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Abstract: Creating a crop type map is a dominant yet complicated model to produce. This 

study aims to determine the best model to identify the wheat crop in the Haridwar district, 

Uttarakhand, India, by presenting a novel approach using machine learning techniques for 

time series data derived from the Sentinel-2 satellite spanned from mid-November to April. 

The proposed methodology combines the Normalized Difference Vegetation Index (NDVI), 

satellite bands like red, green, blue, and NIR, feature extraction, and classification algorithms 

to capture crop growth's temporal dynamics effectively. Three models, Random Forest, 

Convolutional Neural Networks, and Support Vector Machine, were compared to obtain the 

start of season (SOS). It is validated and evaluated using the performance metrics. Further, 

Random Forest stood out as the best model statistically and spatially for phenology parameter 

extraction with the least RMSE value at 19 days. CNN and Random Forest models were used 

to classify wheat crops by combining SOS, blue, green, red, NIR bands, and NDVI. Random 

Forest produces a more accurate wheat map with an accuracy of 69% and 0.5 MeanIoU. It 

was observed that CNN is not able to distinguish between wheat and other crops. The result 

revealed that incorporating the Sentinel-2 satellite data bearing a high spatial and temporal 

resolution with supervised machine-learning models and crop phenology metrics can 

empower the crop type classification process. 
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1. Introduction 

Agriculture is one of the most important sectors of the Indian economy, where 

the majority of the population is dependent on agriculture [1]. Rice, wheat, maize, 

millet, pulses, and oilseeds are the primary food grains produced in the country. 

Wherein wheat is one of the staple crops grown in India. Which has significant 

importance in food security. 

Mapping particular crop types is an important component of crop monitoring. 

Crop type information is required for a variety of decision-making applications like 

yield estimation, crop insurance, crop rotation, crop damage assessment in case of 

disaster, etc. [2–5]. 

The availability of satellite imagery and remote sensing technology has 

significantly improved crop type mapping [6]. Variety of satellite images are 

available from low resolution to very high resolution. Suitable imagery can be 

utilized for crop type mapping depending on the requirement for decision-making. 

E.g., high spatial resolution is required for crop type mapping for agricultural fields 

in case of crop insurance [7]. 

One potential way of classifying the crops on a large scale is by collecting the 

phenological metrics of the crop [8]. Crop phenology studies the annual sequence of 
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plant development, which incorporates crop growth and yield formation often driven 

by climatic conditions. This can be exploited to identify the required crops easily. 

Remote sensing has become essential for studying crop phenology [9]. Time series 

data is effective for mapping crop type under the situation that the targeted crop must 

have a distinguishable growth profile compared to other crops. Wardlow et al. [10] 

investigated the applicability of time series of vegetation index for identifying crop 

type. In this study, visually as well as statistically, vegetation index profiles were 

analyzed. Buermann et al. [11] and Richardson et al. [12] used phenology to 

understand the impacts of global and regional climate change on the vegetation 

processes and the vegetation-environment interactions. 

The changes in vegetation profile/growth are mainly characterized by 

phenological metrics like start of the season (SOS), end of the season (EOS), length 

of the season, and position of peak value. Phenology can be detected using ground-

based as well as satellite-based observations. However, ground-based observation 

can be taken for a few sample sites only, not for each pixel location. Hence, satellite 

images are a preferred tool to detect pixelwise phenology at different scales [13–15]. 

Younes et al. [16] derived SOS and the peak of the growing season for mangroves 

using different sensor imagery using generalized additive models and found that 

phenology calculated using Landsat and Sentinel-2 is comparable and not from 

MODIS due to the huge difference in their resolution. Zhu et al. [17] compared 5 

phenology extracting methods (piecewise logistic, moving average, local midpoint, 

polynomial function fitting, and global threshold) to derive phenology from net 

ecosystem carbon exchange (NEE) data of 72 flux towers in North America to 

calculate SOS and EOS. In addition, it was observed that the local midpoint method 

performed better. 

Xin et al. [18] evaluated and compared eight phenology retrieving methods 

(amplitude threshold, the first-order derivative, the second-order derivative, the 

third-order derivative, the relative change curvature, the curvature change rate, 

neural networks, and random forests) for calculating SOS and EOS and found 

machine learning methods outperformed rule-based methods. 

Pan et al. [19] showcased the methodology to build NDVI time series from the 

HJ-1 A/B satellite. They used TIMESAT to extract phenology (SOS, EOS, duration, 

booting stage). It was found that start/end derived were comparable with local agro-

meteorological observations. Gupta et al. [20] used machine learning method to 

count crop cycles using NDVI time series. Mercier et al. [21] combined Sentinel-1 

and Sentinel-2 time series data to derive different phenological stages of wheat and 

rapeseed crops. Vegetation index data from Sentinel-2, combination of optical and 

SAR data, MODIS have been used widely for detection and monitoring of crops like 

rice, wheat, corn [22–26]. 

