2-oxazoline telechelic polymers: Synthesis and characterization

Juan Carlos Rueda, Hellyn Gudiel Honoresa

Article ID: 11787
Vol 8, Issue 1, 2025

VIEWS - 56 (Abstract)

Abstract


New telechelic polymers functionalized with terminal ethyl xanthate or vinyl groups were synthesized via cationic ring-opening polymerization (CROP). The polymerization of 2-ethyl-2-oxazoline (Etoxa) and 2-methoxycarbonylethyl-2-oxazoline (Esteroxa) was initiated by 1,4-trans-dibromobutene in acetonitrile at 78 ℃, with termination using either potassium ethyl xanthate or 4-vinylbenzyl-piperazine. Structural characterization by 1H and 13C NMR and FTIR spectroscopy confirmed the telechelic architecture. 1H NMR analysis revealed degrees of polymerization (DP) of 24–29 for ethyl xanthate-terminated polymers and 22–23 for vinyl-terminated polymers, consistent with theoretical values. The molar compositions of Etoxa and Esteroxa in all telechelic polymers matched the initial monomer feed ratios. End-group functionalization efficiency was quantified as follows: Ethyl xanthate-terminated polymers: 64%–82%, and vinyl-terminated polymers: 69% and 98% (for respective batches).


Keywords


2-oxazolines; telechelic polymer; cationic polymerization

Full Text:

PDF


References


1.         Hoogenboom R. The future of poly(2-oxazoline)s. European Polymer Journal. 2022; 179: 111521. doi: 10.1016/j.eurpolymj.2022.111521

2.         Nemati Mahand S, Aliakbarzadeh S, Moghaddam A, et al. Polyoxazoline: A review article from polymerization to smart behaviors and biomedical applications. European Polymer Journal. 2022; 178: 111484. doi: 10.1016/j.eurpolymj.2022.111484

3.         Delaittre G. Telechelic poly(2-oxazoline)s. European Polymer Journal. 2019; 121: 109281. doi: 10.1016/j.eurpolymj.2019.109281

4.         Jana S, Uchman M. Poly(2-oxazoline)-based stimulus-responsive (Co)polymers: An overview of their design, solution properties, surface-chemistries and applications. Progress in Polymer Science. 2020; 106: 101252. doi: 10.1016/j.progpolymsci.2020.101252

5.         Pizzi D, Humphries J, Morrow JP, et al. Poly(2-oxazoline) macromonomers as building blocks for functional and biocompatible polymer architectures. European Polymer Journal. 2019; 121: 109258. doi: 10.1016/j.eurpolymj.2019.109258

6.         Rueda JC, Santillán F, Komber H, et al. Synthesis and characterization of stiff, self-crosslinked thermoresponsive DMAA hydrogels. Polymers. 2020; 12(6): 1401. doi: 10.3390/polym12061401

7.         Rengifo J, Zschoche S, Voit B, et al. Synthesis and characterization of new interpenetrated hydrogels from N-isopropylacrylamide, 2-oxazoline macromonomer and acrylamide. European Polymer Journal. 2022; 177: 111456. doi: 10.1016/j.eurpolymj.2022.111456

8.         Rueda JC, Suárez C, Komber H, et al. Synthesis and characterization of pH- and thermo-responsive hydrogels based on poly(2-cyclopropyl-2-oxazoline) macromonomer, sodium acrylate, and acrylamide. Polymer Bulletin. 2019; 77(10): 5553-5565. doi: 10.1007/s00289-019-03034-0

9.         Zschoche S, Rueda JC, Binner M, et al. Reversibly switchable pH‐ and thermoresponsive core–shell nanogels based on poly(NiPAAm)‐graft‐poly(2‐carboxyethyl‐2‐oxazoline)s. Macromolecular Chemistry and Physics. 2011; 213(2): 215-226. doi: 10.1002/macp.201100388

10.      Zarka MT, Nuyken O, Weberskirch R. Amphiphilic polymer supports for the asymmetric hydrogenation of amino acid precursors in water. Chemistry–A European Journal. 2003; 9(14): 3228-3234. doi: 10.1002/chem.200304729

11.      Pomianowski A, Leja J. Spectrophotometric study of xanthate and dixanthogen solutions. Canadian Journal of Chemistry. 1963; 41(9): 2219-2230. doi: 10.1139/v63-322

12.      Gross A, Maier G, Nuyken O. Synthesis and copolymerization of macromonomers based on 2‐nonyl‐ and 2‐phenyl‐2‐oxazoline. Macromolecular Chemistry and Physics. 1996; 197(9): 2811-2826. doi: 10.1002/macp.1996.021970919

13.      Pretsch E, Buelhmann P, Badertscher M. Spectroscopic data for the structural elucidation of organic compounds (German), 5th ed. Heilderberg: Springer; 2010.

14.      Morgese G, Shirmardi Shaghasemi B, Causin V, et al. Next‐generation polymer shells for inorganic nanoparticles are highly compact, ultra‐dense, and long‐lasting cyclic brushes. Angewandte Chemie International Edition. 2017; 56(16): 4507-4511. doi: 10.1002/anie.201700196

15.      March J. Advanced organic chemistry, 4th ed. New York: John Wiley and Sons; 1992.

16.      Beyer W. Textbook of organic chemistry (German), 22 ed. Stuttgart: S. Hirtzel Verlag; 1991.




DOI: https://doi.org/10.24294/jpse11787

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Author(s)

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.