Recent advances and prospects for highly cobalt nanoparticles embedded in polymer improved strategies for high-rate and durable cobalt-ion batteries storage

Muhammad Ishfaq Chohan, Nadeem Ahmed Mugheri, Aijaz Ahmed Bhutto, Asif Ali Jamali, Nagji Sodho, Abdul Qayoom Mugheri

Article ID: 2874
Vol 6, Issue 1, 2023

VIEWS - 541 (Abstract) 64 (PDF)

Abstract


Cobalt-ion batteries are considered a promising battery chemistry for renewable energy storage. However, there are indeed challenges associated with co-ion batteries that demonstrate undesirable side reactions due to hydrogen gas production. This study demonstrates the use of a nanocomposite electrolyte that provides stable performance cycling and high Co2+ conductivity (approximately 24 mS cm1). The desirable properties of the nanocomposite material can be attributed to its mechanical strength, which remains at nearly 68 MPa, and its ability to form bonds with H2O. These findings offer potential solutions to address the challenges of co-dendrite, contributing to the advancement of co-ion batteries as a promising battery chemistry. The exceptional cycling stability of the co-metal anode, even at ultra-high rates, is a significant achievement demonstrated in the study using the nanocomposite electrolyte. The co-metal anode has a 3500-cycle current density of 80 mA cm2, which indicates excellent stability and durability. Moreover, the cumulative capacity of 15.6 Ah cm2 at a current density of 40 mA cm2 highlights the better energy storage capability. This performance is particularly noteworthy for energy storage applications where high capacity and long cycle life are crucial. The H2O bonding capacity of the component in the nanocomposite electrolyte plays a vital role in reducing surface passivation and hydrogen evolution reactions. By forming strong bonds with H2O molecules, the polyethyne helps prevent unwanted reactions that can deteriorate battery performance and efficiency. This mitigates issues typically associated with excess H2O and ion presence in aqueous Co-ion batteries. Furthermore, the high-rate performance with excellent stability and cycling stability performance (>500 cycles at 8 C) of full Co||MnO2 batteries fabricated with this electrolyte further validates its effectiveness in practical battery configurations. These results indicate the potential of the nanocomposite electrolyte as a valuable and sustainable option, simplifying the development of reliable and efficient energy storage systems and renewable energy applications.


Keywords


nanocomposite; cycles; energy storage; battery; polyethyne

Full Text:

PDF


References


1. Du Y, Xu Y, Zhang Y, et al. Metal-organic-framework-derived cobalt-vanadium oxides with tunable compositions for high-performance aqueous zinc-ion batteries. Chemical Engineering Journal 2023; 457: 141162. doi: 10.1016/j.cej.2022.141162

2. Zhao X, Mao L, Cheng Q, et al. Interlayer engineering of preintercalated layered oxides as cathode for emerging multivalent metal-ion batteries: Zinc and beyond. Energy Storage Materials 2021; 38: 397–437. doi: 10.1016/j.ensm.2021.03.005

3. Chuhadiya S, Himanshu, Suthar D, et al. Metal organic frameworks as hybrid porous materials for energy storage and conversion devices: A review. Coordination Chemistry Reviews 2021; 446: 214115. doi: 10.1016/j.ccr.2021.214115

4. Hu H, Guan B, Lou X. Construction of complex CoS hollow structures with enhanced electrochemical properties for hybrid supercapacitors. Chem 2016; 1(1): 102–113. doi: 10.1016/j.chempr.2016.06.001

5. Ma C, Yang K, Zhao S, et al. Recyclable and ultrafast fabrication of zinc oxide interface layer enabling highly reversible dendrite-free Zn anode. ACS Energy Letters 2023; 8(2): 1201–1208. doi: 10.1021/acsenergylett.2c02735

6. Chen CY, Matsumoto K, Kubota K, et al. A room‐temperature molten hydrate electrolyte for rechargeable zinc-air batteries. Advanced Energy Materials 2019; 9(22): 1900196. doi: 10.1002/aenm.201900196

7. Wang F, Borodin O, Gao T, et al. Highly reversible zinc metal anode for aqueous batteries. Nature Materials 2018; 17(6): 543–549. doi: 10.1038/s41563-018-0063-z