Previously, researchers across the world developed algorithms to detect crops 

using Moderate Resolution Imaging Spectroradiometer (MODIS) due to its high 

temporal resolution. However, it has very coarse spatial resolution, which makes it 

less usable for crop type detection, yield estimation, etc., at a larger scale [27–29]. 

Crop type detection is more difficult in a country like India, where field size is small, 

staggered, and showing time is highly varying. Nowadays, the availability of 

Sentinel-2 at 10 m spatial resolution (for optical, NIR) and 5 days temporal 
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resolution and the availability of Landsat at 30 m spatial resolution make it more 

useful for detecting crop types more accurately [30,31]. 

As a crop undergoes different stages of growth, like showing, green-up, heading, 

and the end of the season. Such stages of crop growth are achieved by different crops 

at different times from the start of the season. This makes the vegetation index curve 

useful for discriminating crop types. Some use similarity to the vegetating curve of a 

specific crop to classify by similarity index and angle parameter. Such methods are 

dependent on time series. These methods may not work in cases where the 

characteristics of the crop change in spatial distribution, like a change in SOS for the 

same crop. Another way of classifying crop type is by extracting phenological 

characteristics [32,33]. 

In this research work, we acquired Sentinel-2 images from Google Earth Engine, 

we developed a method combining phenology, vegetation index profile, and 

reflectance in R, G, B, and NIR bands to classify wheat crops. 

Sentinel-2 is a European satellite containing a multi-spectral instrument (MSI). 

Sentinel-2 is a passive sun-synchronous orbital satellite at 786 km mean altitude with 

a wide swath width of 290 km. It is rich in spectral and spatial resolutions, 

comprising four bands of 10 m resolution, six bands with 20 m resolution, and three 

bands with 60 m resolution. In addition, it also has a high frequency of revisit time of 

10 days near the equator for individual satellites and 5 days by Sentinel-2A and 

Sentinel-2B together. 

2. Study area and dataset 

Haridwar district, Uttarakhand, India, covering an area of about 236,000 ha, is 

chosen as the study area as it is prominently known for its agricultural and 

horticultural practices. The district's primary land use is agriculture, whereas wheat, 

rice, and sugar cane are grown chiefly, followed by rangeland, which consists of 

woodland, shrubland, grasslands, and wetlands. The presence of the river is the 

primary source for the growth of agriculture. It is also a cause of fertile soil types, 

ranging from Sandy Loam with high porosity to Loam suitable for horticulture. With 

the urbanization and development of industries, the urban area’s growth has 

increased over the past few years, occupying the district's vegetation areas [34]. 

In addition to satellite data, ground truth points are also required to cross-check 

the output and to identify the wheat crop fields. Therefore, on-field GPS points are 

also obtained in the middle of the season. Figure 1 shows wheat field photograph 

obtained during filed visit, the crop mask with ground truth points overlaid of 

Haridwar district, created from ESRI land use map and DEM along with contour 

lines and major river of the region. 

Blue (B02), Green (B03), Red (B04), and Near Infra-Red (B08) bands of the 

Level-2A product of Sentinel-2 are used. The duration of satellite data is from 15 

November 2022 to April 2023. NDVI is calculated using B08 and B04 from 

Sentinel-2 products. Approximately four hundred data points featuring NDVI values 

were utilized as input features, while Start of Season (SOS) labels were identified 

manually. 
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(a) (b) (c) 

Figure 1. (a) Crop mask of study area with ground truth points; (b) DEM along with River Ganga; (c) field 

photograph of wheat field captured on 5 April 2023. 

3. Methodology 

3.1. Data pre-processing 

We pre-processed NDVI for each pixel to remove the noise from the time series 

curve and adopted the Savitzky-Golay filter for this purpose. The Savitzky-Golay 

filter is a signal-processing filter that fits a polynomial curve for the points in the 

window to estimate the center of the window and to get a smoothened curve while 

preserving the shape of the peaks [35]. Window of five observation and polynomial 

of order 2 was chosen. Figure 2 shows the vegetation index (VI) profile before and 

after the SG filter. The overall curvature of both profiles follows a similar trend, but 

there is a noticeable difference at the beginning, particularly between day 0 and day 

20. This discrepancy is likely due to edge effects in the SG filter and seasonal 

transitions. Around day 40, there is a period with no crop growth, meaning that prior 

to this, the NDVI should peak and then decline. This expected pattern is better 

captured in the filtered profile. In contrast, the original curve shows a straight line 

increment in NDVI from day 0 to day 30, which is unnatural for a crop growth 

profile. The filtered curve more accurately represents crop growth dynamics by 

smoothing out sudden peaks and troughs, which are likely caused by errors such as 

radiometric noise or cloud contamination. 
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Figure 2. NDVI profile of the wheat crop before and after the SG filter. 

