217/nnm-2017-0017
45. Ge L, Xu Y, Li X, et al. Fabrication of antibacterial collagen-based composite wound dressing. ACS Sustainable Chemistry & Engineering 2018; 6(7): 9153–9166. doi: 10.1021/acssuschemeng.8b01482
46. Kim SH, Hong H, Ajiteru O, et al. 3D bioprinted silk fibroin hydrogels for tissue engineering. Nature Protocols 2021; 16(12): 5484–5532. doi: 10.1038/s41596-021-00622-1
47. Sakai S, Yoshii A, Sakurai S, et al. Silk fibroin nanofibers: A promising ink additive for extrusion three-dimensional bioprinting. Materials Today Bio 2020; 8: 100078. doi: 10.1016/j.mtbio.2020.100078
48. Gong D, Lin Q, Shao Z, et al. Preparing 3D-printable silk fibroin hydrogels with robustness by a two-step crosslinking method. RSC Advances 2020; 10(45): 27225–27234. doi: 10.1039/d0ra04789a
49. Jastrzebska K, Kucharczyk K, Florczak A, et al. Silk as an innovative biomaterial for cancer therapy. Reports of Practical Oncology & Radiotherapy 2015; 20(2): 87–98. doi: 10.1016/j.rpor.2014.11.010
50. Thomas S, Gopi S, Amalraj A. Biopolymers and Their Industrial Applications from Plant, Animal, and Marine Sources, to Functional Products. Elsevier; 2020.
51. Bucciarelli A, Motta A. Use of Bombyx mori silk fibroin in tissue engineering: From cocoons to medical devices, challenges, and future perspectives. Biomaterials Advances 2022; 139: 212982. doi: 10.1016/j.bioadv.2022.212982
52. Khalid MY, Al Rashid A, Arif ZU, et al. Natural fiber reinforced composites: Sustainable materials for emerging applications. Results in Engineering 2021; 11: 100263. doi: 10.1016/j.rineng.2021.100263
53. Thrivikraman Nair S, Kamalasanan K, Moidu A, et al. Ethyl cellulose coated sustained release aspirin spherules for treating COVID-19: DOE led rapid optimization using arbitrary interface, applicable for emergency situations. International Journal of Biological Macromolecules 2021; 182: 1769–1784. doi: 10.1016/j.ijbiomac.2021.05.156
54. Datta S, Das A, Sasmal P, et al. Alginate-poly(amino acid) extrusion printed scaffolds for tissue engineering applications. International Journal of Polymeric Materials and Polymeric Biomaterials 2018; 69(2): 65–72. doi: 10.1080/00914037.2018.1539988
55. Lin L, Jiang S, Yang J, et al. Application of 3D-bioprinted nanocellulose and cellulose derivative-based bio-inks in bone and cartilage tissue engineering. International Journal of Bioprinting 2022; 9(1): 637. doi: 10.18063/ijb.v9i1.637
56. Pang M, Huang Y, Meng F, et al. Application of bacterial cellulose in skin and bone tissue engineering. European Polymer Journal 2020; 122: 109365. doi: 10.1016/j.eurpolymj.2019.109365
57. Saravanakumar K, Park S, Santosh SS, et al. Application of hyaluronic acid in tissue engineering, regenerative medicine, and nanomedicine: A review. International Journal of Biological Macromolecules 2022; 222: 2744–2760. doi: 10.1016/j.ijbiomac.2022.10.055
58. Lu K, Brauns T, Sluder AE, et al. Combinatorial islet protective therapeutic approaches in β‐cell transplantation: Rationally designed solutions using a target product profile. FASEB BioAdvances 2023; 1–18. doi: 10.1096/fba.2023-00029
59. Wang D, Guo Y, Zhu J, et al. Hyaluronic acid methacrylate/pancreatic extracellular matrix as a potential 3D printing bioink for constructing islet organoids. Acta Biomaterialia 2023; 165: 86–101. doi: 10.1016/j.actbio.2022.06.036
60. Nayak VV, Tovar N, Khan D, et al. 3D printing type 1 bovine collagen scaffolds for tissue engineering applications—Physicochemical characterization and in vitro evaluation. Gels 2023; 9(8): 637. doi: 10.3390/gels9080637
