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ABSTRACT 
Richard’s equation was approximated by finite-difference numerical scheme to model water infiltration profile in 

variably unsaturated soil[1]. The published data of Philip’s semi-analytical solution was used to validate the simulated 
results from the numerical scheme. A discrepancy was found between the simulated and the published semi-analytical 
results. Morris method as a global sensitivity tool was used as an alternative to local sensitivity analysis to assess the 
results discrepancy. Morris method with different sampling strategies were tested, of which Manhattan distance method 
has resulted a better sensitivity measures and also a better scan of input space than Euclidean method. Moreover, Morris 
method at 𝑝𝑝 = 2, 𝑟𝑟 = 2 and Manhattan distance sampling strategy, with only 2 extra simulation runs than local sensitivi-
ty analysis, was able to produce reliable sensitivity measures (𝜇𝜇∗, 𝜎𝜎). The sensitivity analysis results were cross-
validated by Sobol’ variance-based method with 150,000 simulation runs. The global sensitivity tool has identified three 
important parameters, of which spatial discretization size was the sole reason of the discrepancy observed. In addition, a 
high proportion of total output variance contributed by parameters 𝛽𝛽 and 𝜃𝜃𝑠𝑠 is suggesting a greater significant digits to 
reduce its input uncertainty range. 
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1. Introduction
Generally, there are two ways in testing sensitivity analysis. The 

commonly used method is to vary parameter value in certain percent-
age, i.e., 10, 20% or more[2-4], and calculate the sensitivity coefficient. 
The second method is to calculate sensitivity indices based on uncer-
tainty of parameters, which could be gathered from previous studies, 
for instance, in Fox et al.[5]. While the former provides an overall un-
derstanding of each parameter under a defined percentage boundary, 
the later allows propagation of parameter uncertainty into the corre-
sponding uncertainty in model output.  

Morris method provides qualitative sensitivity measures by rank-
ing parameters, and those with the least important parameters could be 
fixed, without affecting model output[6]. Original Morris method utiliz-
es mean (μ) and standard deviation (σ) of elementary effect as screen-
ing procedure, while the improved Morris method by Campolongo et 
al. introduced absolute mean of elementary effect (μ*) as a comple-
mentary to existing[7]. Also, the original Morris method generates a 
number of random trajectories, while Campolongo et al. introcuce a 
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new sampling strategy using Euclidean distance 
method to identify a group of trajectories with the 
greatest spread[7]. They have shown that the new 
sampling strategy is able to provide a reliable 
approximation to total effect index (STi) at lower 
simulation runs. However, this sampling method 
is not widely used. Some researches continue to 
use original Morris sampling strategy, for in-
stance, Drouet et al. on nitrous oxides emissions 
at farm level[8], and Chu-Agor et al. on the vulner-
ability of coastal habitats to sea level rise[9]. Apart 
from the Euclidean distance method, Campolongo 
et al. suggested that an alternative method, i.e., 
Manhattan distance, should be investigated and 
compared to existing Euclidean distance method[7]. 
In this study, we compare these methods as one of 
the objectives. 

Morris method is suitable for factor fixing 
but not for factor prioritization[10], although effort 
has been made to improve this method into quan-
titative approach by increasing simulation runs[11]. 
In this study, we would like to focus on the ad-
vantage of improved Morris method by Campo-
longo et al. as a screening tool. It is commonly 
accepted in the literature that the 4 levels of input 
space and/or the 10 random trajectories are suffi-
cient to produce a valuable results[10,11-15]. Some 
other researchers would prefer different combina-
tion of levels and trajectories, such as 5 levels, 
120 trajectories in Drouet et al.[8], and 10 levels, 
100 trajectories in Moreau et al. [16]. In this study, 
we would like to determine the extent to which 
the levels and trajectories could be reduced, while 
maintaining its screening ability as an objective of 
our study. The motivation is obvious because the 
fewer the trajectory is, the fewer simulation runs 
would be required, which is a direct indication of 
lesser computational time. This approach is moti-
vated by Saltelli and Annoni [17]: 

“[...] non quantitative results can be obtained 
for screening purposes [...] but already two trajec-
tories can be quite informative as they give a dou-
ble estimate for the effect of each factor, and by 
difference of these, an idea of the deviation from 
linearity acquired.” 

Quantitative method, for example, variance-
based method, can be applied for both factor fix-

ing and factor prioritization, but high in computa-
tional cost. Variance-based method is a model free 
uncertainty analysis tool, and thus, it is used in 
various applications for sensitivity analysis, such 
as Kinetic Model for OH-initiated oxidation of 
DMS[13], HYMOD model[18], flood inundation 
model (HEC-RAS)[19], dynamic responses of to-
mato to environment (TOMGRO)[20], to improve 
process in mineral processing[21], ecological mod-
el[22], etc. The usage of variance-based method is 
to quantify the variance contribution of input pa-
rameters to the unconditional variance of model 
output. This tool is generally applied to determine 
first order index (Si) and total effect index (STi). In 
this study, variance-based method is used as a tool 
to cross-validate the results from improved Morris 
method. 

In general, sensitivity analysis can be used 
for various reasons[23]. In model development, it 
can be used for the purposes of model validation 
or accuracy, simplification, calibration, coping 
with poor or missing data, and even to identify 
important parameter for further studies[24]. The 
aim of this study is to utilize sensitivity analysis 
method as a validation tool on Richard’s equa-
tion[25], i.e., to validate simulation results with pu-
blished Philip semi-analytical solution[26,27]. Also, 
it is used to study the effect of uncertainty input 
parameters on variance of simulation output. 

According to Namin and Boroomand, Rich-
ard’s equation numerical solution strategy is still a 
subject to research[28]. In validating the simulation 
results to experimental and/or semi-analytical re-
sults, sensitivity analysis is one of the important 
steps that should be carried out, in the least to 
identify input parameter(s) responsible for discre- 
pancy between simulation and experimental and/ 
or semi-analytical results. There are studies on Ri- 
chard’s equation which would benefit from sensi-
tivity analysis study, e.g., Ma et al.[29] and Ca-
viedes-Voullième et al.[30]. One of the simplest 
approaches to study sensitivity analysis is to as-
sume ± 20% and ± 40% deviation from base val-
ue[8]. 
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2. Sensitivity analysis techniques
The relation of model output (Y) and array of 

model input parameters (X) can be written in the 
following form: 
Y = f(X) = f(X1, X2, X3,…, Xq)     (1) 

Where, Y could be multiple outputs in terms 
space and time, or a single model output.

