References
Appel EA, del Barrio J, Loh XJ, Scherman OA. Supramolecular polymeric hydrogels. Chemical Society Reviews 2012; 41(18): 6195–6214. doi: 10.1039/C2CS35264H
Laftah WA, Hashim S, Ibrahim AN. Polymer hydrogels: A review. Polymer-Plastics Technology and Engineering 2011; 50(14): 1475–1486. doi: 10.1080/03602559.2011.593082
Omidian H, Park K. Introduction to hydrogels. In: Ottenbrite R, Park K, Okano T (editors). Biomedical Applications of Hydrogels Handbook. Springer; 2010. pp. 1–16.
Ullah F, Othman MBH, Javed F, et al. Classification, processing, and application of hydrogels: A review. Materials Science and Engineering: C 2015; 57: 414–433. doi: 10.1016/j.msec.2015.07.053
Shimomura T, Namba T. Preparation and application of high-performance superabsorbent polymers. In: Buchholz FL, Peppas NA (editors). Superabsorbent Polymers: Science and Technology. American Chemical Society; 1994. Volume 573. pp. 112–127.
Hoffman AS. Hydrogels for biomedical applications. Advanced Drug Delivery Reviews 2012; 64: 18–23. doi: 10.1016/j.addr.2012.09.010
Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chemical Reviews 2001; 101(7): 1869–1880. doi: 10.1021/cr000108x
Slaughter BV, Khurshid SS, Fisher OZ, et al. Hydrogels in regenerative medicine. Advanced Materials 2009; 21(32–33): 3307–3329. doi: 10.1002/adma.200802106
Annabi N, Tamayol A, Uquillas JA, et al. 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. Advanced Materials 2014; 26(1): 85–124. doi: 10.1002/adma.201303233
Khademhosseini A, Langer R. Microengineered hydrogels for tissue engineering. Biomaterials 2007; 28(34): 5087–5092. doi: 10.1016/j.biomaterials.2007.07.021
Bongu CS, Krishnan MR, Soliman A, et al. Flexible and freestanding MoS2/graphene composite for high-performance supercapacitors. ACS Omega 2023; 8(40): 36789–36800. doi: 10.1021/acsomega.3c03370
Silberbush M, Adar E, De Malach Y. Use of a hydrophilic polymer to improve water storage and availability to crops grown in sand dunes II. Cabbage irrigated by sprinkling with different water salinities. Agricultural Water Management 1993; 23(4): 315–327. doi: 10.1016/0378-3774(93)90043-A
Azzam RAI. Agricultural polymers polyacrylamide preparation, application and prospects in soil conditioning. Communications in Soil Science and Plant Analysis 1980; 11(8): 767–834. doi: 10.1080/00103628009367081
El‐Rehim HAA, Hegazy EA, El‐Mohdy HLA. Radiation synthesis of hydrogels to enhance sandy soils water retention and increase plant performance. Journal of Applied Polymer Science 2004; 93(3): 1360–1371. doi: 10.1002/app.20571
Dorraji SS, Golchin A, Ahmadi S. The effects of hydrophilic polymer and soil salinity on corn growth in sandy and loamy soils. Clean—Soil, Air, Water 2010; 38(7): 584–591. doi: 10.1002/clen.201000017
Abedi-Koupai J, Sohrab F, Swarbrick G. Evaluation of hydrogel application on soil water retention characteristics. Journal of Plant Nutrition 2008; 31(2): 317–331. doi: 10.1080/01904160701853928
Koupai JA, Eslamian SS, Kazemi JA. Enhancing the available water content in unsaturated soil zone using hydrogel, to improve plant growth indices. Ecohydrology & Hydrobiology 2008; 8(1): 67–75. doi: 10.2478/v10104-009-0005-0
Narjary B, Aggarwal P, Singh A, et al. Water availability in different soils in relation to hydrogel application. Geoderma 2012; 187–188: 94–101. doi: 10.1016/j.geoderma.2012.03.002
Kim S, Iyer G, Nadarajah A, et al. Polyacrylamide hydrogel properties for horticultural applications. International Journal of Polymer Analysis and Characterization 2010; 15(5): 307–318. doi: 10.1080/1023666X.2010.493271
Siemer SR, Wood LL, Calton GJ. Application of Agricultural Polyammonium Acrylate or Polyacrylamide Hydrogels. U.S. Patent 5185024, 9 February 1993.
Jhurry D. Agricultural polymers. In: Proceedings of the Second Annual Meeting of Agricultural Scientists; 12–13 August 1997; Réduit, Mauritius. pp. 109–113.