61. Deng N, Sun J, Li Y, et al. Experimental study of rhBMP-2 chitosan nano-sustained release carrier-loaded PLGA/nHA scaffolds to construct mandibular tissue-engineered bone. Archives of Oral Biology 2019; 102: 16–25. doi: 10.1016/j.archoralbio.2019.03.023
62. Aguilar-de-Leyva Á, Linares V, Casas M, et al. 3D printed drug delivery systems based on natural products. Pharmaceutics 2020; 12(7): 620. doi: 10.3390/pharmaceutics12070620
63. Rysenaer VBJ, Ahmadzadeh S, Van Bockstaele F, et al. An extrusion-based 3D food printing approach for generating alginate-pectin particles. Current Research in Food Science 2023; 6: 100404. doi: 10.1016/j.crfs.2022.11.023
64. Leu Alexa R, Ianchis R, Savu D, et al. 3D printing of alginate-natural clay hydrogel-based nanocomposites. Gels 2021; 7(4): 211. doi: 10.3390/gels7040211
65. Murphy CA, Collins MN. Microcrystalline cellulose reinforced polylactic acid biocomposite filaments for 3D printing. Polymer Composites 2016; 39(4): 1311–1320. doi: 10.1002/pc.24069
66. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 2021; 71(3): 209–249. doi: 10.3322/caac.21660
67. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 2018; 68(6): 394–424. doi: 10.3322/caac.21492
68. Pasquier E, Rosendahl J, Solberg A, et al. Polysaccharides and structural proteins as components in three-dimensional scaffolds for breast cancer tissue models: A review. Bioengineering 2023; 10(6): 682. doi: 10.3390/bioengineering10060682
69. Chen L, Xiao Z, Meng Y, et al. The enhancement of cancer stem cell properties of MCF-7 cells in 3D collagen scaffolds for modeling of cancer and anti-cancer drugs. Biomaterials 2012; 33(5): 1437–1444. doi: 10.1016/j.biomaterials.2011.10.056
70. Puppi D, Chiellini F. Biodegradable polymers for biomedical additive manufacturing. Applied Materials Today 2020; 20: 100700. doi: 10.1016/j.apmt.2020.100700
71. Jiang T, Munguia-Lopez JG, Gu K, et al. Engineering bioprintable alginate/gelatin composite hydrogels with tunable mechanical and cell adhesive properties to modulate tumor spheroid growth kinetics. Biofabrication 2019; 12(1): 015024. doi: 10.1088/1758-5090/ab3a5c
72. Holland C, Numata K, Rnjak‐Kovacina J, et al. The biomedical use of silk: Past, present, future. Advanced Healthcare Materials 2018; 8(1). doi: 10.1002/adhm.201800465
73. Zhang X, Cao C, Ma X, et al. Optimization of macroporous 3-D silk fibroin scaffolds by salt-leaching procedure in organic solvent-free conditions. Journal of Materials Science: Materials in Medicine 2011; 23(2): 315–324. doi: 10.1007/s10856-011-4476-3
74. Li J, Zhou Y, Chen W, et al. A novel 3D in vitro tumor model based on silk fibroin/chitosan scaffolds to mimic the tumor microenvironment. ACS Applied Materials & Interfaces 2018; 10(43): 36641–36651. doi: 10.1021/acsami.8b106
75. Liu C, Lewin Mejia D, Chiang B, et al. Hybrid collagen alginate hydrogel as a platform for 3D tumor spheroid invasion. Acta Biomaterialia 2018; 75: 213–225. doi: 10.1016/j.actbio.2018.06.003
76. Rinaudo M. Chitin and chitosan: Properties and applications. Progress in Polymer Science 2006; 31(7): 603–632. doi: 10.1016/j.progpolymsci.2006.06.001
77. Taira N, Ino K, Ida H, et al. Electrodeposition-based rapid bioprinting of 3D-designed hydrogels with a pin art device. Biofabrication 2019; 11(3): 035018. doi: 10.1088/1758-5090/ab166e
78. Carvalho MP, Costa EC, Miguel SP, et al. Tumor spheroid assembly on hyaluronic acid-based structures: A review. Carbohydrate Polymers 2016; 150: 139–148. doi: 10.1016/j.carbpol.2016.05.005
79. Sathvik M, Kalva ECSS, Suma G. A study on acute myocardial infarction and its prognostic predictors. Cureus 2023; 15(2): e34775. doi: 10.7759/cureus.34775