2.1 Improved Morris method 
Morris proposed mean (μ) and standard devia-

tion (σ) of elementary effect (EE) that is capable to 
distinguish input parameters into either: (a) negli-
gible, (b) linear and additive, (c) non-linear, or (d) 
involved in interactions with other inputs. This 
method is different from the traditional sensitivity 
analysis, i.e., varying single input parameter one-
at-a-time (OAT). Morris method has improved 
sensitivity analysis where each OAT of the input 
parameter of interest is generated at random va-
lue of other input parameters. The range of each 
parameter value is defined between 0 and 1. A 
technical scheme, Equation (2), to generate ran-
dom trajectories is as following[6,10,15]: 
𝐵𝐵∗ = �𝐽𝐽𝑘𝑘+1,𝑘𝑘𝑥𝑥∗ + �∆

2
� ��2𝐵𝐵 − 𝐽𝐽𝑘𝑘+1,𝑘𝑘�𝐷𝐷∗ + 𝐽𝐽𝑘𝑘+1,𝑘𝑘��𝑃𝑃∗      (2)                                 

Where: B* is the randomly generated trajec-
tory in the form of matrix with dimension (k + 1) 
× k, where k is the number of independent input 
parameters; ∆ is a value in [1/(p – 1),…,1 – 1/(p – 
1)] and p is the number of levels, Jk+1,k is (k + 1) × 
k matrix of 1's; x* is a randomly chosen base value; 
B is lower triangular matrix of 1's; D* is k-
dimensional diagonal matrix of which each ele-
ment is either +1 or -1, by random generation; and 
P* is 𝑘𝑘-by-𝑘𝑘 random permutation matrix that each 
row with only one element equal to 1 and no col-
umn has more than one element that has 1.  

Each trajectory consists of a random step for 
each input parameter that is either increase or de-
crease. For instance, Richard’s equation has 10 
input parameters to be tested, including time-step 
and spatial discretization size. Thus, there are 10 
steps for each trajectory. Total simulation runs is 
based on N (k + 1), which N refers to random tra-
jectories generated. In this study, various values 
of N were tested. For example, for N = 10, 10(10 
+ 1) = 110 simulation, runs would be required. 

Campolongo et al. have proposed a new 
sampling strategy to compare geometric distance 
between pair of trajectories:

𝑑𝑑𝑚𝑚𝑚𝑚 = ��𝑘𝑘 + 1
𝑖𝑖 = 1 �

k+1
j=1 ��

k
z=1 �Xz=1

(i) (m)- Xz=1
(j) (l)�

2

𝑚𝑚 ≠ 𝑙𝑙                                                                     (3) 
Where: dml is distance between a pair of traje- 

ctories m and l; 𝑋𝑋𝑧𝑧=1
(𝑗𝑗) (𝑙𝑙) is zth coordinate of the jth

point of the lth trajectory; and 𝑋𝑋𝑧𝑧=1
(𝑖𝑖) (𝑚𝑚) is zth co-

ordinate of the ith point of the mth trajectory. 
They have shown that Equation (3), using Euclid-
ean distance method, can be used to identify a 
small number of trajectories with the greatest 
spread. Thus, it reduced the number of trajectories 
needed to calculate absolute mean of elementary 
effect and its results shown to be a good approxi-
mation to total effect index (STi) as original Morris 
sampling method. Alternatively, they have also 
suggested Manhattan distance method should be 
tested, and the equation is shown as following: 

𝑑𝑑𝑚𝑚𝑚𝑚 = ��∑
𝑘𝑘 + 1
𝑖𝑖 = 1

∑ k+1
j=1 ∑ k

z=1 �Xz=1
(i) (m)− Xz=1

(j) (l)�   𝑚𝑚 ≠ 𝑙𝑙

0
 (4) 

Where all terms are same, except the mathe-
matical operation is simpler than the previous one. 

The elementary effect (EE), mean of ele-
mentary effect (μ), absolute mean of elementary 
effect (μ*) and standard deviation of elementary 
effect (σ) are as following[7,10,15]:
𝐸𝐸𝐸𝐸𝑖𝑖

𝑗𝑗 = 𝑦𝑦𝑗𝑗(𝑋𝑋1,𝑋𝑋2,…,𝑋𝑋𝑖𝑖+∆𝑖𝑖,…,𝑋𝑋𝑞𝑞)−𝑦𝑦𝑗𝑗(𝑋𝑋1,𝑋𝑋2,…,𝑋𝑋𝑖𝑖,…,𝑋𝑋𝑞𝑞)
∆𝑖𝑖

 (5) 

𝜇𝜇𝑖𝑖 = 1
𝑟𝑟
∑

𝑟𝑟
𝑗𝑗 = 1𝐸𝐸𝐸𝐸𝑖𝑖

𝑗𝑗  (6) 

𝜇𝜇𝑖𝑖∗ = 1
𝑟𝑟
∑

𝑟𝑟
𝑗𝑗 = 1 �𝐸𝐸𝐸𝐸𝑖𝑖

𝑗𝑗�    (7) 

𝜎𝜎𝑖𝑖2 = 1
𝑟𝑟−1

∑
𝑟𝑟

𝑗𝑗 = 1(𝐸𝐸𝐸𝐸𝑖𝑖
𝑗𝑗 − 𝜇𝜇𝑖𝑖)2   (8) 

Where: yj(Xi) and yj(Xi+∆i) are simulation 
results before and after increment or decrement 
of ∆ value, i.e., ∆i can either positive or negative 
value; r is referring to the total number of trajec- 
tories; 𝐸𝐸𝐸𝐸𝑖𝑖

𝑗𝑗  is elementary effect of i input parame- 
ter at j trajectory; and σi is standard deviation of i 
input parameter. 

2.2 Sobol’ method 
Sobol’ method is based on decomposition of 

total unconditional variance, V(Y), on Equation 
(1), into partial variances of increasing dimen-
sionality (Sobol’ 1990)[31]: 
V(Y) = ∑𝑞𝑞𝑖𝑖 𝑉𝑉𝑖𝑖 + ∑𝑞𝑞𝑖𝑖 ∑

𝑞𝑞
𝑗𝑗 > 𝑖𝑖𝑉𝑉𝑖𝑖𝑗𝑗 + ⋯+ 𝑉𝑉12…𝑞𝑞   (9)
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Where, 𝑉𝑉𝑖𝑖 = V[𝐸𝐸(𝑌𝑌|𝑋𝑋𝑖𝑖)] is the sum of partial 
variances that include main effects of each input 
parameter, 𝑉𝑉𝑖𝑖𝑗𝑗 = V�𝐸𝐸(𝑌𝑌�𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗)� − 𝑉𝑉𝑖𝑖 − 𝑉𝑉𝑗𝑗 , inclu- 
des all the partial variances of two input parame-
ters interaction, and the main effects. The E indi-
cates expectation operator, and V is the variance 
operator. 

