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ABSTRACT
Monitoring marine biodiversity is a challenge in some vulnerable and difficult-to-access habitats, such as underwa-

ter caves. Underwater caves are a great focus of biodiversity, concentrating a large number of species in their environ-
ment. However, most of the sessile species that live on the rocky walls are very vulnerable, and they are often threatened 
by different pressures. The use of these spaces as a destination for recreational divers can cause different impacts on the 
benthic habitat. In this work, we propose a methodology based on video recordings of cave walls and image analysis 
with deep learning algorithms to estimate the spatial density of structuring species in a study area. We propose a combi-
nation of automatic frame overlap detection, estimation of the actual extent of surface cover, and semantic segmentation 
of the main 10 species of corals and sponges to obtain species density maps. These maps can be the data source for 
monitoring biodiversity over time. In this paper, we analyzed the performance of three different semantic segmentation 
algorithms and backbones for this task and found that the Mask R-CNN model with the Xception101 backbone achieves 
the best accuracy, with an average segmentation accuracy of 82%.
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1. Introduction
In the Mediterranean Sea, underwater caves, usually formed 

by rocky walls with different cavities and dark or semi-dark con-
ditions, offer an environment that attracts a multitude of species, 
constituting a great focus of biodiversity in our seas. The more 
than 3,000 known caves in the Mediterranean Sea are the subject 
of many studies due to their particular environmental conditions, 
low ecological resilience, and the presence of many species of 
conservation interest[1,2]. Among the sessile species, sponges are 
the dominant group, with a total of 311 species of all Porifera 
classes recorded, which represents 45.7% of Mediterranean Por-
ifera[3]. Marine caves are considered a priority habitat for con-
servation included in the EU Habitats Directive (Habitat 8330). 
Although a large number of fragile benthic communities inhabit 
the interior of underwater caves, the existing knowledge about 
these habitats, and, in particular, multi-year studies, are very 
scarce[4]. This is due to access difficulties and sampling limitations 
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that make it difficult to create detailed habitats car-
tography, species inventories, and studies of com-
munity dynamics or damage assessment[2,5,6].

The use of video or photographic cameras for 
sampling in caves is becoming a basic tool. This 
type of approach allows the registration of the hab-
itats in a minimally invasive way and reduces the 
necessary sampling time if we compare it with the 
classical type of sampling[1,7]. Divers can record 
video transects inside the cave in a simple way, also 
minimizing immersion time. However, further anal-
ysis of this information still has certain limitations. 
The lack of automation of image analysis makes 
species identification a time-consuming process. 
In addition, image annotation has to be made by an 
expert taxonomist who can address this task. This 
means that, on many occasions, it is not possible to 
analyze the entire existing image data set, and sub-
sampling strategies are imposed.

To solve the difficulties of massive image data 
processing, deep learning algorithms are proving to 
be a suitable solution[8]. Deep learning algorithms 
have been proposed as a powerful tool for moni-
toring different underwater habitats from recorded 
images or videos, including shallow and turbid wa-
ters[9], or deep benthic communities[10].

These algorithms classify an entire image at 
the pixel level, which allows for the accurate iden-
tification of objects and the recovery of their shape 
and size. There are numerous deep learning algo-
rithms available for this type of task, including pop-
ular ones such as Mask R-CNN or U-Net, which are 
usually trained on standard datasets like ImageNet 
or COCO, and fine-tuned to specific classes for in-
creased accuracy. Fine-tuning is a process in which 
a pre-trained deep learning model is further trained 
on a specific dataset to improve its performance for 
a particular task. In the context of semantic seg-
mentation, fine-tuning involves taking a pre-trained 
model that has already learned features from a large 
and diverse dataset and adjusting it to fit a specific 
set of classes or a new dataset. During fine-tuning, 
the pre-trained model is re-trained on the new data-
set with the addition of a few new output layers to 
classify the desired classes or objects. The weights 
of the original model are then updated based on the 
new data, while the original pre-trained weights are 
kept fixed. This process allows the model to learn 
more relevant features specific to the new dataset 

while still retaining the useful knowledge from the 
pre-trained model. Fine-tuning is a powerful tech-
nique that can significantly improve the accuracy 
and generalization of semantic segmentation models 
for specific tasks or datasets, and it has been widely 
used in various computer vision applications.