Michael FM, Fathima A, AlYemni E, et al. Enhanced polyacrylamide polymer gels using zirconium hydroxide nanoparticles for water shutoff at high temperatures: Thermal and rheological investigations. Industrial & Engineering Chemistry Research 2018; 57(48): 16347–16357. doi: 10.1021/acs.iecr.8b04126
Mazen AM, Radwan DEM, Ahmed AF. Growth responses of maize plants cultivated in sandy soil amended by different superabsorbant hydrogels. Journal of Plant Nutrition 2015; 38(3): 325–337. doi: 10.1080/01904167.2014.957393
Radwan MA, Al-Sweasy O, Sadek MA, Elazab HA. Investigating the agricultural applications of acryl amide based hydrogel. International Journal of Engineering & Technology 2018; 7(4.29): 168–171. doi: 10.14419/ijet.v7i4.29.21711
El-Hady OA, Abo-Sedera SA. Conditioning effect of composts and acrylamide hydrogels on a sandy calcareous soil. II-physico-bio-chemical properties of the soil. International Journal of Agriculture and Biology 2006; 8(6): 876–884.
Ouchi S. Application of superabsorbent polymers in Japanese agriculture and greening. In: Osada Y, Kajiwara K, Fushimi T (editors). Gels Handbook. Elsevier; 2001. Volume 3. pp. 276–285.
Saraydin D, Karadağ E, Güven O. Super water-retainer hydrogels: Crosslinked acrylamide/succinic acid copolymers. Polymer Journal 1997; 29(8): 631–636. doi: 10.1295/polymj.29.631
Sojka RE, Bjorneberg DL, Entry JA, et al. Polyacrylamide in agriculture and environmental land management. Advances in Agronomy 2007; 92: 75–162. doi: 10.1016/S0065-2113(04)92002-0
Malik M, Nadler A, Letey J. Mobility of polyacrylamide and polysaccharide polymer through soil materials. Soil Technology 1991; 4(3): 255–263. doi: 10.1016/0933-3630(91)90005-8
Lu J, Wu L. Polyacrylamide distribution in columns of organic matter—Removed soils following surface application. Journal of Environmental Quality 2003; 32(2): 674–680. doi: 10.2134/jeq2003.6740
Michael FM, Krishnan MR, Fathima A, et al. Zirconia/graphene nanocomposites effect on the enhancement of thermo-mechanical stability of polymer hydrogels. Materials Today Communications 2019; 21: 100701. doi: 10.1016/j.mtcomm.2019.100701
Almohsin A, Michal F, Alsharaeh E, et al. Self-healing PAM composite hydrogel for water shutoff at high temperatures: Thermal and rheological investigations. In: Proceedings of the SPE Gas & Oil Technology Showcase and Conference; 21–23 October 2019; Dubai, United Arab Emirates. p. 8.
Almohsin AM, Alsharaeh E, Michael FM, Krishnan MR. Polymer-Nanofiller Hydrogels. U.S. Patent 20220290033A1, 15 September 2022.
Keishnan MR, Michael FM, Almohsin AM, Alsharaeh EH. Thermal and rheological investigations on N,N’-methylenebis acrylamide cross-linked polyacrylamide nanocomposite hydrogels for water shutoff applications. In: Proceedings of the Offshore Technology Conference Asia; 2–6 November 2020; Kuala Lumpur, Malaysia. p. 9.
Krishnan M, Michal F, Alsoughayer S, et al. Thermodynamic and kinetic investigation of water absorption by PAM composite hydrogel. In: Proceedings of the SPE Kuwait Oil & Gas Show and Conference; 13–16 October 2019; Mishref, Kuwait. p. 11.
Almohsin A, Alsharaeh E, Krishnan MR. Polymer-Sand Nanocomposite Lost Circulation Material. U.S. Patent 11578543B2, 14 February 2023.
Almohsin A, Alsharaeh E, Krishnan MR, Alghazali M. Coated Nanosand as Relative Permeability Modifier. U.S. Patent 11499092B2, 15 November 2022.
Alsharaeh EH, Krishnan MR. Method of Making Mutlilayer Soil with Property for Extended Release Water for Desert Agriculture. U.S. Patent 10772265B1, 15 September 2020.
Seybold CA. Polyacrylamide review: Soil conditioning and environmental fate. Communications in Soil Science and Plant Analysis 1994; 25(11–12): 2171–2185. doi: 10.1080/00103629409369180
Krishnan MR, Omar H, Almohsin A, Alsharaeh EH. An overview on nanosilica-polymer composites as high-performance functional materials in oil fields. Polymer Bulletin 2023. doi: 10.1007/s00289-023-04934-y
Michael FM, Krishnan MR, AlSoughayer S, et al. Thermo-elastic and self-healing polyacrylamide-2D nanofiller composite hydrogels for water shutoff treatment. Journal of Petroleum Science and Engineering 2020; 193: 107391. doi: 10.1016/j.petrol.2020.107391
Krishnan MR, Samitsu S, Fujii Y, Ichinose I. Hydrophilic polymer nanofibre networks for rapid removal of aromatic compounds from water. Chemical Communications 2014; 50(66): 9393–9396. doi: 10.1039/c4cc01786b
Krishnan MR, Chien YC, Cheng CF, Ho RM. Fabrication of mesoporous polystyrene films with controlled porosity and pore size by solvent annealing for templated syntheses. Langmuir 2017; 33(34): 8428–8435. doi: 10.1021/acs.langmuir.7b02195
Krishnan M, Chen HY, Ho RM. Switchable Structural Colors from Mesoporous Polystyrene Films. American Chemical Society; 2016.
