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Abstract: The chemical reinforcement of sandy soils is usually carried out to improve their 

properties and meet specific engineering requirements. Nevertheless, conventional 

reinforcement agents are often expensive; the process is energy-intensive and causes serious 

environmental issues. Therefore, developing a cost-effective, room-temperature-based method 

that uses recyclable chemicals is necessary. In the current study, poly (styrene-co-methyl 

methacrylate) (PS-PMMA) is used as a stabilizer to reinforce sandy soil. The copolymer-

reinforced sand samples were prepared using the one-step bulk polymerization method at room 

temperature. The mechanical strength of the copolymer-reinforced sand samples depends on 

the ratio of the PS-PMMA copolymer to the sand. The higher the copolymer-to-sand ratio, the 

higher the sample’s compressive strength. The sand (70 wt.%)-PS-PMMA (30 wt.%) sample 

exhibited the highest compressive strength of 1900 psi. The copolymer matrix enwraps the 

sand particles to form a stable structure with high compressive strengths. 

Keywords: sand; copolymer; polystyrene; polymethyl methacrylate; soil reinforcement; 

geotechnical 

1. Introduction 

Natural sandy soils are unsuitable for geotechnical engineering applications due 
to their low strength, loose structure, and high saturated liquefaction potential [1–3]. 
Therefore, chemical reinforcement of sandy soil is widely employed in geotechnical 
engineering [4]. The traditional sand reinforcement agents are lime [5], fly ash [6], 
gypsum [7], cement [8], zeolite [9–11], etc. Though these reinforcement agents for 
improvement have apparent advantages, the modifications made using these chemical 
additives often increase the modified sand’s pH value and cause groundwater pollution 
and other environmental issues [4]. To overcome these potential limitations of 
conventional soil reinforcement agents, non-conventional chemical additives such as 
polymers [12], resins [13], enzymes [14], ions [15], and lignin derivatives [16]-based 
reinforcement agents are developed to meet the physical and engineering requirements 
of the sandy soil for different engineering purposes [17]. 

Various polymer systems have been systematically studied for successful sand 
reinforcements [18,19]. Polymer and polymer nanocomposite materials are found to 
be potential candidates for improving the compressibility strength of sandy soil [20] 
and various other applications [21–43]. Also, the polymer materials can enwrap the 
sand particles and improve their strength by filling the void spaces between them [44]. 
Krishnan et al. recently reported a series of research works to improve the crush 
resistance of sand particles by dual polymer nanocomposite coating onto the sand 
surfaces [45–49]. Krishnan et al. also reported sand particle modifications with 
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polyacrylamide (PAM) gels at elevated temperatures for petroleum and natural gas 
engineering applications [50–56]. The same group reported various significant works 
of different industrial importance processes based on polymer composite systems 
[51,54,57–60]. The PAM-modified sand particles are also used for agricultural 
purposes in deserts [45,60]. Xanthum gum, an eco-friendly organic polymer, was also 
studied for coastal agriculture, reducing coastal erosion issues. Naeini et al. studied 
the mechanical strength improvement of sand particles by epoxy resin modification. 
It was also found that the modification of epoxy resin in sand particles enhanced elastic 
modulus under wet and dry conditions. Yang et al. reported polyaspartic acid resin as 
a novel sand-fixing agent. As evident from the recent research reports, polymeric 
materials can act as a potential reinforcement agent for sandy soil. 

The current work aims to study the effect of PS-PMMA copolymer as a chemical 
reinforcing agent for sandy soil. The compressibility strengths of the PS-PMMA 
copolymer-reinforced sand samples were evaluated. Different concentrations of PS-
PMMA copolymer and sand were chosen to determine the effect of the copolymer on 
the sand’s compressibility and strength enhancement. The results and associated 
discussion provide information on the chemical stabilization mechanisms of polymer-
reinforced sand for researchers and practicing engineers. 

2. Experimental 

2.1. Materials 

Styrene (S; >99% purity) was purchased from Sigma Aldrich. 
Methylmethacrylate (MMA; 99% purity) was purchased from Aldrich. Benzoyl 
peroxide (BPO; >90% purity) was purchased from Loba Chemie. Dimethyl-p-
toluidine (DMPT; >99% purity) was purchased from Alfa Aser. All the chemicals are 
of analytical grade and used as received. Sandy soil samples (70/40 mesh) were 
collected from the Saudi Desert. 

2.2. Methods 

2.2.1. Preparation of PS-PMMA reinforced sandy soil 

 
Figure 1. Cylindrical blocks of PS-PMMA reinforced sandy soils of different 
heights. (a) 10 cm; (b) 7 cm; and (c) 3 cm. 

