Design, synthesis and application of pyrazole-based Schiff base chitosan hybrids for Cu(II) removal and antibacterial inhibition

Reham A. Abdel-Monem, Samira T. Rabie, Yasser M. A. Mohamed, Hossam A. El Nazer

Article ID: 11536
Vol 8, Issue 1, 2025

VIEWS - 27 (Abstract)

Abstract


Modified chitosan hybrids were obtained via chemical reaction of chitosan with two pyrazole aldehyde derivatives to produce two chitosan Schiff bases, Cs-SB1, and Cs-SB2, respectively. FTIR spectroscopy and scanning electron microscopy confirmed both chemical structures and morphology of these Schiff bases. Thermal gravimetric analysis showed an improvement of thermal properties of these Schiff bases. Both chitosan Schiff bases were evaluated in a batch adsorption approach for their ability to remove Cu(II) ions from aqueous solutions. Energy dispersive X-ray for the Schiff bases adsorbed metal ions in various aqueous solutions was performed to confirm the existence of adsorbed metal ions on the surface substrate and their adsorptive efficiency for Cu(II) ions. Results of the batch adsorption method showed that prepared Schiff bases have good ability to remove Cu(II) ions from aqueous solutions. The Langmuir isotherm equation showed a better fit for both adsorbents with regression coefficients (R2 = 0.97 and 0.99, respectively) with maximum adsorption capacity for Cu(II) of 10.33 and 39.84 mg/g for Cs-SB1 and Cs-SB2, respectively. All prepared compounds, pyrazoles and two chitosan Schiff bases, showed good antimicrobial activity against three Gram +ve bacteria, three Gram –ve bacteria and Candida albicans, with varying degrees when compared to the standard antimicrobial agents.


Keywords


pyrazole-chitosan Schiff bases; Cu(II) ions; batch adsorption method; antimicrobial activity

Full Text:

PDF


References

1. Bhargava S, Uma V. Rapid extraction of Cu(II) heavy metal from industrial waste water by using silver nanoparticles anchored with novel Schiff base. Separation Science and Technology. 2018; 54(7): 1182-1193. doi: 10.1080/01496395.2018.1527853

2. Wang X. Nanomaterials as Sorbents to Remove Heavy Metal Ions in Wastewater Treatment. Journal of Environmental & Analytical Toxicology. 2012; 02(07). doi: 10.4172/2161-0525.1000154

3. Okoya A, Akinyele A, Amuda O, et al. Chitosan-Grafted Carbon for the Sequestration of Heavy Metals in Aqueous Solution. American Chemical Science Journal. 2016; 11(3): 1-14. doi: 10.9734/acsj/2016/21813

4. Pohl A. Removal of Heavy Metal Ions from Water and Wastewaters by Sulfur-Containing Precipitation Agents. Water, Air, & Soil Pollution. 2020; 231(10). doi: 10.1007/s11270-020-04863-w

5. Hassan R, Arida H, Montasser M, et al. Synthesis of New Schiff Base from Natural Products for Remediation of Water Pollution with Heavy Metals in Industrial Areas. Journal of Chemistry. 2013; 2013(1). doi: 10.1155/2013/240568

6. Li M, Wang M, Zhang L, et al. Adsorption of Pd(II) ions by electrospun fibers with effective adsorption sites constructed by N, O atoms with a particular spatial configuration: Mechanism and practical applications. Journal of Hazardous Materials. 2023; 458: 132014. doi: 10.1016/j.jhazmat.2023.132014

7. Cheng N, Zhang L, Wang M, et al. Highly effective recovery of palladium from a spent catalyst by an acid- and oxidation-resistant electrospun fibers as a sorbent. Chemical Engineering Journal. 2023; 466: 143171. doi: 10.1016/j.cej.2023.143171

8. Li M, Zhang L, Wang M, et al. A nanofiber with a p-π conjugated structure designed based on the Jahn-Teller effect for the removal of cupric tartrate from wastewater. Journal of Colloid and Interface Science. 2023; 650: 161-168. doi: 10.1016/j.jcis.2023.06.195