The partial variances of Equation (9) divided 
by total unconditional variance to give: 
∑𝑞𝑞𝑖𝑖 𝑆𝑆𝑖𝑖 + ∑𝑞𝑞𝑖𝑖 ∑

𝑞𝑞
𝑗𝑗 > 𝑖𝑖𝑆𝑆𝑖𝑖𝑗𝑗 + ⋯+ 𝑆𝑆12…𝑞𝑞 = 1   (10) 

Where, 𝑆𝑆𝑖𝑖 = 𝑉𝑉𝑖𝑖 𝑉𝑉(𝑌𝑌)⁄  is first order (or main 
effect) index; 𝑆𝑆𝑖𝑖𝑗𝑗 = 𝑉𝑉𝑖𝑖𝑗𝑗 𝑉𝑉(𝑌𝑌)⁄  is the second order 
index, i.e., also known as interaction effect be-
tween parameter i and j, and subsequently for 
other terms in Equation (10). The equation is ex-
clusive for all input parameters that are independ-
ent, i.e., orthogonal from each other. 

The ratio of partial variances (e.g. Vi, Vij, etc) 
to total variance (V(Y)) indicates that all the sensi-
tivity indices are scaled between 0 and 1 interval. 
When the summation of all first order indices gi- 
ves unity, i.e., ∑𝑞𝑞𝑖𝑖 𝑆𝑆𝑖𝑖 = 1, the model is known as 
additive, i.e. without any interaction effect. Hence, 
the residual of 1 −∑𝑞𝑞𝑖𝑖 𝑆𝑆𝑖𝑖 indicates interaction eff- 
ects that could be a combination of second order 
or higher orders. 

The total effect index (𝑆𝑆𝑇𝑇𝑖𝑖) for each input pa- 
rameter is given by:  
𝑆𝑆𝑇𝑇𝑖𝑖 = 𝑆𝑆𝑖𝑖 + ∑ 𝑆𝑆𝑖𝑖𝑗𝑗 + ∑ 𝑆𝑆𝑖𝑖𝑗𝑗𝑚𝑚 + ⋯𝑖𝑖≠𝑗𝑗≠𝑚𝑚𝑖𝑖≠𝑗𝑗   (11) 

As an example, if, total effect index would be 
given by: 
𝑆𝑆𝑇𝑇1 = 𝑆𝑆1 + 𝑆𝑆12 + 𝑆𝑆13 + 𝑆𝑆123  (12) 

Where S1, S12, S13 and S123 are corresponding 
to first order index of input parameter 1, second 
order index of interaction effect between input 
parameters 1 and 2, second order index of pa-
rameters 1 and 3 and third order index of interac-
tion effect between input parameters 1, 2 and 3. 
The total effect index for 𝑆𝑆𝑇𝑇2and 𝑆𝑆𝑇𝑇3can be de-
composed with similar approach. Since 𝑆𝑆𝑇𝑇𝑖𝑖inclu- 
des from first to higher order indices that relating 
to input parameter i, 𝑆𝑆𝑇𝑇𝑖𝑖 − 𝑆𝑆𝑖𝑖 indicates only inter- 
action effect that only account for second and 
higher order indices. Si is used to indicate output 
variance that can be reduced if parameter Xi is fix- 
ed, and 𝑆𝑆𝑇𝑇𝑖𝑖 represents output variance remains in  
model output, if Xi cannot be fixed[32]. 

The first order sensitivity index and total ef-
fect index were estimated by quasi-Monte Carlo 
estimators[33]: 

𝑆𝑆𝑖𝑖 =
𝑉𝑉(𝑌𝑌)−(1/2𝑁𝑁)∑ 𝑁𝑁

𝑚𝑚=1�𝑦𝑦𝐵𝐵
(𝑚𝑚)−𝑦𝑦𝐶𝐶𝑖𝑖

(𝑚𝑚)�
2

𝑉𝑉(𝑌𝑌)
           (13) 

𝑆𝑆𝑇𝑇𝑖𝑖 =
(1/2𝑁𝑁)∑ 𝑁𝑁

𝑚𝑚=1�𝑦𝑦𝐴𝐴
(𝑚𝑚)−𝑦𝑦𝐶𝐶𝑖𝑖

(𝑚𝑚)�
2

𝑉𝑉(𝑌𝑌)
 (14) 

Where, 𝑦𝑦𝐴𝐴
(𝑚𝑚) , 𝑦𝑦𝐵𝐵

(𝑚𝑚)  and 𝑦𝑦𝐶𝐶
(𝑚𝑚)  are model 

outputs in Equation (13) and (14). Sobol’ quasi-
random sequences were used to generate two 
sets of data, i.e., matrix A and B corresponding to 
model outputs of 𝑦𝑦𝐴𝐴

(𝑚𝑚) and 𝑦𝑦𝐵𝐵
(𝑚𝑚), and these dataset are 

confined between 0 and 1. V(Y) is： 

(1/𝑁𝑁)∑ 𝑁𝑁
𝑚𝑚 = 1(𝑦𝑦𝐴𝐴

(𝑚𝑚))2 − 𝑓𝑓𝑜𝑜2

Alternatives are Fourier Amplitude Sensitivi-
ty Test (FAST)[34,35] and Extended FAST[36]. In 
this study, we limit to Sobol quasi-random se-
quence. 

The 𝑓𝑓𝑜𝑜2 is given by： 
(1/𝑁𝑁)∑ 𝑁𝑁

𝑚𝑚 = 1(𝑦𝑦𝐴𝐴
(𝑚𝑚))2.

The 𝑦𝑦𝐶𝐶𝑖𝑖
(𝑚𝑚) model output was obtained by tak-

ing all the dimensions from matrix A, except i 
column, i.e., dimension is taken from matrix B. 
Richard’s equation has 8 input parameters that 
must be tested, and thus, 8 dimensions were re-
quired for each matrix. 

To solve Equations (13) and (14), we need 
two matrixes (A and B), i.e., 2N, and 𝑘𝑘 input pa-
rameters of 𝑁𝑁 for each input parameter, i.e., kN. In 
our study, we used N = 150000 rows and k = 8 
columns, i.e., due to 8 input parameters. In total, 
we have to simulate for N(k + 2) = 15000(8 + 2) = 
150000 runs. The greater the N value is, the better 
the estimation of sensitivity indices will be, which 
stated by Nossent et al.[37], where they have 
demonstrated that a N value of 12,000 for 26 input 
parameters is sufficient to obtain reliable estima-
tion. 