To prepare PS-PMMA-reinforced sandy soil, the sand particles were well mixed 
to a 30 wt.% of a 1:1 wt.% co-monomer mixture of S and MMA along with BPO (0.01 
wt.% related to the monomers) and 0.001 wt.% of DMPT at room temperature. The 
mixed sand samples were aged 10–15 min for the completion of the polymerization 
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reaction. The sand samples were prepared in a cylindrical glass tube to prepare the 
cylindrical-shaped samples (Figure 1). After the sand samples were hardened, the 
glass tubes were broken to retrieve the sand samples.  

2.2.2. Calculation of bulk volume, grain volume, and pore volume 

The samples’ bulk volume (cc), pore volume, and grain volumes are calculated 
using Equations (1)–(3). 

𝐵𝑢𝑙𝑘 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 = 𝜋𝑟 ℎ (1) 

‘h’ is the height of the cylindrical sample. 
The samples’ pore volumes (cc) were determined by the liquid saturation method. 

The samples are initially immersed in methanol, and after 60 min, the excess methanol 
is decanted, and the sample is weighed again. The pore volume of the sample is 
calculated using the initial and liquid pore-filled sample weights (Equation (2)). 

𝑇ℎ𝑒 𝑝𝑜𝑟𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 =
𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑀𝑒𝑂𝐻 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒– 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑟𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑀𝑒𝑂𝐻
 (2)

𝐺𝑟𝑎𝑖𝑛 𝑉𝑜𝑙𝑢𝑚𝑒 = 𝐵𝑢𝑙𝑘 𝑉𝑜𝑙𝑢𝑚𝑒 − 𝑃𝑜𝑟𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 (3) 

2.2.3. Compressibility tests 

 
Figure 2. Compressibility test of the copolymer-reinforced cylindrical sand blocks. 
The inset shows the cracked block after the block is compressed. 

The compressibility test has been carried out using a Specac mechanical 
compressor (Figure 2). The cylindrical sample block is placed on a supporting bottom, 
and specific pressure is applied through a circular pressure head. The pressure rises 
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and suddenly drops when the block starts cracking (Figure 2). The maximum pressure 
the sample block tolerated before cracking down is calculated as its compressibility 
strength (Equation (4)). 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = 𝐹𝑜𝑟𝑐𝑒/𝐴𝑟𝑒𝑎 (4) 

3. Results and discussion 

3.1. PS-PMMA copolymer reinforced sand blocks 

The stepwise preparation of PS-PMMA copolymer-reinforced sand blocks at 
room temperature is schematically illustrated in Figure 3. The sand particles were 
mixed with the required amount of a co-monomer mixture of S, MMA, BPO, and 
DMPT to prepare the samples. This subsequently allowed for random 
copolymerization at room temperature. The BPO undergoes decomposition in the 
presence of DMPT and produces BPO free radicals. The co-monomer molecules were 
synchronously transformed into co-monomer free radicals with the aid of the BPO 
initiator radicals. After that, the co-monomer free radicals became radical donors to 
the neighboring co-monomer molecules. Consequently, a chain propagation of S and 
MMA monomers took place, which resulted in the growth of PS-PMMA random 
copolymer chain radicals [61,62]. Finally, the copolymer chain radicals were 
terminated either by dimerization or disproportionation. The formed PS-PMMA 
copolymer on sand surfaces efficiently wraps the sand particles. 

 
Figure 3. Schematic illustration of the preparation of PS-PMMA copolymer 
reinforced sand (sand-(PS-PMMA) cylindrical block). 

3.2. Bulk, grain, and pore volumes of PS-PMMA copolymer-reinforced 
sand 

Photographs of PS-PMMA copolymer-reinforced sand samples are shown in 
Figure 4. As evident from Figure 4a–c, when the copolymer concentration is low 
relative to sand (i.e., 1 wt.%, 5 wt.%, and 10 wt.%), the sand particles either remain 
free or agglomerated, while if the concentration is increased to 15 wt.% and above (20 
wt.% and 30 wt.%), sand-polymer blocks are obtained. When the PS-PMMA 
concentration is increased beyond 30 wt.% to sand, the sand particles are well-buried 
into the polymer matrix, which is no longer a homogenous composite of sand-PS-
PMMA copolymer. The shape of the blocks can be manipulated using respective 
shaped templates. In this study, we prepared the samples in cylindrical geometries to 
evaluate the bulk, grain, and pore volumes and the effect of PS-PMMA copolymer 
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concentration on these structural parameters (Figure 5). In the sample with 15 wt.% 
of PS-PMMA, the bulk, grain, and pore volumes are 50 cc, 32 cc, and 18 cc, 
respectively. At the same time, for the sample with 20 wt.% PS-PMMA, the bulk, 
grain, and pore volumes are 50 cc, 40.8 cc, and 9.2 cc, respectively, while for the 
sample with 30 wt.% PS-PMMA, the bulk, grain, and pore volumes are 50 cc, 46.1 cc, 
and 3.9 cc, respectively. The geometric and pore characteristics of the samples are 
summarized in Table 1. For the fixed bulk volume of the copolymer-reinforced sand 
blocks, with an increase in the polymer concentration, the porosity decreases while the 
grain volume increases. The samples’ increased grain and decreased pore volumes are 
attributed to the successful coating of the copolymer onto the sand particles while 
efficiently wrapping them.  