9. Hamed AA, Abdelhamid IA, Saad GR, et al. Synthesis, characterization and antimicrobial activity of a novel chitosan Schiff bases based on heterocyclic moieties. International Journal of Biological Macromolecules. 2020; 153: 492-501. doi: 10.1016/j.ijbiomac.2020.02.302

10. Casadidio C, Peregrina DV, Gigliobianco MR, et al. Chitin and Chitosans: Characteristics, Eco-Friendly Processes, and Applications in Cosmetic Science. Marine Drugs. 2019; 17(6): 369. doi: 10.3390/md17060369

11. Matica MA, Aachmann FL, Tøndervik A, et al. Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action. International Journal of Molecular Sciences. 2019; 20(23): 5889. doi: 10.3390/ijms20235889

12. Rodríguez-Rodríguez R, Espinosa-Andrews H, Velasquillo-Martínez C, et al. Composite hydrogels based on gelatin, chitosan and polyvinyl alcohol to biomedical applications: a review. International Journal of Polymeric Materials and Polymeric Biomaterials. 2019; 69(1): 1-20. doi: 10.1080/00914037.2019.1581780

13. Molnár Á. The use of chitosan-based metal catalysts in organic transformations. Coordination Chemistry Reviews. 2019; 388: 126-171. doi: 10.1016/j.ccr.2019.02.018

14. Tang X, Huang T, Zhang S, et al. The role of sulfonated chitosan-based flocculant in the treatment of hematite wastewater containing heavy metals. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020; 585: 124070. doi: 10.1016/j.colsurfa.2019.124070

15. Syeda SEZ, Khan MS, Skwierawska AM. Chitosan-based modalities with multifunctional attributes for adsorptive mitigation of hazardous metal contaminants from wastewater. Desalination and Water Treatment. 2024; 320: 100679. doi: 10.1016/j.dwt.2024.100679

16. Vunain E, Mishra A, Mamba B. Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: A review. International Journal of Biological Macromolecules. 2016; 86: 570-586. doi: 10.1016/j.ijbiomac.2016.02.005

17. Maleki A, Pajootan E, Hayati B. Ethyl acrylate grafted chitosan for heavy metal removal from wastewater: Equilibrium, kinetic and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers. 2015; 51: 127-134. doi: 10.1016/j.jtice.2015.01.004

18. Rocha LS, Almeida Â, Nunes C, et al. Simple and effective chitosan based films for the removal of Hg from waters: Equilibrium, kinetic and ionic competition. Chemical Engineering Journal. 2016; 300: 217-229. doi: 10.1016/j.cej.2016.04.054

19. Shukla SK, Mishra AK, Arotiba OA, et al. Chitosan-based nanomaterials: A state-of-the-art review. International Journal of Biological Macromolecules. 2013; 59: 46-58. doi: 10.1016/j.ijbiomac.2013.04.043

20. Shaalan N, Abdulwahhab S. Synthesis, characterization and biological activity study of some new metal complexes with Schiff’s bases derived from [Ο-vanillin] with [2-amino-5-(2-hydroxy-phenyl)-1,3,4-thiadiazole]. Egyptian Journal of Chemistry. 2021. doi: 10.21608/ejchem.2021.66235.3432

21. Pervaiz M, Quratulain R, Ejaz A, et al. Thiosemicarbazides, 1,3,4 thiadiazole Schiff base derivatives of transition metal complexes as antimicrobial agents. Inorganic Chemistry Communications. 2024; 160: 111856. doi: 10.1016/j.inoche.2023.111856

22. Neelufar, Rangaswamy J, Ankali KN, et al. The Mn(II), Co(II), Ni(II) and Cu(II) complexes of (Z)-N’((1H-indol-3-yl)methylene)nicotinohydrazide Schiff base: synthesis, characterization and biological evaluation. Journal of the Iranian Chemical Society. 2022; 19(9): 3993-4004. doi: 10.1007/s13738-022-02580-1

23. Singh A, Gogoi HP, Barman P, et al. Novel thioether Schiff base transition metal complexes: Design, synthesis, characterization, molecular docking, computational, biological and catalytic studies. Applied Organometallic Chemistry. 2022; 36(6). doi: 10.1002/aoc.6673