3. The governing equation of wa-
ter flow in unsaturated soil, and its 
numerical solution 

The governing equation for transient water 
flow in unsaturated soil, i.e., Richard’s equation[25], 
based on θL-based form, is as following: 
𝜕𝜕𝜃𝜃𝐿𝐿
𝜕𝜕𝑡𝑡

= 𝜕𝜕
𝜕𝜕𝑧𝑧
��𝐾𝐾 𝜕𝜕𝜓𝜓𝑚𝑚

𝜕𝜕𝜃𝜃𝐿𝐿
� 𝜕𝜕𝜃𝜃𝐿𝐿
𝜕𝜕𝑧𝑧

− 𝐾𝐾𝑘𝑘�⃑ �            (15) 
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Thus: θL is volumetric water content (m3 m-3); 
𝑡𝑡 is time of simulation (s); 𝑧𝑧 indicates vertical 
distance of simulation (m); 𝐾𝐾 is hydraulic conduc-
tivity of the medium (m s-1); ψm is matric pressure 
head (m); 𝑘𝑘�⃑  is vector unit with a value of positive 
one when it is vertically downwards.  

Other forms of governing equation, i.e., -
based and mixed-based, and their advantages and 
limitations are stated by Celia et al.[38]. We justify 
the selection of this equation due to its simplicity 
in relating volumetric water content in the storage 
term on the left side of the equation to the similar 
volumetric water content in the flux term on the 
right side of the equation. The first limitation, 
calculation degeneration in fully saturated media, 
was addressed using an approximate value for the 
θL in few decimal points, and the approximate 
value would give the exact value of θL when the 
value was rounded up. The second limitation, 
porous material discontinuities produce discontin-
uous volumetric water content profiles. It could 
cause problem in simulation, but we have not yet 
encounter such a difficulty, and the simulation 
model is thus so far successful in simulating the 
governing processes. 

Equation (15) was approximated numerically 
and its algebra was implemented in FORTRAN 
2008 using Simply FORTRAN Integrated Devel-
opment Environment. The spatial discretization 
method used is termed as cell-centered finite dif-
ference. The finite difference algebra for Equation 
(15), i.e., used for sensitivity analysis in the cur-
rent study is as following: 
𝜃𝜃𝐿𝐿(𝑘𝑘)𝑛𝑛+1−𝜃𝜃𝐿𝐿(𝑘𝑘)𝑛𝑛

∆𝑡𝑡
=

𝐾𝐾

𝑘𝑘+12

(𝜕𝜕𝜓𝜓𝑚𝑚𝜕𝜕𝜃𝜃𝐿𝐿
)
𝑘𝑘+12

∆𝑍𝑍𝑘𝑘(0.5∆𝑍𝑍𝑘𝑘+1+0.5∆𝑍𝑍𝑘𝑘)
�𝜃𝜃𝐿𝐿(𝑘𝑘+1)𝑛𝑛+1 − 𝜃𝜃𝐿𝐿(𝑘𝑘)𝑛𝑛+1� −

𝐾𝐾

𝑘𝑘−12

(𝜕𝜕𝜓𝜓𝑚𝑚𝜕𝜕𝜃𝜃𝐿𝐿
)
𝑘𝑘−12

∆𝑍𝑍𝑘𝑘(0.5∆𝑍𝑍𝑘𝑘+0.5∆𝑍𝑍𝑘𝑘−1)
�𝜃𝜃𝐿𝐿(𝑘𝑘)𝑛𝑛+1 − 𝜃𝜃𝐿𝐿(𝑘𝑘−1)𝑛𝑛+1� −

𝐾𝐾
𝑖𝑖,𝑗𝑗,𝑘𝑘+12

𝑘𝑘��⃑ −𝐾𝐾
𝑖𝑖,𝑗𝑗,𝑘𝑘−12

𝑘𝑘��⃑

∆𝑍𝑍𝑘𝑘
 (16) 

Where: 𝑘𝑘 indicates a cell-centered number in 
z-direction in Cartesian coordinate system; ∆𝑡𝑡(s) 
is time-step size; 𝜃𝜃𝐿𝐿(𝐾𝐾)𝑛𝑛 (m3 m-3) and 𝜃𝜃𝐿𝐿(𝐾𝐾)𝑛𝑛+1 (m

3

m-3) are indicating volumetric water content at old 
time level (n) and new time level (n+1), respec-
tively; K𝑘𝑘+1/2 (m s-1) is hydraulic conductivity at 

the interface between cell k and k + 1; K𝑘𝑘−1/2 (m 
s-1) is hydraulic conductivity at the interface be-
tween cell k – 1 and k; (𝜕𝜕𝜓𝜓𝑚𝑚/𝜕𝜕𝜃𝜃𝐿𝐿)𝑘𝑘+1/2 is partial 
derivative of ψm with respect to θL at the interface 
between the cell k and k + 1; (𝜕𝜕𝜓𝜓𝑚𝑚/𝜕𝜕𝜃𝜃𝐿𝐿)𝑘𝑘−1/2 is 
partial derivative of ψm with respect to θL at the 
interface between the cell k – 1 and k; ∆zk+1(m), 
∆zk(m) and ∆zk-1(m) are corresponding to the spa-
tial sizes of spacing of cell k + 1, k and k – 1. 
𝜃𝜃𝐿𝐿(𝑘𝑘+1)𝑛𝑛+1  (m3 m-3), 𝜃𝜃𝐿𝐿(𝑘𝑘)𝑛𝑛+1  (m3 m-3) and 
𝜃𝜃𝐿𝐿(𝑘𝑘−1)𝑛𝑛+1 (m3 m-3) are the volumetric water con-
tents at new time level of cell k + 1, k and k – 1, 
respectively. 

The numerical solution of Equation (16) was 
solved by a fully implicit cell-centered finite-
difference scheme without any linearization. An 
iterative method was used to solve the mathemat-
ical algebra of Equation (16), i.e., Jacobi itera-
tion[39]. For comparison purpose, modified New-
ton-Raphson method was also implemented[40]. A 
convergence factor criterion was used to indicate 
the condition for iteration termination process, i.e., 
absolute maximum difference �𝜃𝜃𝐿𝐿(𝑘𝑘)𝑛𝑛+1 − 𝜃𝜃𝐿𝐿(𝑘𝑘)𝑛𝑛�  
for every single cell. 