8. Yang H, Chang Z, Qiao Y, et al. Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angewandte Chemie International Edition 2020; 59(24): 9377–9381. doi: 10.1002/anie.202001844

9. Naveed A, Yang H, Yang J, et al. Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte. Angewandte Chemie International Edition 2019; 58(9): 2760–2764. doi: 10.1002/anie.201813223

10. Wang N, Yang Y, Qiu X, et al. Stabilized rechargeable aqueous zinc batteries using ethylene glycol as water blocker. Chemistry Sustainability Energy Materials 2020; 13(20): 5556–5564. doi: 10.1002/cssc.202001750

11. Ding Y, Pang Z, Lan K, et al. Emerging engineered wood for building applications. Chemical Reviews 2022; 123(5): 1843–1888. doi: 10.1021/acs.chemrev.2c00450

12. Dong Q, Zhang X, Qian J, et al. A cellulose-derived supramolecule for fast ion transport. Science Advances 2022; 8(49): eadd2031. doi: 10.1126/sciadv.add2031

13. Yang Z, Li W, Zhang Q, et al. A piece of common cellulose paper but with outstanding functions for advanced aqueous zinc-ion batteries. Materials Today Energy 2022; 28: 101076. doi: 10.1016/j.mtener.2022.101076

14. Zhou J, Zhang R, Xu R, et al. Super-assembled hierarchical cellulose aerogel-gelatin solid electrolyte for implantable and biodegradable zinc ion battery. Advanced Functional Materials 2022; 32(21): 2111406. doi: 10.1002/adfm.202111406

15. Ma L, Chen S, Wang D, et al. Super‐stretchable zinc-air batteries based on an alkaline‐tolerant dual‐network hydrogel electrolyte. Advanced Energy Materials 2019; 9(12): 1803046. doi: 10.1002/aenm.201803046

16. Xu W, Liu C, Wu Q, et al. A stretchable solid-state zinc ion battery based on a cellulose nanofiber—Polyacrylamide hydrogel electrolyte and a Mg0.23V2O5 1.0H2O cathode. Journal of Materials Chemistry A 2020; 8(35): 18327–18337. doi: 10.1039/D0TA06467J

17. Fu J, Wang H, Xiao P, et al. A high strength, anti-corrosion and sustainable separator for aqueous zinc-based battery by natural bamboo cellulose. Energy Storage Materials 2022; 48: 191. doi: 10.1016/j.ensm.2022.02.052

18. Glatz H, Lizundia E, Pacifico F, Kundu D. An organic cathode based dual-ion aqueous zinc battery enabled by a cellulose membrane. ACS Applied Energy Materials 2019; 2(2): 1288–1294. doi: 10.1021/acsaem.8b01851

19. Xu M, Dou H, Zhang Z, et al. Hierarchically nanostructured solid‐state electrolyte for flexible rechargeable zinc-air batteries. Angewandte Chemie International Edition 2022; 134(23): e202117703. doi: 10.1002/ange.202117703

20. Zhang Y, Chen Y, Li X, et al. Bacterial cellulose hydrogel: A promising electrolyte for flexible zinc-air batteries. Journal of Power Sources 2021; 482: 228963. doi: 10.1016/j.jpowsour.2020.228963

21. Zhao N, Wu F, Xing Y, et al. Flexible hydrogel electrolyte with superior mechanical properties based on poly (vinyl alcohol) and bacterial cellulose for the solid-state zinc-air batteries. ACS Applied Materials & Interfaces 2019; 11(17): 15537–15542. doi: 10.1021/acsami.9b00758

22. Cao J, Zhang D, Gu C, et al. Modulating Zn deposition via ceramic-cellulose separator with interfacial polarization effect for durable zinc anode. Nano Energy 2021; 89: 106322. doi: 10.1016/j.nanoen.2021.106322

23. Zhou W, Chen M, Tian Q, et al. Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries. Energy Storage Materials 2022; 44: 57–65. doi: 10.1016/j.ensm.2021.10.002

24. Liang Y, Ma D, Zhao N, et al. Novel concept of separator design: Efficient ions transport modulator enabled by dual‐interface engineering toward ultra‐stable Zn metal anodes. Advanced Functional Materials 2022; 32(25): 2112936. doi: 10.1002/adfm.202112936