24. Keypour H, Rezaeivala M, Valencia L, et al. Synthesis and characterization of some new Co(II) and Cd(II) macroacyclic Schiff-base complexes containing piperazine moiety. Polyhedron. 2009; 28(17): 3755-3758. doi: 10.1016/j.poly.2009.08.021

25. Barbosa HFG, Attjioui M, Ferreira APG, et al. New series of metal complexes by amphiphilic biopolymeric Schiff bases from modified chitosans: Preparation, characterization and effect of molecular weight on its biological applications. International Journal of Biological Macromolecules. 2020; 145: 417-428. doi: 10.1016/j.ijbiomac.2019.12.153

26. Wang W, Wu G, Zhu T, et al. Synthesis of -thiazole Schiff base modified SBA-15 mesoporous silica for selective Pb(II) adsorption. Journal of the Taiwan Institute of Chemical Engineers. 2021; 125: 349-359. doi: 10.1016/j.jtice.2021.06.004

27. Zhao J, Luan L, Li Z, et al. The adsorption property and mechanism for Hg(II) and Ag(I) by Schiff base functionalized magnetic Fe3O4 from aqueous solution. Journal of Alloys and Compounds. 2020; 825: 154051. doi: 10.1016/j.jallcom.2020.154051

28. Janeta M, Lis T, Szafert S. Zinc Imine Polyhedral Oligomeric Silsesquioxane as a Quattro‐Site Catalyst for the Synthesis of Cyclic Carbonates from Epoxides and Low‐Pressure CO2. Chemistry – A European Journal. 2020; 26(60): 13686-13697. doi: 10.1002/chem.202002996

29. Malekshah RE, Shakeri F, Khaleghian A, et al. Developing a biopolymeric chitosan supported Schiff-base and Cu(II), Ni(II) and Zn(II) complexes and biological evaluation as pro-drug. International Journal of Biological Macromolecules. 2020; 152: 846-861. doi: 10.1016/j.ijbiomac.2020.02.245

30. Sharef HY, Fakhre NA. Rapid adsorption of some heavy metals using extracted chitosan anchored with new aldehyde to form a schiff base. PLOS ONE. 2022; 17(9): e0274123. doi: 10.1371/journal.pone.0274123

31. Zalloum HM, Al-Qodah Z, Mubarak MS. Copper Adsorption on Chitosan-Derived Schiff Bases. Journal of Macromolecular Science, Part A. 2008; 46(1): 46-57. doi: 10.1080/10601320802515225

32. Kong M, Chen XG, Xing K, et al. Antimicrobial properties of chitosan and mode of action: A state of the art review. International Journal of Food Microbiology. 2010; 144(1): 51-63. doi: 10.1016/j.ijfoodmicro.2010.09.012

33. Monier M. Adsorption of Hg2+, Cu2+ and Zn2+ ions from aqueous solution using formaldehyde cross-linked modified chitosan–thioglyceraldehyde Schiff’s base. International Journal of Biological Macromolecules. 2012; 50(3): 773-781. doi: 10.1016/j.ijbiomac.2011.11.026

34. Anush SM, Vishalakshi B, Kalluraya B, et al. Synthesis of pyrazole-based Schiff bases of Chitosan: Evaluation of antimicrobial activity. International Journal of Biological Macromolecules. 2018; 119: 446-452. doi: 10.1016/j.ijbiomac.2018.07.129

35. Badgujar JR, More DH, Meshram JS. Synthesis, Antimicrobial and Antioxidant Activity of Pyrazole Based Sulfonamide Derivatives. Indian Journal of Microbiology. 2017; 58(1): 93-99. doi: 10.1007/s12088-017-0689-6

36. Hassan S. Synthesis, Antibacterial and Antifungal Activity of Some New Pyrazoline and Pyrazole Derivatives. Molecules. 2013; 18(3): 2683-2711. doi: 10.3390/molecules18032683