3.2. Phenology extraction 

We applied three machine-learning algorithms to derive SOS from the NDVI 

profile. The methods included supervised machine learning models Random Forest, 

Convolutional Neural Network, and Support Vector Machine [18]. 

Random Forest uses a number of decision trees and merges their outcomes to 

reach some conclusion. Random Forest uses the bootstrapping method to randomly 

sample the data sets and build one decision tree model for each sampled data set. It 

then creates random feature subsets as the candidate features and selects the best 

feature combinations to split the internal nodes of decision trees. We built a Random 

Forest regressor model using the scikit-learn library of Python to extract SOS from 

the VI profile. 

The principle of neural networks is to build a complex network that consists of 

interacting neurons to make predictions, whereas neurons are basic computing nodes 

that accept external data or inputs from other neurons and compute outputs. We built 

a neural network model having a sequence of a layer 1D convolution layer of (32, 5), 

a 1D Maxpooling layer of (3, 3), a 1D convolution layer of (64, 5), a 1D convolution 

layer of (128, 5), a 1D Maxpooling layer of (2, 2), flattening, a dense layer, a dropout 

layer, and a dense layer. Adam optimizer and ReLU activation function were used. 

Support vector machine works on the principle of separating two classes using a 

hyperplane. To extract SOS, an SVM regressor model was built using the scikit-learn 

library of Python. The RBF kernel was used with degree 3 and epsilon 10. 

3.3. Crop type identification 

The filtered NDVI values were used as features for the models to extract the 

season’s start. The extracted dates of the start season, filtered NDVI values, and 

satellite band values were used as features in the classification models. Four hundred 

random points were generated within the crop mask region, their pixel value in blue, 

green band, red band, near-infrared band, and NDVI was extracted from time series. 

Their class labels were identified manually by matching with the ground truth profile. 

The ground truth data were collected at the field from the Gurkul Narsan block, 

Haridwar. The GPS coordinates of the ground truth points were collected using the 
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ODK toolkit. The overall training sample has 242 points from the wheat class and 

196 points from other classes. 

We considered multivariate input of 6 variables for the classification model. 

These variables are R, G, B, NIR bands & NDVI, and phenology (SOS). Hence, 

input consists of a time series of 6 variables of length 23 concatenated together as 

(𝑥1
1, 𝑥2

1, 𝑥3
1 ……, 𝑥23

6 ) where 𝑥𝑖
𝑗
 = denotes the i-th observation of the j-th variable, 

i ϵ [1, 23], j ϵ [1,6]. 

Two machine learning models (Random Forest, CNN) are used for wheat crop 

identification. CNN is a neural network framework that can perform classification 

task over vector, raster data and non-spatial data also. Its architecture includes 

convoluted, pooling, and fully connected layers that extract features from pixelated 

inputs through a kernel filter. The convolutional layers apply the filter as a moving 

window, while the maximum pooling layer downsamples the input vector to reduce 

computational time. The fully connected layer links the flattened convolutional and 

pooled layers to the neural network layers for model improvement. The network 

learns the optimal path to a local minimum using backpropagation and the 

elementwise applied activation functions, introducing the non-linearity into the 

network. Figure 3 shows the architecture of the CNN model used for wheat crop 

classification. 

 
Figure 3. CNN model for classification. 

Random Forest, an ensembled supervised algorithm, works on the principle of 

decision trees. It contains multiple decision trees with various samples from the 

population data. It chooses the best, based on the vote of predictions, to predict the 

enhanced accurate outcome irrespective of the scale difference in the features. It 

measures the weightage of each element on the model's overall accuracy. This 

depicts the underlying relationship between a certain quality and the target variable. 

It can also handle the noise and outliers in a large dataset with less training time [36]. 

4. Result and discussion 

The filtered NDVI profile of a pixel having a wheat crop during the winter 

season is shown in Figure 4. The timeline for data under study is 15 November 2022 

to April 2023. SOS for wheat crop can be seen around the beginning of January, 

which is around 50 days from the 15th of November. 

The NDVI profile drawn from the satellite time-series data reveals that, on 

average, the starting day of sowing a wheat crop commenced in end-December. Then 

again, the predicted results show that the SOS is from January. This may be because 

the artifacts in the profile, model are not able to capture the exact SOS. 
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Figure 4. NDVI profile of wheat crop pixel. 