In the context of marine cave habitat moni-
toring, semantic segmentation can be used to accu-
rately identify and track species populations, detect 
changes in habitat conditions over time, and identi-
fy potential threats to the ecosystem[11]. Researchers 
can benefit from the use of semantic segmentation 
as it can greatly increase the accuracy and efficiency 
of their data collection and analysis efforts, allow-
ing them to make more informed decisions and take 
appropriate actions to protect these delicate habitats.

The objective of this study is to develop an 
efficient and robust underwater image segmentation 
algorithm for the detailed description of the main 
structuring species of an underwater cave habitat.

2. Methodology

2.1 Images capturing
The images were captured in the cave known 

as “La Catedral” (The Cathedral), Illa de L’Aire, 
Balearic Islands, Spain, and it is a well-known 
site frequented by recreational diving clubs on the 
island. This cave has been studied for years with 
different approaches[6]. For this work, a video re-
cording campaign was carried out in April 2021, as 
part of the INTEMARES project, where one of its 
objectives is monitoring the impacts of divers on 
the benthic habitats in marine caves. A total of 32 
minutes of video were recorded along two linear 
paths (transects) following the cave walls, with a 
total recorded path length of about 40 meters. The 
recording place is previously marked by placing 
a tape measure or rope with metric marks. Videos 
have a frame size of 1,920 × 1,080 pixels and 50 
frames per second.

Thanks to what has been learned in these vid-
eo surveys, during the VirtualMAR project, special-
ly adapted instrumentation has been developed to 
cover the monitoring needs of this type of habitat. 
A custom underwater video camera was designed. 
It includes a Blackmagic Pocket Cinema 4K video 
camera (Blackmagic Design, San Francisco, USA) 
with a Micro Four Thirds sensor and a 12 mm f2.8 
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objective, a custom acrylic dome rated for 150-me-
ter depth, LiPo batteries for two-hours autonomy, 
and LED lighting. The system can be controlled by 
a diver or attached to a small remotely-operated ve-
hicle (ROV) such as Bluerobotics’ BlueRov. Figure 
1 shows the underwater camera operated by a diver.

Figure 1. Custom underwater video camera developed to ac-
quire images by a diver.

2.2 Frame overlapping
For studies of species richness and biodiver-

sity assessment, or for the generation of species 
inventories, the sampling method used influences 
notably the results obtained[12]. For this reason, 
when the data source for this evaluation consists of 
underwater videos, care must be taken not to count 
the same specimens several times, and for this rea-
son, the extraction of frames from the video files is 
a crucial task. To address this task, an automatic ap-
proach has been used that requires the identification 
of unique features that are repeated in contiguous 
frames. This is the problem known as Simultaneous 
Localization and Mapping (SLAM), which is even 
more challenging in underwater environments[13]. 
For this work, we have used the Scale Invariant 
Feature Transform (SIFT) algorithm[14], a powerful 
computer vision technology that allows us to iden-
tify and extract unique features from video. By ana-
lyzing the distribution of gradients and orientations 
within an image, SIFT can identify key points that 
are highly distinctive and can be used to match the 
same object or scene across multiple frames.

Using this algorithm, we have created a tool 
that can identify and extract unique frames from 
a video. Using a threshold of 10 common points, 
the tool can determine if a given frame contains 

new and unique content or is simply a duplicate or 
partially the same as an older frame. This allows us 
to automatically extract only the most significant 
frames from a video, saving time and reducing the 
amount of data that needs to be processed.

