Crystal–rotator-I–rotator-II phase transitions in the mixtures of alkanes

Prabir Kumar Mukherjee

Article ID: 1134
Vol 3, Issue 1, 2020

VIEWS - 8771 (Abstract)

Abstract


Using the combination of Flory–Huggins theory of isotropic mixing and Landau theory, we discuss the crystal–rotator-I–rotator-II phase transitions in the binary mixture of alkanes. The influence of concentration on the order parameters and the transition temperatures is discussed. Theoretical results show the first order character of both the rotator-I to crystal and rotator-II to rotator-I phase transitions in the mixture of alkanes. A good agreement between theoretical and experimental results are presented in this paper.

Keywords


rotator phases; alkanes; phase transitions; landau theory

Full Text:

PDF


References


Ungar G. Structure of rotator phases in n-alkanes. The Journal of Physical Chemistry 1983; 87(4): 689–695. doi: 10.1021/j100227a032 Sirota EB, King HE, Singer DM, et al. Rotator phases of the normal alkanes: An x-ray scattering study. The Journal of Chemical Physics 1993; 98(7): 5809–5824. doi: 10.1063/1.464874 Sirota EB, Singer DM. Phase transitions among the rotator phases of the normal alkanes. The Journal of Chemical Physics 1994; 101(12): 10873–10882. doi: 10.1063/1.467837 Sirota EB. Remarks concerning the relation between rotator phases of bulk n-alkanes and those of Langmuir monolayers of alkyl-chain surfactants on water. Langmuir 1997; 13(14): 3849–3859. doi: 10.1021/la9702291 Doucet J, Denicolo I, Craievich A. X-ray study of the ‘“rotator”’ phase of the odd-numbered paraffins C17H36, C19H40, and C21H44. The Journal of Chemical Physics 1981; 75(3): 1523–1529. doi: 10.1063/1.442185 Craievich AF, Denicolo I, Doucet J. Molecular motion and conformational defects in odd-numbered paraffins. Physical Review B 1984; 30(8): 4782–4787. doi: 10.1103/physrevb.30.4782 Krüger JK, Jiménez R, Bohn KP, et al. Phase-transition behavior of n-alkanes on nanostructured polytetrafluorethylene films: Brillouin spectroscopic and calorimetric investigations on pentacosane. Physical Review B 1997; 56(14): 8683–8690. doi: 10.1103/physrevb.56.8683 Paoloni S, Mercuri F, Zammit U, et al. Analysis of rotator phase transitions in the linear alkanes hexacosane to triacontane by adiabatic scanning calorimetry and by photopyroelectric calorimetry. The Journal of Chemical Physics 2018; 148(9). doi: 10.1063/1.5020146 Dutta S, Prasad SK. Confinement-driven radical change in a sequence of rotator phases: A study on n-octacosane. Physical Chemistry Chemical Physics 2018; 20(37): 24345–24352. doi: 10.1039/c8cp03603a Mukherjee PK. Phase transitions among the rotator phases of the normal alkanes: A review. Physics Reports 2015; 588: 1–54. doi: 10.1016/j.physrep.2015.05.005 Denicolo I, Craievich AF, Doucet J. X-ray diffraction and calorimetric phase study of a binary paraffin: C23H48–C24H5. The Journal of Chemical Physics 1984; 80(12): 6200–6203. doi: 10.1063/1.446722 Ungar G, Masic N. Order in the rotator phase of n-alkanes. The Journal of Physical Chemistry 1985; 89(6): 1036–1042. doi: 10.1021/j100252a030 Snyder RG, Goh MC, Srivatsavoy VJP, et al. Measurement of the growth kinetics of microdomains in binary n-alkane solid solutions by infrared spectroscopy. The Journal of Physical Chemistry 1992; 96(24): 10008–10019. doi: 10.1021/j100203a078 Snyder RG, Conti G, Strauss HL, et al. Thermally induced mixing in partially microphase segregated binary n-alkane crystals. The Journal of Physical Chemistry 1993; 97(28): 7342–7350. doi: 10.1021/j100130a037 Sirota EB, King HE, Hughes GJ, et al. Novel phase behavior in normal alkanes. Physical Review Letters 1992; 68(4): 492–495. doi: 10.1103/physrevlett.68.492 Sirota EB, King HEJr, Shao HH, et al. Rotator phases in mixtures of n-alkanes. The Journal of Physical Chemistry 1995; 99(2): 798–804. doi: 10.1021/j100002a050 Dutta S, Srikantamurthy S, Mukherjee PK, et al. Nanometer confinement-driven promotion and stabilization of a hexatic phase intervening between ordered rotator phases. The Journal of Physical Chemistry B 2018; 122(48): 10953–10963. doi: 10.1021/acs.jpcb.8b09017 Kumar MV, Prasad SK. Influence of quenched disorder created by nanosilica network on phase transitions in tetracosane. RSC Advances 2012; 2(22): 8531. doi: 10.1039/c2ra21480f Zammit U, Marinelli M, Mercuri F, et al. Effect of quenched disorder on the RI−RV, RII−RI, and liquid−RII rotator phase transitions in alkanes. The Journal of Physical Chemistry B 2011; 115(10): 2331–2337. doi: 10.1021/jp111067z Kumar MV, Krishna Prasad S, Rao DSS, et al. Competition between anisometric and aliphatic entities: An unusual phase sequence with the induction of a phase in an n-alkane–liquid crystal binary system. Langmuir 2014; 30(15): 4465–4473. doi: 10.1021/la500367y Mukherjee PK. Landau model of the RII-RI-RV rotator phases in mixtures of alkanes. The Journal of Chemical Physics 2007; 127(7). doi: 10.1063/1.2764483 Mukherjee PK. Tricritical behavior of the RI–RV rotator phase transition in a mixture of alkanes with nanoparticles. The Journal of Chemical Physics 2011; 135(13). doi: 10.1063/1.3646213 Mukherjee PK. Effect of the liquid crystal solute on the rotator phase transitions of n-alkanes. RSC Advances 2015; 5(16): 12168–12177. doi: 10.1039/c4ra14116d Mukherjee PK. Effect of nanoparticles on theRII-RI-RV rotator phase transitions of alkanes. Chemical Physics Letters 2017; 681: 75–79. doi: 10.1016/j.cplett.2017.05.038



DOI: https://doi.org/10.24294/jpse.v3i1.1134

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Prabir Kumar Mukherjee

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.