80. Feng J, Xing M, Qian W, et al. An injectable hydrogel combining medicine and matrix with anti-inflammatory and pro-angiogenic properties for potential treatment of myocardial infarction. Regenerative Biomaterials 2023; 10. doi: 10.1093/rb/rbad036
81. Gomez-Florit M, Pardo A, Domingues RMA, et al. Natural-based hydrogels for tissue engineering applications. Molecules 2020; 25(24): 5858. doi: 10.3390/molecules25245858
82. Loureiro J, Miguel SP, Galván-Chacón V, et al. Three-dimensionally printed hydrogel cardiac patch for infarct regeneration based on natural polysaccharides. Polymers 2023; 15(13): 2824. doi: 10.3390/polym15132824
83. Fischer B, Gwinner F, Gepp MM, et al. A highly versatile biopolymer‐based platform for the maturation of human pluripotent stem cell‐derived cardiomyocytes enables functional analysis in vitro and 3D printing of heart patches. Journal of Biomedical Materials Research Part A 2023; 111(10): 1600–1615. doi: 10.1002/jbm.a.37558
84. Silberman E, Oved H, Namestnikov M, et al. Post‐maturation reinforcement of 3D‐printed vascularized cardiac tissues. Advanced Materials 2023; 35(31). doi: 10.1002/adma.202302229
85. Merten OW. Advances in cell culture: Anchorage dependence. Philosophical Transactions of the Royal Society B: Biological Sciences 2015; 370(1661): 20140040. doi: 10.1098/rstb.2014.0040
86. Lu TY, Xiang Y, Tang M, et al. 3D printing approaches to engineer cardiac tissue. Current Cardiology Reports 2023; 25: 505–514. doi: 10.1007/s11886-023-01881-y
87. Muthukumar T, Song JE, Khang G. Biological role of gellan gum in improving scaffold drug delivery, cell adhesion properties for tissue engineering applications. Molecules 2019; 24(24): 4514. doi: 10.3390/molecules24244514
88. Kumar BR, Mathimani T, Sudhakar MP, et al. A state of the art review on the cultivation of algae for energy and other valuable products: Application, challenges, and opportunities. Renewable and Sustainable Energy Reviews 2021; 138: 110649. doi: 10.1016/j.rser.2020.110649
89. Ahmed ABA, Adel M, Talati A, et al. Seaweed polysaccharides and their production and applications. In: Seaweed Polysaccharides. Elsevier; 2017. pp. 369–382. doi: 10.1016/B978-0-12-809816-5.00020-7
90. Rahman MNA, Qader OAJA, Sukmasari S, et al. Rheological characterization of different gelling polymers for dental gel formulation. Journal of Pharmaceutical Sciences and Research 2017; 9(12): 2633–2640
91. Gorroñogoitia I, Urtaza U, Zubiarrain-Laserna A, et al. A study of the printability of alginate-based bioinks by 3D Bioprinting for articular cartilage tissue engineering. Polymers 2022; 14(2): 354. doi: 10.3390/polym14020354
92. Tao O, Kort-Mascort J, Lin Y, et al. The applications of 3D printing for craniofacial tissue engineering. Micromachines 2019; 10(7): 480. doi: 10.3390/mi10070480
93. Rasool A, Ata S, Islam A, et al. Fabrication of novel carrageenan based stimuli responsive injectable hydrogels for controlled release of cephradine. RSC Advances 2019; 9(22): 12282–12290. doi: 10.1039/c9ra02130b
94. Soares SF, Rocha MJ, Ferro M, et al. Magnetic nanosorbents with siliceous hybrid shells of alginic acid and carrageenan for removal of ciprofloxacin. International Journal of Biological Macromolecules 2019; 139: 827–841. doi: 10.1016/j.ijbiomac.2019.08.030
95. Sudhakar MP, Nallasamy VD, Dharani G, Buschmann AH. Applications of seaweed biopolymers and its composites in dental applications. Journal of Applied Biology and Biotechnology 2023; 12(1): 62–68. doi: 10.7324/JABB.2024.143201