2.3 True size estimation
Estimating the true size of the recorded sur-

face and marine species on it is an essential task for 
researchers studying these environments. The area 
covered by an image or swept area is the value that 
allows the transformation of species presence data 
into densities. The density parameter of a species 
together with its geographic distribution is key to 
addressing any study and being able to draw rele-
vant conclusions about its conservation status. In 
this work, we have developed a custom algorithm 
that provides the scale information from reference 
cords placed over the surface, with blue-over-white 
marks spaced at 10 cm or 20 cm intervals. From the 
distance in pixels between consecutive color marks, 
the true size of the image is estimated (Figure 2).

Figure 2. A reference cord with spaced marks and an automatic 
identification algorithm has been used to estimate the true size 
of each frame.

The code takes an input image and a binary 
mask as input. It first applies the mask to the image, 
then applies a color threshold to the resulting image 
to isolate the blue marks. It then finds the contours 
of the blue objects and calculates the centers of 
each contour. The code then calculates the distance 
between each pair of centers, finds the maximum 
distance, and calculates the real-world area of the 
image by converting the maximum distance into a 
distance in meters and using that to calculate the 
area. 

The area is calculated based on the maximum 
distance between two white circles (balls) detected 
in the image. This maximum distance is obtained by 
finding the Euclidean distance between the centers 
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of all possible pairs of circles. Once the maximum 
distance is obtained, it is used to calculate the ap-
proximate size of the area in square meters, assum-
ing a fixed distance of 10 cm or 20 cm (depending 
on the reference cord) between the points in the real 
world. The area is calculated as the product of the 
height and width of the image in meters divided by 
the square of the maximum distance between cir-
cles.

2.4 Semantic segmentation of species

2.4.1 Dataset
The dataset of images has been automati-

cally created from the recorded videos with the 
above-described algorithms. It consists of a total 
of 153 images, which were annotated by experts 
from the Spanish Oceanography Institute (IEO-
CSIC) with over 30 different species (see Table 1). 
However, more than half of these species have a 
very low density in the explored area, so they were 
discarded, and the semantic segmentation algorithm 
was trained with 10 species, which are listed below. 
The selection criteria for these species were that the 
entire dataset should contain at least 50 instances 
of the species, that is, they should appear at least 
fifty times in the images. The dataset was split into 
a 60% training set, a 20% validation set, and a 20% 
testing set. This methodology ensures that the mod-
el is trained on a balanced dataset with sufficient 
samples of the selected species, which should im-
prove its accuracy and robustness.

The training set was used to train the model, 
the validation set was used to evaluate the model’s 
performance and hyperparameter optimization, and 
the test set was used to assess the final performance 
of the model on unseen data. The test set was se-
lected beforehand to be representative of the overall 
dataset and was kept separate from the training and 
validation sets to avoid bias and overfitting. 

2.4.2 Selected species
The selected classes, i.e., species for the 

semantic segmentation model are composed of 
sponges (Agelas oroides, Spirastrella cunctatrix, 
Acanthella acuta), corals (Parazoanthus axinel-
lae, Axinella), tunicata (Didemmnum) and bryozoa 
(Schizoretepora serratimargo, Reteporella, Frondi-
pora verrucosa, Myriaphora truncata). By focusing 
on these classes, the model can be trained to accu-
rately identify and segment these species in new 
images. This should enable researchers to study and 
monitor the populations of these species in the ex-
ploration area more effectively.

2.4.3 Preprocessing techniques
One common technique used for pre-process-

ing images for semantic segmentation models is 
normalization[15]. Normalization involves scaling 
the pixel values of an image so that they fall within 
a certain range (typically [0,1] or [–1,1]). This can 
be important because different images may have 
different brightness and contrast levels, which can 
affect the performance of the model. By normaliz-
ing the images, we can ensure that the model is not 
biased toward certain brightness or contrast levels.