4. The constitutive functions of
matric pressure head (ψm) and 
hydraulic conductivity (K) 

The constitutive functions implemented are from 
Haverkamp et al.[26]: 

𝜓𝜓𝑚𝑚 = −10−2𝑒𝑒𝑒𝑒𝑝𝑝 �𝛼𝛼(𝜃𝜃𝑠𝑠−𝜃𝜃𝑟𝑟)
𝜃𝜃𝐿𝐿−𝜃𝜃𝑟𝑟

− 𝛼𝛼�
1
𝛽𝛽       (17) 

K = 𝐾𝐾𝑠𝑠
𝐴𝐴

𝐴𝐴+(−100𝜓𝜓𝑚𝑚)𝐵𝐵
 (18) 

Where: α, β, A and B are fitting parameters; 
θr (m3 m-3) is residual volumetric water content; θs 
(m3 m-3) is saturated volumetric water content; 
and Ks (m s-1) is saturated hydraulic conductivity. 

5. Input parameters considered
for local and global sensitivity 
analysis 

Referring to Equations (17) and (18), there 
are basically 8 input parameters from Richard’s 
equations. Out of those input parameters, 3 pa-
rameters are relating to hydraulic conductivity of 
soil medium, i.e., Equation (18), while the other 5 
parameters are inputs for matric pressure head, 
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Equation (17). All the parameters are listed in 
Table 1. The uncertainty range for each parameter 
was developed based on either input parameter 
uncertainty or numerical input parameter uncer-
tainty. For time-step size and spatial discretization 
size, they are termed as numerical input parame-
ters because their influence on simulation output 
is depending on the implemented numerical solu-
tion, e.g. Caviedes-Voullième et al.[30]. Similar as 
Nossent et al.[37], as we have no prior information 
on the parameters, the sensitivity analysis was 
carried out on uniform input parameters distribu-
tion. Some other researchers with similar assump-
tion, e.g. Saltelli et al.[15] assumed uniform distri-
bution for 103 parameters; Yang[18] assumed uni-
form distribution for 5 parameters, and Drouet et 
al.[8] assumed ±20% and ±40% from base value. 

6. Numerical experiment and the
default setting of input parameters 
of the flow problem 

Water infiltration into Yolo light clay was 
used in the numerical experiment. The coeffi-
cients of the constitutive functions are tabulated in 
Table 1. Initial condition for the volumetric water 
content was 0.2376 m3 m-3. Lower boundary was 
set permeable to inflow and outflow of water. 
Upper boundary was set at 0.495 m3 m-3. Total 
simulation time was set to 600 s, and different 
time-step sizes were simulated to determine mass 
balance ratio (MBR) as given by Equation (19). 
This is required as part of a validation procedure 
since Celia et al.[38]. The formula of the equation 
is simply by taking the ratio of storage term over 
the flux term. 

Table 1. The coefficients value from Haverkamp et al. based 
on the constitutive Equations (17) and (18). These values 
were used as base case. Note that θr is residual volumetric 
water content, θs is saturated volumetric water content, Ks is 
saturated hydraulic conductivity, and α, β, A and B are 
fitting coefficients. θL(initial), ∆z and ∆t are initial spatial dis-
cretization size and time-step size, respectively.  
a-Numerical input parameter uncertainty. All other parame-
ters are based on Haverkamp constitutive equations.
Para-
meter 

Base 
value Distribution Uncertainty analysis

range 
α 739 Uniform 738.5 – 739.499 

θr 0.124 m3 
m-3 Uniform 0.1235 – 0.124499 

θs 0.495 m3 
m-3 Uniform 0.495 – 0.495499 

β 4 Uniform 3.5 – 4.499 
A 124.6 Uniform 124.55 – 124.6499 
B 1.77 Uniform 1.765 – 1.77499 

Ks 4.428x10-

2 cm hr-1 Uniform 4.4275x10-2 –
4.428499x10-2 

θL(initial) 0.2376 m3 
m-3 Uniform 0.23755–0.2376499 

∆z 1 cm Uniform 0.1 – 1a 
∆t 500 s Uniform 10 – 500a 

Thus, we generalized the MBR equation in a 
more explicit form, but in a partial differential 
form, as following: 

MBR = ∑ 𝑁𝑁
𝑘𝑘 = 1

(𝜕𝜕𝜃𝜃𝐿𝐿𝜕𝜕𝑡𝑡 )𝑘𝑘

� 𝜕𝜕𝜕𝜕𝑧𝑧
��𝐾𝐾𝜕𝜕𝜓𝜓𝑚𝑚𝜕𝜕𝜃𝜃𝐿𝐿

�𝜕𝜕𝜃𝜃𝐿𝐿𝜕𝜕𝑧𝑧
−𝐾𝐾𝑘𝑘�⃑ ��

𝑘𝑘

  (19) 

Where, k is the number of cell; and N is the 
total number of cell. The calculation of MBR was 
carried out for each time-step. A perfect simula-
tion would give a MBR value of unity, and any 
increasing or decreasing in the value is indicating 
unwanted creation or loss of mass, respectively. 
Also, it should be noted that the MBR equation 
change according to the governing equation simu- 
lated. 

Figure 1. MBR and number of iteration at different time-step sizes, i.e., 10, 30, 120 and 600 s. Note that ∆z is spatial spacing size, 

and T is the total simulation time. 
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Figure 2. Mass balance ratio at different simulation times, i.e., 105, 106 and 3x106 s, at a time-step size of 500 s. Note that ∆z is spa-
tial spacing size, and ∆t is time-step size. 

Figure 1 shows the MBR of the simulation is 
unity from 10 to 600 s of time-step size. Hence, in 
considering the increasing number of iteration due 
to increasing time-step value, the time-step was 

taken as 500 s. By using the time-step, the simula-
tion was preceded from 500 to 3x106 s, and 
MBR in Figure 2 does not show any sign of 
mass balance problem. 

Figure 3. MBR and number of iteration at different cells number, i.e., 100, 160, 200 and 250 cells. The corresponding values of 
spatial spacing size (∆z) are 2, 1.25, 1 and 0.8 cm. Note that ∆t is time-step size, and T is the total simulation time. 