96. Chen Y, Sheng Q, Hong Y, et al. Hydrophilic nanocomposite functionalized by carrageenan for the specific enrichment of glycopeptides. Analytical Chemistry 2019; 91(6): 4047–4054. doi: 10.1021/acs.analchem.8b05578
97. Athirasala A, Tahayeri A, Thrivikraman G, et al. A dentin-derived hydrogel bioink for 3D bioprinting of cell laden scaffolds for regenerative dentistry. Biofabrication 2018; 10(2): 024101. doi: 10.1088/1758-5090/aa9b4e
98. Roberts JL, Khan S, Emanuel C, et al. An in vitro study of alginate oligomer therapies on oral biofilms. Journal of Dentistry 2013; 41(10): 892–899. doi: 10.1016/j.jdent.2013.07.011
99. Ghosh A, Orasugh JT, Ray SS, et al. Integration of 3D printing–coelectrospinning: Concept shifting in biomedical applications. ACS Omega 2023; 8(31): 28002–28025. doi: 10.1021/acsomega.3c03 920
100. Shi K, Tan D, Nokhodchi A, et al. Drop-on-powder 3D printing of tablets with an anti-cancer drug, 5-fluorouracil. Pharmaceutics 2019; 11(4): 150. doi: 10.3390/pharmaceutics11040150
101. Damiati S, Küpcü S, Peacock M, et al. Acoustic and hybrid 3D-printed electrochemical biosensors for the real-time immunodetection of liver cancer cells (HepG2). Biosensors and Bioelectronics 2017; 94: 500–506. doi: 10.1016/j.bios.2017.03.045
102. Tripathy S, Gangwar R, Supraja P, et al. Graphene doped Mn2O3 nanofibers as a facile electroanalytical DNA point mutation detection platform for early diagnosis of breast/ovarian cancer. Electroanalysis 2018; 30(9): 2110–2120. doi: 10.1002/elan.201800220
103. Windolf H, Chamberlain R, Quodbach J. Predicting drug release from 3D printed oral medicines based on the surface area to volume ratio of tablet geometry. Pharmaceutics 2021; 13(9): 1453. doi: 10.3390/pharmaceutics13091453
104. Bettadapur A, Suh GC, Geisse NA, et al. Prolonged culture of aligned skeletal myotubes on micromolded gelatin hydrogels. Scientific Reports 2016; 6(1). doi: 10.1038/srep28855
105. Guyton AC, Hall JE. Textbook of Medical Physiology, 11th ed. Saunders; 2006.
106. Martini F, Nath J, Batholomew E. Fundamentals of Anatomy and Physiology, 10th ed. Pearson; 2015.
107. Veeman D, Sai MS, Sureshkumar P, et al. Additive manufacturing of biopolymers for tissue engineering and regenerative medicine: An overview, potential applications, advancements, and trends. International Journal of Polymer Science 2021; 2021: 1–20. doi: 10.1155/2021/4907027
108. Guo L, Liang Z, Yang L, et al. The role of natural polymers in bone tissue engineering. Journal of Controlled Release 2021; 338: 571–582. doi: 10.1016/j.jconrel.2021.08.055
109. Scott JB, Ward CL, Corona BT, et al. Achieving acetylcholine receptor clustering in tissue-engineered skeletal muscle constructs in vitro through a materials-directed agrin delivery approach. Frontiers in Pharmacology 2017; 7. doi: 10.3389/fphar.2016.00508
110. Fan C, Jiang P, Fu L, et al. Functional reconstruction of traumatic loss of flexors in forearm with gastrocnemius myocutaneous flap transfer. Microsurgery 2007; 28(1): 71–75. doi: 10.1002/micr.20449
111. Pollot BE, Rathbone CR, Wenke JC, et al. Natural polymeric hydrogel evaluation for skeletal muscle tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2017; 106(2): 672–679. doi: 10.1002/jbm.b.33859
112. Corona BT, Rivera JC, Owens JG, et al. Volumetric muscle loss leads to permanent disability following extremity trauma. Journal of Rehabilitation Research and Development 2015; 52(7): 785–792. doi: 10.1682/jrrd.2014.07.0165
113. Fischer KM, Scott TE, Browe DP, et al. Hydrogels for skeletal muscle regeneration. Regenerative Engineering and Translational Medicine 2020; 7(3): 353–361. doi: 10.1007/s40883-019-00146-x