Other pre-processing techniques that may be 
used for semantic segmentation models include re-
sizing or cropping the images to a standard size; we 
have tried this pre-processing technique over several 
resolutions. The best results have been achieved by 
pre-processing images into crops of 640 × 640, 512 
× 512, and 256 × 256 pixels. This could be because 
most models have these resolutions as their native 
resolution. When an image is processed, it is often 
resized to fit the input requirements of the model 
being used. By using these common resolutions as 
crops, the input to the model can be processed more 
efficiently and effectively.

Another technique that is often used is data 

Table 1. Sessile species of interest in habitat 8830 considered in this study
Demospongiae sp. Acanthella acuta Caryophyllia inornate
Axinella sp. Bryozoa sp. Didemmnum sp.
Serpulidae sp. Filograna implexa Reptadeonella violacea
Parazoanthus axinellae Palmophyllum crassum Terpios sp.
Leptopsammia pruvoti Mesophyllum sp. Schizoretepora serratimargo
Reteporella sp. Smittina cervicornis Miniacina miniacea
Petrosia ficiformis Spirastrella cunctatrix Madracis pharensis
Agelas oroides Haliclona mucosa Frondipora verrucosa
Myriapora truncata Ascidiacea sp. Porifera sp.
Peyssonnelia sp. Chondosia reniformis Cliona sp.
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augmentation[15,16]. This involves generating new 
training images by applying various transformations 
(such as rotation, scaling, and flipping) to the orig-
inal images. This can help to increase the diversity 
of the training data and improve the model’s ability 
to generalize to new, unseen images.

2.4.4 Semantic segmentation 
algorithms

These algorithms can classify an image into 
classes at the pixel level, thus estimating not only 
the number of species detected by their shapes. 
We have experimented with several state-of-the-
art algorithms for semantic segmentation, including 
Mask R-CNN and its various backbone networks 
(ResNet101, ResNet50, and Xception101), as well 
as U-Net with VGG16, and some newer models like 
ResNeSt and ConvNeXt. 

Mask R-CNN is a popular algorithm that 
builds on the success of Faster R-CNN by adding 
a mask prediction branch to enable pixel-level 
segmentation. It has been shown to be effective 
in a range of tasks, including object detection and 
instance segmentation. The choice of backbone net-
work can affect the performance of Mask R-CNN, 
with larger networks like ResNet101 generally 
performing better at the cost of increased computa-
tional requirements. Adapting the Mask R-CNN al-
gorithm to assign the same color to all instances of 
a particular class, you have essentially transformed 
it from an instance segmentation model into a se-
mantic segmentation model.

Instance segmentation involves identifying and 
segmenting each individual instance of an object 
class within an image, whereas semantic segmenta-
tion involves labeling each pixel in an image with a 
corresponding class label. By assigning a consistent 
color to all instances of a class, you are effectively 
treating them as a single entity for the purpose of 
semantic segmentation. This modification may be 
useful in scenarios where the specific instances of 
an object class are not as important as the overall 
distribution of that class within an image. By sim-
plifying the output of the segmentation model in 
this way, it may be easier for human analysts to 
quickly understand and interpret the results.

U-Net is another popular algorithm that has 
been widely used in medical image segmentation[17]. 
It uses a symmetric encoder-decoder architecture 

that allows for the precise localization of objects 
and has been shown to be effective in a variety of 
applications. The choice of backbone network can 
also affect the performance of U-Net, with VGG16 
being a popular choice due to its good performance 
on image classification tasks.

ResNeSt[18] and ConvNeXt[19] are newer mod-
els that have shown promising results on image 
classification tasks and have also been adapted for 
use in semantic segmentation. ResNeSt is designed 
to improve the accuracy and efficiency of ResNet 
by introducing a nested scale-reduction strategy, 
while ConvNeXt introduces a new convolution 
operation that combines the benefits of both depth-
wise and pointwise convolutions.