The simulation medium was discretized in-
to different spatial spacing sizes to investigate 
the simulation for any influence of number of 
cell on MBR and iteration number. The number of 
cell in the Figure 3 is corresponding to spatial 
size of 2, 1.25, 1 and 0.8 cm. The result showed 
the spatial size does not have any influence on 
the MBR value, based on the range of simulation. 
However, the number of iteration increases at a 
greater rate than the increasing number of cell at 
high cell number. Thus, without causing excessive 
heavy load in computer processing time, the cur-
rent work proceed with the number of cell use in 
the simulation at 200 cells, which is equivalent to 
1 cm per cell, for a total depth of 200 cm. 

The effect of convergence value (CV) on 
MBR and iteration number was investigated (see 

Figure 4). At low convergence value, 10-3 m3 m-3, 
it produced a MBR of 0.889. Despite it poses a 
desire property of having a low number of itera-
tion. This is a serious mass problem, as 0.889 is 
equivalent to a mass loss of 11.1 % resulted by a 
single time-step before completing 105 s of simu-
lation time. This could be explained by the fact 
that setting CV at 10-3 m3 m-3 is about accepting 
an error of 0.8 % and 0.2 % of and, respectively, 
for each cell of the simulation medium. Thus, at 
lower CV value would only result in unity MBR. 
Therefore, we stress the limit by setting MBR at 
10-12 m3 m-3, i.e., two orders of magnitude lower 
than 10-10 m3 m-3 that there is no significant 
change observed on the simulated value of volu-
metric water content, as shown in Figure 5. The 
effects of time-step and spatial spacing size on the 
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volumetric water content were not investigated 
here because those two parameters would be inves-

tigated in the sensitivity analysis as with other 
parameters. 

Figure 4. The influence of convergence value on MBR and iteration number. 

Figure 5. Simulation time of 105 s, at different convergence values (CV). Time-step, 500 s, and spatial spacing size, 1 cm.

The iteration methods of Jacobi and modified 
Newton-Raphson were compared. It was found 
that the minimum iteration number from the latter 
was equivalent to the iteration number from the 
former, when the relaxation factor of the latter 
was set to unity. Reducing the relaxation factor 
from unity would result in increasing iteration 
number. The numerical solution of Equation (15) 
did not exhibit convergent problem, thus, Jacobi 
iteration method is sufficient. 

7. Statistical measures
In order to determine the goodness of fit 

between the data and the simulated results, 
some statistical equations were implemented. 
The equations are mean of residual error (M) 
and absolute residual errors (MA), respectively as 
following[41]: 
M = 1

𝑁𝑁
∑ 𝑁𝑁
𝑘𝑘 = 1(𝑐𝑐𝑐𝑐𝑙𝑙𝑘𝑘 − 𝑜𝑜𝑜𝑜𝑠𝑠𝑘𝑘)   (20) 

MA = 1
𝑁𝑁
∑ 𝑁𝑁
𝑘𝑘 = 1|𝑐𝑐𝑐𝑐𝑙𝑙𝑘𝑘 − 𝑜𝑜𝑜𝑜𝑠𝑠𝑘𝑘|            (21) 

Where, calk is the simulated data at cell k; 
and obsk is the analytical solution at cell k. 

8. Simulation results and its accu-
racy 

Based on the conditions as stated in previous 
section, water infiltration into Yolo light clay was 
simulated up to 3x106 s. Data on Philip’s semi-
analytical solution were collected from Haver-
kamp et al.[26]. Simulation results were compared 
with the data to verify the simulation (Figure 6). 
Before referring to any statistical measure, it was 
evident that the simulation results slightly under-
predicted the infiltration flow of water front (Fig-
ure 7). 
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Figure 6. Simulation results and Philip’s semi-analytical so-
lution of water infiltration in Yolo light clay. Data for Phil-
ip’s solution is from Haverkamp et al. 

Figure 7. Overall comparisons of Philip’s semi-analytical 
solution and simulated results. Philip(H) is referring to data 
from Haverkamp et al. 
Table 2. Statistical calculations from Equations (20) and 
(21) at different simulation times. Note that M is mean of 
residual error, and MA is absolute residual errors 

Error 
types 

Simulation time (s) 
105 106 3x106 

M -2.54x10-2 -2.14x10-2 -1.71x10-2 
MA 2.54x10-2 2.14x10-2 1.71x10-2 

Figure 8. Comparison of simulated results with Philip’s 
semi-analytical solution, Philip(H) and Philip(K) from Haver-
kamp et al.[26] and Kabala and Milly[27], respectively. 

Statistical equations, i.e. Equations (20) and 
(21), were used to justify goodness of fit be-
tween the simulated results and Philip’s semi-
analytical solution, as indicated by Philip(H) as in 
Figure 7, to further justify the reliability. The 
result is tabulated in Table 2. The mean of residu-
al error (M) and absolute residual errors (MA) are 
having similar values, but the former value is in 
negative sign. This indicates that there is no single 
simulated data greater than the semi-analytical 
solution. Otherwise, the M value would be lesser 

than its current value. These statistical results are 
agreed with the observation in Figure 7. In addi-
tion to this, the statistical results, in Table 2, also 
indicates that the developed computer simulation 
source code was indeed working properly. In 
order to further reinforce the previous claim, some 
data was extracted from Kabala and Milly[27], as 
indicated by Philip(K) as in Figure 8, for further 
comparison. Figure 8 shows that there is a small 
discrepancy between Philip(K) and Philip(H), but 
the former is relatively closer to the simulation 
results than the latter. At this point of observation, 
we are not able to determine which of the solu-
tions provided from the literature is accurate. 
However, results from the figures and table clear-
ly indicate that the simulated result is lesser than 
the Philip’s semi-analytical solution. Therefore, 
sensitivity analysis was carried out to determine 
the sensitivity coefficient for all input parameters, 
and use the sensitivity analysis results to assess 
the model simulation based on the assumption that 
possibly the significant digits approximation, as in 
Table 1, could be contributing to the under pre-
diction of the volumetric water content of the 
simulation. 

As mentioned in previous section, we broad-
ly termed the former as numerical input uncertain-
ty and the latter as input parameter uncertainty. 
We justify the latter selection because the degree 
of uncertainty in the input parameters was not 
given, i.e., the published input data could be dif-
ferent from the exact value used by Haverkamp et 
al.[26] in simulating his results. Therefore, sensitiv-
ity analysis was carried out to determine the effect 
of the uncertainties influence on simulation out-
puts. Moreover, sensitivity analysis is one of the 
most important steps in evaluating the effect of 
input parameter on simulation results, and it is 
also used by other researchers for model valida-
tion[42-45]. 