25. Yang P, Li J, Lee SW, Fan H. Printed zinc paper batteries. Advanced Science 2022; 9(2): 2103894. doi: 10.1002/advs.202103894

26. Ge X, Zhang W, Song F, et al. Single‐ion‐functionalized nanocellulose membranes enable lean‐electrolyte and deeply cycled aqueous zinc‐metal batteries. Advanced Functional Materials 2022; 32(26): 2200429. doi: 10.1002/adfm.202200429

27. Cao J, Zhang D, Gu C, et al. Manipulating crystallographic orientation of zinc deposition for dendrite‐free zinc ion batteries. Advanced Energy Materials 2021; 11(29): 2101299. doi: 10.1002/aenm.202101299

28. Zhang X, Li J, Liu D, et al. Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy & Environmental Science 2021; 14(5): 3120–3129. doi: 10.1039/D0EE03898A

29. Boruvkova K, Wiener J. Water absorption in carboxymethyl cellulose. AUTEX Research Journal 2011; 11(4): 110–113. doi:

30. Zheng W, Gao J, Wei Z, et al. Facile fabrication of self-healing carboxymethyl cellulose hydrogels. European Polymer Journal 2015; 72: 514–522. doi: 10.1016/j.eurpolymj.2015.06.013

31. Zhu Y, Xiao S, Li M, et al. Natural macromolecule based carboxymethyl cellulose as a gel polymer electrolyte with adjustable porosity for lithium ion batteries. Journal of Power Sources 2015; 288: 368–375. doi: 10.1016/j.jpowsour.2015.04.117

32. Chen M, Chen J, Zhou W, et al. High-performance flexible and self-healable quasi-solid-state zinc-ion hybrid supercapacitor based on borax-crosslinked polyvinyl alcohol/nanocellulose hydrogel electrolyte. Journal of Materials Chemistry A 2019; 7(46): 26524–36532. doi: 10.1039/C9TA10944G

33. Li H, Liu Z, Liang G, et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 2018; 12(4): 3140–3148. doi: 10.1021/acsnano.7b09003

34. Mugheri AQ, Samtio MS, Sangah AA, et al. Promoting highly dispersed Co3O4 nanoparticles onto polyethyne unraveling the catalytic mechanism with stable catalytic activity for oxygen evolution reaction: From fundamentals to applications. International Journal of Hydrogen Energy 2021; 46(71): 35261–35270. doi: 10.1016/j.ijhydene.2021.08.074

35. Zhou M, Guo S, Li J, et al. Surface-preferred crystal plane for a stable and reversible zinc anode. Advanced Materials 2021; 33(21): 2100187. doi: 10.1002/adma.202100187

36. Liu Y, Hu J, Lu Q, et al. Highly enhanced reversibility of a Zn anode by in-situ texturing. Energy Storage Materials 2022; 47: 98–104. doi: 10.1016/j.ensm.2022.01.059

37. Zhang B, Qin L, Fang Y, et al. Tuning Zn2+ coordination tunnel by hierarchical gel electrolyte for dendrite-free zinc anode. Science Bulletin 2022; 67(9): 955–962. doi: 10.1016/j.scib.2022.01.027

38. Yang Q, Li L, Hussain T, et al. Stabilizing interface pH by N-modified graphdiyne for dendrite-free and high-rate aqueous Zn-ion batteries. Angewandte Chemie International Edition 2022; 134(6): e202112304. doi: 10.1002/ange.202112304

39. Sun W, Wang F, Hou S, et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. Journal of the American Chemical Society 2017; 139(29): 9775–9778. doi: 10.1021/jacs.7b04471

40. Wang X, Li Y. Selected-control hydrothermal synthesis of α-and β-MnO2 single crystal nanowires. Journal of the American Chemical Society 2002; 124(12): 2880–2881. doi: 10.1021/ja0177105




DOI: https://doi.org/10.24294/jpse.v6i1.2874

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Muhammad Ishfaq Chohan, Nadeem Ahmed Mugheri, Aijaz Ahmed Bhutto, Asif Ali Jamali, Nagji Sodho, Abdul Qayoom Mugheri

License URL: https://creativecommons.org/licenses/by-nc/4.0

This site is licensed under a Creative Commons Attribution 4.0 International License.