114. Bootsma K, Fitzgerald MM, Free B, et al. 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties. Journal of the Mechanical Behavior of Biomedical Materials 2017; 70: 84–94. doi: 10.1016/j.jmbbm.2016.07.020
115. Heher P, Maleiner B, Prüller J, et al. A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain. Acta Biomaterialia 2015; 24: 251–265. doi: 10.1016/j.actbio.2015.06.033
116. Hwang JH, Kim IG, Piao S, et al. Combination therapy of human adipose-derived stem cells and basic fibroblast growth factor hydrogel in muscle regeneration. Biomaterials 2013; 34(25): 6037–6045. doi: 10.1016/j.biomaterials.2013.04.049
117. Abdelbasset WK, Jasim SA, Bokov DO, et al. Polysaccharides, as biological macromolecule-based platforms in skeletal muscle tissue engineering: A systematic review. International Journal of Polymeric Materials and Polymeric Biomaterials 2023; 72(16): 1229–1252. doi: 10.1080/00914037.2022.2090940
118. Vaishya R, Vijay V, Vaish A, et al. Computed tomography based 3D printed patient specific blocks for total knee replacement. Journal of Clinical Orthopaedics and Trauma 2018; 9(3): 254–259. doi: 10.1016/j.jcot.2018.07.013
119. de Azevedo Gonçalves Mota RC, da Silva EO, de Lima FF, et al. 3D printed scaffolds as a new perspective for bone tissue regeneration: Literature review. Materials Sciences and Applications 2016; 7(8): 430–452. doi: 10.4236/msa.2016.78039
120. Sa M, Nguyen BB, Moriarty RA, et al. Fabrication and evaluation of 3D printed BCP scaffolds reinforced with ZrO2 for bone tissue applications. Biotechnology and Bioengineering 2018; 115(4): 989–999. doi: 10.1002/bit.26514
121. Seitz H, Rieder W, Irsen S, et al. Three‐dimensional printing of porous ceramic scaffolds for bone tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2005; 74B(2): 782–788. doi: 10.1002/jbm.b.30291
122. Ashammakhi N, Hasan A, Kaarela O, et al. Advancing frontiers in bone bioprinting. Advanced Healthcare Materials 2019; 8(7). doi: 10.1002/adhm.201801048
123. Bendtsen ST, Quinnell SP, Wei M. Development of a novel alginate‐polyvinyl alcohol‐hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Journal of Biomedical Materials Research Part A 2017; 105(5): 1457–1468. doi: 10.1002/jbm.a.36036
124. Chimene D, Miller L, Cross LM, et al. Nanoengineered osteoinductive bioink for 3D bioprinting bone tissue. ACS Applied Materials & Interfaces 2020; 12(14): 15976–15988. doi: 10.1021/acsami.9b19037
125. Ratheesh G, Vaquette C, Xiao Y. Patient‐specific bone particles bioprinting for bone tissue engineering. Advanced Healthcare Materials 2020; 9(23). doi: 10.1002/adhm.202001323
126. Sawyer SW, Takeda K, Alayoubi A, et al. 3D bioprinting optimization of human mesenchymal stromal cell laden gelatin-alginate-collagen bioink. Biomedical Materials 2022; 18(1): 015016. doi: 10.1088/1748-605x/aca3e7
127. Maresca JA, DeMel DC, Wagner GA, et al. Three-dimensional bioprinting applications for bone tissue engineering. Cells 2023; 12(9): 1230. doi: 10.3390/cells12091230
128. Genova T, Roato I, Carossa M, et al. Advances on bone substitutes through 3D bioprinting. International Journal of Molecular Sciences 2020; 21(19): 7012. doi: 10.3390/ijms21197012
129. Neufurth M, Wang X, Schröder HC, et al. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells. Biomaterials 2014; 35(31): 8810–8819. doi: 10.1016/j.biomaterials.2014.07.002
130. Chimene D, Lennox KK, Kaunas RR, et al. Advanced bioinks for 3D printing: A materials science perspective. Annals of Biomedical Engineering 2016; 44(6): 2090–2102. doi: 10.1007/s10439-016-1638-y