9. Local sensitivity analysis
Negligible sensitivity response could be re-

sulted by too small perturbation size, and inaccu-
racy in sensitivity response could be due to too 
large perturbation size[46]. The input parameter va-
lues were subjected to a perturbation size between 
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-5% and 5% as suggested by Zheng and Ben-
nett[41]. Some other perturbation sizes used by 
researchers, for example, 90 % in Vereecken et 
al.[2], 20% in De Roo and Offermans[3], and 10% 
in Davis et al.[4]. In considering the simulation 
time, we limit the sensitivity analysis to a simula-
tion time of 105 s. The sensitivity analysis study 
was based on a single perturbation size of incre-
ment or decrement in each simulation. 

Figure 9. The rank of sensitivity coefficient. Note: θs and θr 
are saturated and residual volumetric water content; ∆z, spa-
tial spacing size; ∆t, time-step size; Ks, saturated hydraulic 
conductivity; θL(initial cond.), clay medium initial value of volu-
metric water content; θL(upper bound.), upper boundary of volu-
metric water content; A, B, β and α are fitting parameters 
from Haverkamp constitutive, as in Equations (17) and (18). 

The normalized sensitivity coefficients are 
shown in Figure 9. Some other forms of presenta-
tion, for example, RMSE versus model parameters 
in Jhorar et al.[47], relative sensitivity versus per-
centage change in parameter value in Vereecken 
et al.[2], and TRMSE with parameter and time[48,49]. 
Generally, there are two groups sensitivity coeffi-
cient, i.e., positive and negative relations. In posi-
tive relation group, the boundary volumetric water 
content has the highest sensitivity coefficient. 
This is followed by initial volumetric water con-
tent and saturated hydraulic conductivity. The 
smallest sensitivity coefficient in the group is the 
residual volumetric water content. In negative 
relation group, saturated volumetric water content 
has the highest sensitivity coefficient, and this 
group ended with spatial spacing size and time-
step size as the smallest sensitivity coefficient. 
The positive and negative relations were later 
couple with the range of uncertainty for each pa-
rameter to validate model simulation to semi-
analytical solution. This procedure has been 
shown in Goh and Noborio[50]. Similarly, Cohen et 
al.[51] used local sensitivity analysis as part of its 
validation procedure on Richard’s equation. Apart 
from the advantages of local sensitivity analysis, 
for example, at researcher convenient, its disad-

vantages have been proven by Saltelli and Anno-
ni[17] through geometric proof, i.e., known as the 
curse of dimensionality. 

10. Global sensitivity analysis
Based on Morris method, only the input pa-

rameters separated from the origin of relation σ 
versus μ* is considered important. From Figure 10, 
two groups of input parameter could be identified. 
Those important parameters were β, saturated 
volumetric water content (θs) and spatial discreti-
zation size (∆z). The number of significantly im-
portant parameters was reduced from 10 to 3. 
Those parameters considered unimportant that 
they have limited influence on model output 
were: α, residual volumetric water content (θr), 
initial volumetric water content of the medium 
(θL(initial)), from matric suction relation (Equation 
(17)); A, B and saturated hydraulic conductivity 
(Ks) from hydraulic conductivity relation (Equa-
tion (18)); time-step size (∆t) as numerical input 
parameter. 

(a) 

(b) 

(b) 
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(c) 
(d) 
(e) 

(d) 

(e) 

(f) 
Figure 10. Global sensitivity analysis results from improved 
Morris method on Richard’s equation at different levels (p), 
trajectories (r)  and solved by either Euclidean or Manhat-
tan method: (a)  p  = 2 ,  r  =  2 ,  Euclidean method; (b) p  = 
2 , r  = 2 ,  Manhattan method; (c) p  = 4 , r  = 4, Euclidean 
method; (d) p  = 4 , r  = 4 , Manhattan method; (e) p  = 4 , r  
= 10, Euclidean method; and (f) p  = 4 ,  r  =  10, Manhattan 
method. 

The significant influence from parameter ∆z 
was expected as the previous study on local sen-
sitivity analysis has shown similar result[50]. How-
ever, the parameters β and θs were unexpected. In 
parameter ranking, based on the values of μ*, β 
was indeed the most important parameter, and 
then, followed by θs, ∆z, and so on. It is widely 
accepted that the absolute mean value of elemen-
tary effect is to indicate the influence of parameter 
on model output[10,15]. Hence, a wide input range 
in Table 1, for parameters β and θs, was the rea-
son of high μ*. Goh and Noborio found that pa-
rameter with the high percentage of uncertainty 
and normalized sensitivity coefficient would re-
sult in large variation in model output[50]. 

Parameters β, θs and ∆z were found to have 
the highest standard deviation of elementary effect 
(σ). The high value of the σ is an indication of 
parameter having non-linearity effect or involved 
in interactions with other factors[6,10,13]. In a fun-
damental level, a high value of σ is also suggest-
ing that a large fluctuation of value or sign in the 
elementary effect (EE). The other 7 parameters 
could be categorized as mainly linear and additive, 
as indicated by their low σ value. 

In original Morris sampling strategy[6], geo-
metric distance between trajectories was not con-
sidered. This method is acceptable when a large 
number of random trajectories are generated, be-
cause all the input space of parameters would be 
fully explored. In search for cost effective sensi-
tivity analysis tool to reduce computational time, 
the fewer trajectories would translate into lesser 
computational cost. Euclidean distance method as 
sampling strategy, as in Equation (3), was first 
coined by Campolongo et al.[7]. They have de-
monstrated that the improved sampling strategy 
could significantly reduce the number on Figure 
10(b), ∆z in Figures 10(d) and (f). In addition to 
this, Figure 11 has shown Manhattan distance has 
a better sampling strategy as it exhibits lower 
variation in input space distribution as indicat-
ed by its lower standard deviation values than 
those of Euclidean distance sampling strategy.  

By comparing Morris method between dif-
ferent levels (p = 2 – 4), trajectories (r = 2 – 10) 
and sampling strategies (Manhanttan or Euclide-
an), we have found p = 2, r = 2 and Manhattan 
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distance sampling strategy was sufficient to pro-
vide reliable distinction between important and 
unimportant parameters. The computational ex-
periment was carried out on an upper limit of p = 
4, r = 10, because it is greatly accepted that this 
limit would be sufficient to produce valuable re-
sults[12-14]. Moreover, these results would be cross-
validated by Sobol’ variance-based method. 

f trajectories are needed, while maintaining a 
good approximation to total effect index. In addi-
tion to Euclidean distance method, there is also 
Manhattan distance method as stated in Campo-
longo et al.[7], but not tested. In general, Figures 
10(a), (c) and (e) have shown that at different 
levels (p) and trajectories (r), Euclidean distance 
has a comparable results as the Manhattan dis-
tance sampling strategy in Figures 10(b), (d) and 
(f). However, a better estimation of σ was shown 
by Manhattan distance method on parameter θs. 