37. Satheesha Rai N, Kalluraya B, Lingappa B, et al. Convenient access to 1,3,4-trisubstituted pyrazoles carrying 5-nitrothiophene moiety via 1,3-dipolar cycloaddition of sydnones with acetylenic ketones and their antimicrobial evaluation. European Journal of Medicinal Chemistry. 2008; 43(8): 1715-1720. doi: 10.1016/j.ejmech.2007.08.002

38. Kira MA, Abdel-Rahman MO, Gadalla KZ. The vilsmeier-haack reaction - III Cyclization of hydrazones to pyrazoles. Tetra Lett. 1969; 10(2): 109-110. doi: 10.1016/S0040-4039(01)88217-4

39. Abdel-Wahab BF, Khidre RE, Farahat AA. Pyrazole-3(4)-carbaldehyde: synthesis, reactions and biological activity. Zhdankin VV, ed. Arkivoc. 2011; 2011(1): 196-245. doi: 10.3998/ark.5550190.0012.103

40. Kosa SA, Al-Zhrani G, Abdel Salam M. Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chemical Engineering Journal. 2012; 181-182: 159-168. doi: 10.1016/j.cej.2011.11.044

41. Jeong JH, Shin KS, Lee JW, et al. Analysis of a novel class 1 integron containing metallo-β-lactamase gene VIM-2 in Pseudomonas aeruginosa. The Journal of Microbiology. 2009; 47(6): 753-759. doi: 10.1007/s12275-008-0272-2

42. Kanokwiroon K, Teanpaisan R, Wititsuwannakul D, et al. Antimicrobial activity of a protein purified from the latex of Hevea brasiliensis on oral microorganisms. Mycoses. 2008; 51(4): 301-307. doi: 10.1111/j.1439-0507.2008. 01490.x

43. National Committee for Clinical Laboratory Standards. Reference method for Broth Dilution Antifungal susceptibility testing of Conidium-Forming Filamentous Fungi: proposed guideline M38-A. NCCLS, Wayne, PA, USA; 2002.

44. National Committee for Clinical Laboratory Standards. Method for antifungal disk diffusion susceptibility testing of yeast: proposed guideline M44-P. NCCLS, Wayne, PA, USA; 2003.

45. Liebowitz LD, Ashbee HR, Evans EGV, et al. Two-year global evaluation of the susceptibility of Candida species to fluconazole by disk diffusion. Diagn Microbiol Infect Dis. 2001; 40(1-2): 27-33. doi: 10.1016/s0732-8893(01)00243-7

46. Matar MJ, Ostrosky-Zeichner L, Paetznick VL, et al. Correlation between E-Test, Disk Diffusion, and Microdilution Methods for Antifungal Susceptibility Testing of Fluconazole and Voriconazole. Antimicrobial Agents and Chemotherapy. 2003; 47(5): 1647-1651. doi: 10.1128/aac.47.5.1647-1651.2003

47. Mahmoud RK, Mohamed F, Gaber E, et al. Insights into the Synergistic Removal of Copper(II), Cadmium(II), and Chromium(III) Ions Using Modified Chitosan Based on Schiff Bases-g-poly(acrylonitrile). ACS Omega. 2022; 7(46): 42012-42026. doi: 10.1021/acsomega.2c03809

48. Cieslak Golonka M. Toxic and mutagenic effects of chromium (VI). A review. Polyhedron. 1996; 15(21): 3667–3918. doi: 10.1016/0277-5387(96)00141-6

49. Ho YS, Huang CT, Huang HW. Equilibrium sorption isotherm for metal ions on tree fern. Process Biochemistry, 2002; 37(12): 1421-1430. doi: 10.1016/S0032-9592(02)00036-5

50. Monier M, Ayad DM, Wei Y, et al. Preparation and characterization of magnetic chelating resin based on chitosan for adsorption of Cu(II), Co(II), and Ni(II) ions. Reactive and Functional Polymers. 2010; 70(4): 257-266. doi: 10.1016/j.reactfunctpolym.2010.01.002

51. Undegaonkar MG, Sinkar SN, Bhosale VN, et al. Solvent Free Synthesis and Characterization of Few Metal Complexes of Schiff Base Derived from 2-Amino-5, 6-dimethyl Benzimidazole and Syringaldehyde. International Journal of Pharmaceutical Sciences and Drug Research. 2020; 13(03): 240-245. doi: 10.25004/ijpsdr.2021.130301