Krishnan MR, Lu KY, Chiu WY, et al. Directed self-assembly of star-block copolymers by topographic nanopatterns through nucleation and growth mechanism. Small 2018; 14(16): 1704005. doi: 10.1002/smll.201704005
Krishnan MR, Almohsin A, Alsharaeh EH. Syntheses and fabrication of mesoporous styrene-co-methyl methacrylate-graphene composites for oil removal. Diamond and Related Materials 2022; 130: 109494. doi: 10.1016/j.diamond.2022.109494
Krishnan MR, Aldawsari YF, Alsharaeh EH. Three-dimensionally cross-linked styrene-methyl methacrylate-divinyl benzene terpolymer networks for organic solvents and crude oil absorption. Journal of Applied Polymer Science 2020; 138(9): 49942. doi: 10.1002/app.49942
Krishnan MR, Omar H, Aldawsari Y, et al. Insight into thermo-mechanical enhancement of polymer nanocomposites coated microsand proppants for hydraulic fracturing. Heliyon 2022; 8(12): e12282. doi: 10.1016/j.heliyon.2022.e12282
Chien YC, Huang LY, Yang KC, et al. Fabrication of metallic nanonetworks via templated electroless plating as hydrogenation catalyst. Emergent Materials 2021; 4(2): 493–501. doi: 10.1007/s42247-020-00108-y
Lo TY, Krishnan MR, Lu KY, Ho RM. Silicon-containing block copolymers for lithographic applications. Progress in Polymer Science 2018; 77: 19–68. doi: 10.1016/j.progpolymsci.2017.10.002
Krishnan MR, Aldawsari Y, Michael FM, et al. Mechanically reinforced polystyrene-polymethyl methacrylate copolymer-graphene and epoxy-graphene composites dual-coated sand proppants for hydraulic fracture operations. Journal of Petroleum Science and Engineering 2021; 196: 107744. doi: 10.1016/j.petrol.2020.107744
Krishnan MR, Li W, Alsharaeh EH. Ultra-lightweight nanosand/polymer nanocomposite materials for hydraulic fracturing operations. Polymer Nanocomposite Materials for Hydraulic Fracturing Operations 2022. doi: 10.2139/ssrn.4233321
Michael FM, Krishnan MR, Li W, Alsharaeh EH. A review on polymer-nanofiller composites in developing coated sand proppants for hydraulic fracturing. Journal of Natural Gas Science and Engineering 2020; 83: 103553. doi: 10.1016/j.jngse.2020.103553
Krishnan MR, Rajendran V, Alsharaeh E. Anti-reflective and high-transmittance optical films based on nanoporous silicon dioxide fabricated from templated synthesis. Journal of Non-Crystalline Solids 2023; 606: 122198. doi: 10.1016/j.jnoncrysol.2023.122198
Krishnan MR, Alsharaeh E. Potential removal of benzene-toluene-xylene toxic vapors by nanoporous poly(styrene-r-methylmethacrylate) copolymer composites. Environmental Nanotechnology, Monitoring & Management 2023; 20: 100860. doi: 10.1016/j.enmm.2023.100860
Muttashar HL, Ali NB, Mohd Ariffin MA, Hussin MW. Microstructures and physical properties of waste garnets as a promising construction materials. Case Studies in Construction Materials 2018; 8: 87–96. doi: 10.1016/j.cscm.2017.12.001
Ali MAM, Alsabagh AM, Sabaa MW, et al. Polyacrylamide hybrid nanocomposites hydrogels for efficient water treatment. Iranian Polymer Journal 2020; 29(6): 455–466. doi: 10.1007/s13726-020-00810-y
Saxena N, Kumar S, Mandal A. Adsorption characteristics and kinetics of synthesized anionic surfactant and polymeric surfactant on sand surface for application in enhanced oil recovery. Asia-Pacific Journal of Chemical Engineering 2018; 13(4): e2211. doi: 10.1002/apj.2211
Magalhães ASG, Neto MPA, Bezerra MN, et al. Application of FTIR in the determination of acrylate content in poly(sodium acrylate-CO-acrylamide) superabsorbent hydrogels. Química Nova 2012; 35(7): 1464–1467. doi: 10.1590/S0100-40422012000700030