Figure 11. Standard deviation on input parameter space ver-
sus level (p) and trajectory (r). 

An added advantage of p = 2, r = 2, and 
Manhattan distance sampling strategy is that it 
only requires 2 trajectories × (10 parameters + 1) 
= 22 simulation runs, while local sensitivity anal-
ysis with 10 parameters would require at least 2 × 
(10 parameters) = 20 runs, i.e., one run for each 
value of lower and upper range for each parameter. 
Irrespective of the number of parameters, the for-
mer is always only 2 runs greater than the latter. 
In addition, the parameter sensitivity measures of 
the former were estimated randomly at various 
input spaces of other parameters, while the latter 
was estimated by varying input space of parame-
ter of interest and keeping other parameters con-
stant. It is also important to note that the former is 
based on statistical theory, whereas the latter is 

not. Therefore, it is compelling to practice Morris 
method of p = 2, r = 2, and Manhattan distance 
sampling strategy with only 2 runs extra from 
Sobol’ variance-based method was carried out to 
cross-validate the results from Morris method. All 
parameters were subjected to variance-based anal-
ysis, except spatial discretization size and time-
step size, because their computational time would 
be too long to be executed efficiently. Neverthe-
less, the 8 parameters’ μ* values from Morris 
method at p = 2, r = 2 (Manhattan distance sam-
pling strategy) were compared to total effect index 
(S𝑇𝑇𝑖𝑖 ) of Sobol’ variance-based method, i.e., the 
results of 150,000 runs using quasi-Monte Carlo 
estimator (Equation (14)), referring to Figure 12 
local sensitivity analysis.  

Figure 12. Total effect index (S𝑇𝑇𝑖𝑖) versus absolute value of 
mean elementary effect (μ*). 

There were good agreements between those 
two for all 8 parameters. Similar effort in justify-
ing the validity of results from Morris method by 
comparing μ* with S𝑇𝑇𝑖𝑖was showed by Campolon- 
go et al.[7]. Thus, it indicates the absolute mean of 
elementary effect from Morris method of p = 2, r 
= 2 (Manhattan distance sampling strategy) was 
indeed correctly determined. In addition, the re-
sults of Si, in Table 3, has shown similar trend as 
the S𝑇𝑇𝑖𝑖.  

Table 3. First order sensitivity index (Si) and total effect 
index (S𝑇𝑇𝑖𝑖) on input parameters. Note that θr is residual vol-
umetric water content, θs is saturated volumetric water content, 
Ks is saturated hydraulic conductivity, and α, β, A and B are 
fitting coefficients. θL(initial), ∆z and ∆t are initial spatial dis-
cretization size and time-step size, respectively 

Input parameters Model outputs (÷100) 

Total 

0.0000 0.0001 0.0001 
0.0000 0.0004 0.0004 
0.9038 0.9631 0.0593 
98.9704 99.0293 0.0589 
0.0000 0.0001 0.0001 
0.0136 0.0663 0.0527 
0.0000 0.0000 0.0000 
0.0000 0.0002 0.0002 
99.887 100.0596 
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The total sum of first order sensitivity index 
(∑𝑞𝑞𝑖𝑖 S𝑖𝑖) was slightly less than one, which indica- 
tes the presence of interaction effect, i.e., second 
order and higher orders. The  S𝑇𝑇𝑖𝑖 − 𝑆𝑆𝑖𝑖 indicates 
the presence of interaction effects between param-
eters, but it was found that each parameter has 
negligible contribution on model output variance, 
for instance, 0.06 % of output variance was con-
tributed by θs interactions with other parameters, 
which was among the highest. 

Figure 13. Water infiltration profile by numerical solution 
and semi-analytical solution. The validation was carried out 
with β at 3.5 and spatial discretization size at 0.1 cm. The 
initially simulated water profile is also included in the graph 
for comparison purpose. The total simulation time was 105 s. 

In previous section, water infiltration was 
simulated using Richard’s equation and was found 
to under predict the semi-analytical solution, re-
ferring to Figures 6-8. An overall summary of 
global sensitivity analysis has indicated that three 
important parameters, i.e., ∆z, β and θs , out of 10 
parameters. This suggests the parameters have 
significant influence on model outputs. Based on 
the sensitivity analysis results, to increase the ad-
vancement of water infiltration profile is either to 
reduce single or a combination parameters am-
ong ∆z, β and θs . The θs  value cannot be less than 
0.495 m3 m-3, because it would cause simulation 
failure, and hence, it was excluded. Single ad-
justment of ∆z value was sufficient to result in 
good approximation of numerical solution to se-
mi-analytical solution than the β. The validation 
results are showed in Figure 13. Therefore, ∆z 
was the sole reason of the discrepancy between 
simulation result and semi-analytical solution. 

11. Conclusions
Global sensitivity analysis tool of Morris

method with extended sampling strategy,  i.e., 
Euclidean distance method, by Campolongo et al. 

was implemented and compared with Man-hattan 
distance sampling strategy. They were tested on 
Richard’s equation, which is commonly used to 
govern water flow in variably unsaturated soils. 
The absolute mean of elementary effect (μ*) esti-
mated by Morris method with Manhattan sam-
pling strategy has comparable results to those with 
Euclidean distance method. However, the standard 
deviation of elementary effect (σ) estimated throu-
gh Manhattan method has proven better results 
than Euclidean method. Moreover, Manhattan me-
thod has a better scan of input space as indicated 
by lower standard deviation on input parameter 
space distribution than Euclidean method. Even at 
p = 2, r = 2 which only has 2 extra runs than the 
local sensitivity analysis, it was able to provide 
reliable estimation of sensitivity measures. The 
simulated results were cross-validated by sensitiv-
ity index of Sobol’ variance-based method, of 
which μ* has shown consistent relation with total  
effect index (S𝑇𝑇𝑖𝑖). The global sensitivity analysis 
also managed to identify three important param-
eters, of which the spatial discretization size (∆z) 
was later found responsible for the discrepancy 
observed. This analysis suggests a better spatial 
numerical scheme should be implemented, or the 
numerical scheme would have to use a smaller ∆z 
for accurate simulation. In addition, a great pro-
portion of total output variance was contributed by 
β and θs , which suggests a higher parameter sig-
nificant digits published with lower input value 
uncertainty would reduce their variance contribu-
tion on the total output.  
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