2.4.5 Model selection
Precision, recall, and F1 scores are common 

evaluation metrics used in machine learning to as-
sess the performance of classification models[20]. 
Precision measures the proportion of true positives 
among all positive predictions made by the mod-
el. It indicates the model’s ability to avoid false 
positives. Recall, on the other hand, measures the 
proportion of true positives identified by the model 
among all actual positives in the dataset. It indicates 
the model’s ability to avoid false negatives. F1 score 
is the harmonic mean of precision and recall, which 
provides a balanced view of both metrics. It is often 
used when precision and recall have to be balanced, 
such as in cases where false positives and false neg-
atives have similar costs. It’s important to evaluate 
and compare different models on the specific task 
and data to determine which one is the best fit, try 
out several different models and hyperparameters, 
and fine-tune them on the data to achieve the best 
performance.

3. Results and conclusions

3.1 Frame overlapping
The results of the tool that identifies and ex-

tracts unique frames from a video were impressive, 
as it was validated on a 3-minute video whose 
frames were manually extracted by an expert, and 
the output was the same number of frames minus 
one. This proves that the tool is reliable and effi-
cient in identifying unique frames in a video. This 
is especially valuable when studying underwater 
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caves, where divers often record long, slow videos 
that contain many repetitive frames. Currently, the 
task of manually extracting frames with unique con-
tent is time-consuming and labor-intensive, requir-
ing human experts to carefully review each frame 
to identify those that contain new information. A 
comparison between the manually extracted single 
frame (frames #2,400 and #5,350 in the video se-
quence) at the top of the figure and the frames auto-
matically extracted by the SIFT algorithm (below) 
is shown in Figure 3.

3.2 Best performance model
Precision, recall, and F1 score obtained after 

the training of the models are shown in Table 2. 
The architecture with the best results was Mask 
R-CNN[21]. In any of the three backbone variants used, 
better results were obtained than in the other three 
models. We have found that it is not always the case 
that the newest or most advanced models will perform 
better than older models in all scenarios. 

Table 2. Performance metrics of the tested models. Mask 
R-CNN has the best performance  

Model Mean
precision

Mean
recall

Mean F1
score

U-Net 0.579 0.633 0.587

Mask R-CNN 0.822 0.736 0.777

ConvNeXt 0.632 0.654 0.643

ResNeSt 0.595 0.61 0.603

Here is the general architecture of the Mask 
R-CNN model (Figure 4) with ResNet101 backbone:

a. Backbone Network: The input image is 
passed through the ResNet101 network to 
extract features. The output of the last convo-
lutional layer is a feature map of size H/32 × 
W/32 × 2,048, where H and W are the height 
and width of the input image.

b. Region Proposal Network (RPN): The RPN 
takes the feature map generated by the back-
bone network as input and generates a set of 
region proposals. These proposals are regions 
in the image that are likely to contain objects. 
The RPN predicts the objectness score and 
bounding box coordinates for each proposal.

c. Region of Interest (RoI) Align: The RoI Align 
layer extracts features from each region pro-
posal and produces a fixed-size feature map for 
each proposal.

d. Mask Head: The Mask Head takes the fea-
ture maps produced by the RoI Align layer 
and produces a binary mask for each object 
proposal. The Mask Head is a fully convo-
lutional network that takes as input the RoI 
feature map and produces a mask of size m × 
m, where m is a fixed size.

e. Classification Head: The Classification Head 
takes the same RoI feature maps as the Mask 
Head and produces class probabilities for 

  

  

Figure 3. Comparison of the manual extraction of a unique frame (frames #2,400 and #5,350) by an expert (top) and by SIFT algo-
rithm (bottom).
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each object proposal.
f. Loss Function: The Mask R-CNN model uses 

a multi-task loss function that combines the 
losses for object detection, object classifica-
tion, and mask prediction.

 

Figure 4. Mask R-CNN architecture, reproduced from [21].

Overall, the Mask R-CNN with ResNet101 
backbone architecture is a deep neural network 
that is trained end-to-end for object detection and 
instance segmentation tasks. It is a powerful and 
widely used model in computer vision applications.