52. Ahmed MO, Shrpip A, Mansoor M. Synthesis and Characterization of New Schiff Base/Thiol-Functionalized Mesoporous Silica: An Efficient Sorbent for the Removal of Pb(II) from Aqueous Solutions. Processes. 2020; 8(2): 246. doi: 10.3390/pr8020246

53. Zhang Z, Song Q, Jin Y, et al. Advances in Schiff Base and Its Coating on Metal Biomaterials—A Review. Metals. 2023; 13(2): 386. doi: 10.3390/met13020386

54. Mustapha S, Shuaib DT, Ndamitso MM, et al. Adsorption isotherm, kinetic and thermodynamic studies for the removal of Pb(II), Cd(II), Zn(II) and Cu(II) ions from aqueous solutions using Albizia lebbeck pods. Applied Water Science. 2019; 9(6). doi: 10.1007/s13201-019-1021-x

55. Mafu LD, Mamba BB, Msagati TAM. Synthesis and characterization of ion imprinted polymeric adsorbents for the selective recognition and removal of arsenic and selenium in wastewater samples. Journal of Saudi Chemical Society. 2016; 20(5): 594-605. doi: 10.1016/j.jscs.2014.12.008

56. Hanaor DAH, Ghadiri M, Chrzanowski W, et al. Scalable Surface Area Characterization by Electrokinetic Analysis of Complex Anion Adsorption. arXiv. Published online 2021. doi: 10.48550/ARXIV.2106.03411

57. Khalil AM, Abdel-Monem RA, Darwesh OM, et al. Synthesis, Characterization, and Evaluation of Antimicrobial Activities of Chitosan and Carboxymethyl Chitosan Schiff-Base/Silver Nanoparticles. Journal of Chemistry. 2017; 2017: 1-11. doi: 10.1155/2017/1434320

58. Peng XM, Cai GX, Zhou CH. Recent Developments in Azole Compounds as Antibacterial and Antifungal Agents. Current Topics in Medicinal Chemistry. 2013; 13(16): 1963-2010. doi: 10.2174/15680266113139990125

59. Mabkhot Y, Alatibi F, El-Sayed N, et al. Synthesis and Structure-Activity Relationship of Some New Thiophene-Based Heterocycles as Potential Antimicrobial Agents. Molecules. 2016; 21(8): 1036. doi: 10.3390/molecules21081036

60. Mabkhot YN, Kaal NA, Alterary S, et al. Antimicrobial activity of thiophene derivatives derived from ethyl (E)-5-(3-(dimethylamino)acryloyl)-4-methyl-2-(phenylamino)thiophene-3-carboxylate. Chemistry Central Journal. 2017; 11(1). doi: 10.1186/s13065-017-0307-z

61. Tamer TM, Hassan MA, Omer AM, et al. Synthesis, characterization and antimicrobial evaluation of two aromatic chitosan Schiff base derivatives. Process Biochemistry. 2016; 51(10): 1721-1730. doi: 10.1016/j.procbio.2016.08.002

62. Haj NQ, Mohammed MO, Mohammood LE. Synthesis and Biological Evaluation of Three New Chitosan Schiff Base Derivatives. ACS Omega. 2020; 5(23): 13948-13954. doi: 10.1021/acsomega.0c01342

63. Webster A, Halling MD, Grant DM. Metal complexation of chitosan and its glutaraldehyde cross-linked derivative. Carbohydrate Research. 2007; 342(9): 1189-1201. doi: 10.1016/j.carres.2007.03.008

64. Abdel-Monem RA, Khalil AM, Darwesh OM, et al. Antibacterial properties of carboxymethyl chitosan Schiff-base nanocomposites loaded with silver nanoparticles. Journal of Macromolecular Science, Part A. 2019; 57(2): 145-155. doi: 10.1080/10601325.2019.1674666



DOI: https://doi.org/10.24294/jpse11536

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Author(s)

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.