131. Narayanan LK, Huebner P, Fisher MB, et al. 3D-bioprinting of polylactic acid (PLA) nanofiber–alginate hydrogel bioink containing human adipose-derived stem cells. ACS Biomaterials Science & Engineering 2016; 2(10): 1732–1742. doi: 10.1021/acsbiomaterials.6b00196
132. You F, Wu X, Chen X. 3D printing of porous alginate/gelatin hydrogel scaffolds and their mechanical property characterization. International Journal of Polymeric Materials and Polymeric Biomaterials 2016; 66(6): 299–306. doi: 10.1080/00914037.2016.1201830
133. Liu Q, Li Q, Xu S, et al. Preparation and properties of 3D printed alginate–chitosan polyion complex hydrogels for tissue engineering. Polymers 2018; 10(6): 664. doi: 10.3390/polym10060664
134. Mallakpour S, Azadi E, Hussain CM. State-of-the-art of 3D printing technology of alginate-based hydrogels—An emerging technique for industrial applications. Advances in Colloid and Interface Science 2021; 293: 102436. doi: 10.1016/j.cis.2021.102436
135. Datta S, Jana S, Das A, et al. Bioprinting of radiopaque constructs for tissue engineering and understanding degradation behavior by use of Micro-CT. Bioactive Materials 2020; 5(3): 569–576. doi: 10.1016/j.bioactmat.2020.04.015
136. Zhang Y, Xia L, Zhai D, et al. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis. Nanoscale 2015; 7(45): 19207–19221. doi: 10.1039/c5nr05421d
137. Zhang L, Lou Y, Schutyser MAI. 3D printing of cereal-based food structures containing probiotics. Food Structure 2018; 18: 14–22. doi: 10.1016/j.foostr.2018.10.002
138. Francis Suh JK, Matthew HWT. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review. Biomaterials 2000; 21(24): 2589–2598. doi: 10.1016/s0142-9612(00)00126-5
139. Busilacchi A, Gigante A, Mattioli-Belmonte M, et al. Chitosan stabilizes platelet growth factors and modulates stem cell differentiation toward tissue regeneration. Carbohydrate Polymers 2013; 98(1): 665–676. doi: 10.1016/j.carbpol.2013.06.044
140. Demirtaş TT, Irmak G, Gümüşderelioğlu M. A bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication 2017; 9(3): 035003. doi: 10.1088/1758-5090/aa7b1d
141. Osidak EO, Karalkin PA, Osidak MS, et al. Viscoll collagen solution as a novel bioink for direct 3D bioprinting. Journal of Materials Science: Materials in Medicine 2019; 30(3). doi: 10.1007/s10856-019-6233-y
142. Teixeira AM, André A, Martins P. 3D bioprinting: Parameters optimization for agarose. In: Advances and Current Trends in Biomechanics. CRC Press; 2021. pp. 39–42. doi: 10.1201/9781003217152-10
143. Turnbull G, Clarke J, Picard F, et al. 3D biofabrication for soft tissue and cartilage engineering. Medical Engineering & Physics 2020; 82: 13–39. doi: 10.1016/j.medengphy.2020.06.003
144. Park JY, Choi JC, Shim JH, et al. A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting. Biofabrication 2014; 6(3): 035004. doi: 10.1088/1758-5082/6/3/035004
145. Zhu B, Wang D, Pan H, et al. Three-in-one customized bioink for islet organoid: GelMA/ECM/PRP orchestrate pro-angiogenic and immunoregulatory function. Colloids and Surfaces B: Biointerfaces 2023; 221: 113017. doi: 10.1016/j.colsurfb.2022.113017
146. He P, Zhao J, Zhang J, et al. Bioprinting of skin constructs for wound healing. Burns & Trauma 2018; 6. doi: 10.1186/s41038-017-0104-x
147. Rider P, Kačarević ŽP, Alkildani S, et al. Bioprinting of tissue engineering scaffolds. Journal of Tissue Engineering 2018; 9: 204173141880209. doi: 10.1177/2041731418802090
148. Mouser VHM, Melchels FPW, Visser J, et al. Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting. Biofabrication 2016; 8(3): 035003. doi: 10.1088/1758-5090/8/3/035003