 
Figure 4. Photographs of Sand-Copolymer samples prepared at room temperature. 
(a) Sand (99%)-(PS-PMMA)(1%); (b) Sand (95%)-(PS-PMMA)(5%); (c) Sand 
(90%)-(PS-PMMA)(10%); (d) Sand (85%)-(PS-PMMA)(15%); (e) Sand (80%)-(PS-
PMMA)(20%); (f) Sand (70%)-(PS-PMMA)(30%). 

 
Figure 5. Bulk, grain, pore volumes, and porosity of sand (85%)-(PS-PMMA)(15%), 
sand (80%)-(PS-PMMA)(20%), and sand (70%)-(PS-PMMA)(30%) samples. 

The calculated geometric and pore characteristics of the PS-PMMA copolymer-
reinforced sand samples are summarized in Table 1. 
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Table 1. Geometric and pore characteristics of the PS-PMMA copolymer-reinforced sand samples. 

S.No. Sample Bulk volume (cc) Grain volume (cc) Pore volume (cc) 

1. Sand (99%)-(PS-PMMA)(1%) Individual Grains Individual Grains - 

2. Sand (95%)-(PS-PMMA)(5%) Individual Grains Individual Grains - 

3. Sand (90%)-(PS-PMMA)(10%) Agglomerated Grains Agglomerated Grains - 

4. Sand (85%)-(PS-PMMA)(15%) 50 32 18 

5. Sand (80%)-(PS-PMMA)(20%) 50 40.8 9.2 

6. Sand (70%)-(PS-PMMA)(30%) 50 46.1 3.9 

3.3. Compressibility strength of PS-PMMA copolymer-reinforced sand 

Figure 6 shows the compressibility strengths of the PS-PMMA copolymer-
reinforced samples—the compressibility strengths for the sand samples with 1 wt.%, 
5 wt.%, and 10 wt.% PS-PMMA copolymers were not determined as they are either 
free or agglomerated particles. The compressibility strengths of sand (85%)-(PS-
PMMA)(15%), sand (80%)-(PS-PMMA)(20%), and sand (70%)-(PS-PMMA)(30%) 
are evaluated to be 224 psi, 1500 psi, and 1900 psi. The compressibility strengths of 
PS-PMMA copolymer-reinforced sand samples are summarized in Table 2. If the 
copolymer concentration of the reinforced sand samples was high, the compressibility 
strengths were also found to be high [63]. This increase in the samples’ mechanical 
strength is attributed to the addition of high-strength thermoplastic polymers to the 
sand and the successful cross-linking of copolymers with the sand surfaces 
[30,31,33,34,40,45–50,55,56,60]. 

 
Figure 6. Compressibility strength of sand (85%)-(PS-PMMA)(15%), sand (80%)-
(PS-PMMA)(20%), and sand (70%)-(PS-PMMA)(30%) samples. 
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Table 2. Compressibility strengths of the PS-PMMA copolymer-reinforced sand samples. 

S.No. Sample The shape of the sample Compressibility strength (psi) 

1. Sand (99%)-(PS-PMMA)(1%) Individual Grains - 

2. Sand (95%)-(PS-PMMA)(5%) Individual Grains - 

3. Sand (90%)-(PS-PMMA)(10%) Agglomerated Grains - 

4. Sand (85%)-(PS-PMMA)(15%) Cylindrical 224 

5. Sand (80%)-(PS-PMMA)(20%) Cylindrical 1500 

6. Sand (70%)-(PS-PMMA)(30%) Cylindrical 1900 

4. Conclusion 

The current work reports a cost-effective preparation method of mechanically 
reinforced sand particles using PS-PMMA copolymer. A one-step bulk polymerization 
technique was used to coat the sand particles with the PS-PMMA copolymer. When 
the BPO is in contact with DMPT at room temperature, the BPO instantaneously 
decomposes to form free radicals. The free radicals react with the monomers and form 
co-monomer free radicals. The co-monomer free radicals randomly react to form the 
co-polymer onto the sand particles. The compressibility strength of the copolymer-
reinforced sand blocks is directly proportional to the sand-to-copolymer ratio. The 
higher the sand-to-copolymer ratio, the higher the strength of the sand block. 
Simultaneously, the porosity is inversely related to the sand-to-copolymer ratio. The 
sand (70 wt.%)-PS-PMMA (30 wt.%) sample exhibited a high compressive strength 
of 1900 psi. The copolymer matrix enwraps the sand particles to form a stable structure 
with high compressive strengths.  
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