3.3 Metrics
The model Mask R-CNN has been trained with 

three different backbones (ResNet 50, ResNet 101, 
and Xception101) searching for the best segmenta-
tion performance. Table 3 shows the results, which 
are better for the later backbone network. The de-
tailed segmentation metrics are shown in Figure 5. 
It can be seen that the Xception101 backbone gives 

Mask R-CNN ResNet50

Mask R-CNN ResNet101

Mask R-CNN Xception101

Figure 5. Detailed segmentation metrics for each species.
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Figure 6. Examples of the semantic segmentation output. The algorithm automatically extracts the species and shape of each speci-
men.

Table 3. Performance metrics for Mask R-CNN model with three different backbones

Model + backbone Mean precision Mean recall Mean F1 score
Mask R-CNN + ResNet50 0.763 0.644 0.698

Mask R-CNN + ResNet101 0.81 0.718 0.764

Mask R-CNN + Xception101 0.822 0.736 0.777
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the best averaged results, and the sponge Aanthella 
acuta is the most difficult to identify.

3.4 Sessile species density
In this study, we utilized the SIFT model to 

select frames from a video that covers new areas, a 
custom algorithm to obtain the true size of the im-
ages from reference points, and semantic segmenta-
tion models to obtain density data of sessile species. 
Ten of the main species that conform to the habitat 
of a submerged marine cave have been selected, 
including sponges, corals, and bryozoans. A bench-
marking of different models resulted in the Mask 
R-CNN model with the Xception101 network as a 
backbone as the best-performing model with our 
dataset. By doing so, we were able to obtain several 
outputs, including units of each species across the 
transect, density per square meter of each species, 
and an estimation of the mean size of each species. 

In Figure 6, some examples of the semantic 
segmentation algorithm output are shown. The 
shape and inferred species can be seen as colored 
areas. From this pixel-level identification, the total 
number of species in the transect and the density of 
specimens per square meter are extracted (Table 4), 
according to the total area covered in the transect 
of 139.87 m2. Figure 7 summarizes the relative 
abundance of species in this transect. The randomly 
chosen test set did not include any specimens of 
Schizoretepora serratimargo, that is the reason that 
the number of specimens is zero and their density 
could be calculated.

Table 4. Number of specimens and their density

Species Number of 
specimens across 
the complete 
transect

Density 
(specimens/m2) 
of species 

Axinella sp. 630 4.5
Parazoanthus axinellae 196 1.4
Agelas oroides 155 1.11
Acanthella acuta 83 0.59
Myriapora truncata 77 0.55
Reteporella sp. 74 0.53
Frondipora verrucosa 66 0.47
Spirastrella cunctatrix 33 0.24
Didenmnum sp. 15 0.11
Schizoretepora 
serratimargo

0 0

3.5 Concluding remarks
In conclusion, the use of deep learning algo-

rithms for analyzing underwater images is prov-

ing to be a powerful tool for monitoring marine 
biodiversity, particularly in vulnerable and diffi-
cult-to-access habitats such as underwater caves. 
In this work, we proposed a methodology based on 
video recordings of the area under study following 
no particular patterns. From the video, an algorithm 
to extract non-overlapped frames was applied, and 
the true size of each image was also automatically 
estimated from reference cords. The images were 
processed by a semantic segmentation algorithm to 
automatically detect specimens, their species, size, 
and shape. We tested several algorithms for this seg-
mentation task and found the Mask R-CNN model 
with Xception101 backbone achieved the best ac-
curacy, with an average segmentation accuracy of 
82%. This methodology could be applied to mon-
itoring marine biodiversity over time, identifying 
potential threats to the ecosystem, such as the influ-
ence of environmental variables or anthropogenic 
stress, and in particular, the impact of recreational 
diving. This will allow for making more informed 
decisions for the conservation and protection of 
these delicate habitats. With the increasing availa-
bility of underwater cameras and the development 
of more efficient algorithms, the potential for using 
deep learning techniques in marine biodiversity 
monitoring is enormous.
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