149. Fatma N, Haleem A, Javaid M, et al. Comparison of fused deposition modeling and color jet 3D printing technologies for the printing of mathematical geometries. Journal of Industrial Integration and Management 2021; 6(1): 93–105. doi: 10.1142/S2424862220500104
150. Matai I, Kaur G, Seyedsalehi A, et al. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 2020; 226: 119536. doi: 10.1016/j.biomaterials.2019.119536
151. Dey M, Ozbolat IT. 3D bioprinting of cells, tissues and organs. Scientific Reports 2020; 10(1). doi: 10.1038/s41598-020-70086-y
152. Shi Y, Xing TL, Zhang HB, et al. Tyrosinase-doped bioink for 3D bioprinting of living skin constructs. Biomedical Materials 2018; 13(3): 035008. doi: 10.1088/1748-605x/aaa5b6
153. Ullah F, Javed F, Mushtaq I, et al. Development of highly-reproducible hydrogel based bioink for regeneration of skin-tissues via 3-D bioprinting technology. International Journal of Biological Macromolecules 2023; 230: 123131. doi: 10.1016/j.ijbiomac.2022.123131
154. Dell AC, Wagner G, Own J, et al. 3D bioprinting using hydrogels: Cell inks and tissue engineering applications. Pharmaceutics 2022; 14(12): 2596. doi: 10.3390/pharmaceutics14122596
155. Waxenbaum JA, Reddy V, Varacallo M. Anatomy, autonomic nervous system. Available online: https://europepmc.org/article/nbk/nbk539845 (accessed on 27 December 2023)..
156. Zeinali K, Khorasani MT, Rashidi A, et al. Preparation and characterization of graphene oxide aerogel/gelatin as a hybrid scaffold for application in nerve tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials 2020; 70(10): 674–683. doi: 10.1080/00914037.2020.1760269
157. Girão AF, Sousa J, Domínguez-Bajo A, et al. 3D reduced graphene oxide scaffolds with a combinatorial fibrous-porous architecture for neural tissue engineering. ACS Applied Materials & Interfaces 2020; 12(35): 38962–38975. doi: 10.1021/acsami.0c10599
158. Amiri E, Sanjarnia P, Sadri B, et al. Recent advances and future directions of 3D to 6D printing in brain cancer treatment and neural tissue engineering. Biomedical Materials 2023; 18(5): 052005. doi: 10.1088/1748-605x/ace9a4
159. Liu X, Hao M, Chen Z, et al. 3D bioprinted neural tissue constructs for spinal cord injury repair. Biomaterials 2021; 272: 120771. doi: 10.1016/j.biomaterials.2021.120771
160. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nature Biotechnology 2014; 32(8): 773–785. doi: 10.1038/nbt.2958
161. Gao C, Li Y, Liu X, et al. 3D bioprinted conductive spinal cord biomimetic scaffolds for promoting neuronal differentiation of neural stem cells and repairing of spinal cord injury. Chemical Engineering Journal 2023; 451: 138788. doi: 10.1016/j.cej.2022.138788
162. Yu X, Zhang T, Li Y. 3D printing and bioprinting nerve conduits for neural tissue engineering. Polymers 2020; 12(8): 1637. doi: 10.3390/polym12081637
163. Kuzmenko V, Karabulut E, Pernevik E, et al. Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines. Carbohydrate Polymers 2018; 189: 22–30. doi: 10.1016/j.carbpol.2018.01.097
164. Lee W, Pinckney J, Lee V, et al. Three-dimensional bioprinting of rat embryonic neural cells. NeuroReport 2009; 20(8): 798–803. doi: 10.1097/wnr.0b013e32832b8be4
165. Fantini V, Bordoni M, Scocozza F, et al. Bioink composition and printing parameters for 3D modeling neural tissue. Cells 2019; 8(8): 830. doi: 10.3390/cells8080830
DOI: https://doi.org/10.24294/jpse.v6i1.3016
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Shona Sara Shaji, Kaladhar Kamalasanan, Sapa Harika, Ankit Tiwari, Bhavana Raj
License URL: https://creativecommons.org/licenses/by-nc/4.0
This site is licensed under a Creative Commons Attribution 4.0 International License.