A spatial distribution map of satellite-derived SOS for Haridwar district for the 

winter season is shown in Figure 5. All the methods considered have shown slight 

variation in SOS values. Random Forest gave an outcome of a wide range of dates 

from January to March. Where most of the southern district has SOS in January, the 

central part and western part of the district have in the range of January to March, 

mostly in February month, and at random places of the whole district, it is in March 

month. SOS calculated by support vector machine is same across the study area, 

which makes it unreliable. All the fields cannot be expected to have the same SOS. 

SOS calculated by RF and CNN are quite similar. 

 
(a) (b) (c) 

Figure 5. SOS was derived from Sentinel NDVI from 15 November 2022 to April 2023 for the crop mask using (a) 

Random Forest; (b) SVM; and (c) CNN (day number is counted from the date of the first image, i.e., 15 November). 

The performance of machine learning methods for deriving SOS was evaluated 

using three basic metrics as evaluation indicators, as listed in Table 1. Random 

Forest has an RMSE value of 19.58 days, which is the minimum, followed by the 

RMSE of CNN & SVM. The correlation coefficient and standard deviation of SVM 

are zero because, in this case, it seems SVM is unable to learn as it predicts a single 
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value for all the training samples, which is the 45th day. When the SVM model is 

applied across the image, it gives the same value of 45 for all the pixels (Figure 5). 

The correlation coefficients between prediction and reference values are 0.15 and 

0.65 for Random Forest & CNN, respectively. The standard deviation of Random 

Forest is 14 days, while CNN has given a standard deviation of 18.5 days. Based on 

RMSE & standard deviation, Random Forest outperformed SVM and CNN. Hence, 

for the further process of wheat crop classification, SOS is calculated using Random 

Forest. 

Table 1. Statistical evaluation of SOS derived from satellite based phenology 

retrieving method and reference data. 

Model RMSE (days) Correlation coefficient Standard deviation (days) 

Random Forest 19.58 0.15 14 

SVM 25.55 0 0 

CNN 21.57 0.65 18.5 

The wheat crop classification model includes the start of the season of wheat 

crops derived from the RF model. Wheat crops in Haridwar are usually grown along 

with mustard and mostly with sugarcane. As the wheat crop reaches its heading stage, 

sugarcane reaches its maturity stage. Moreover, the initial NDVI values of wheat 

crops vary with other crops. Hence, SOS can differentiate between wheat and other 

crops. 

A classified map of wheat and non-wheat classes from Random Forest and 

CNN models is shown in Figure 6. The overall spatial distribution of wheat as per 

the CNN model seems to be overclassified, as the entire crop mask (Figure 1) seems 

to be classified as wheat.  Which is not possible as the study region has a significant 

area under sugarcane cultivation. The wheat map obtained using the Random Forest 

model seems better compared to CNN, as it is showing a lesser area under wheat 

cultivation, which leaves the possibility of having other crops in the crop mask 

(Figure 1) region. 

 
(a) (b) 

Figure 6. Wheat crop classified map from (a) Random Forest; (b) CNN. 
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Table 2 shows the statistical evaluation of CNN and Random Forest 

classification models to distinguish wheat and non-wheat pixels. 

Table 2. Confusion matrix for RF and CNN models. 

 Wheat Non-wheat 

User 

accuracy 

(%) 

Wheat Non-wheat 

User 

accuracy 

(%) 

 CNN RF 

Wheat 18 16 52.9 35 15 70 

Non-wheat 35 19 35.2 26 56 68.3 

Producer 
accuracy (%) 

33.9 54.3 
OA: 42 
F1-score: 
0.43 

57.4 78.9 
OA: 69 
F1-score: 
0.73 

Random Forest and Convolutional Neural Network models were considered to 

choose the acceptable model for classifying the wheat crop. These models were 

made with the start of the season dates, satellite band values (red, blue, green, NIR), 

and NDVI values. As Table 2 portrays, the Random Forest model identified the 

wheat crops as statistically similar to the actual data with an overall accuracy of 69%, 

hence the suitable model for the wheat crop classification. 

The MeanIoU was also calculated as a part of the evaluation. An IoU value of 

0.5 was calculated for the Random Forest classification model, implying the model is 

good. On the other hand, a value of 0.26 was obtained for the CNN classification 

model. The resulting IoU values infer that the Random Forest model gave better 

results than the CNN. 

5. Discussion 

This research provides an analysis of wheat crop classification using Sentinel-2 

time-series data combined with phenological parameters, spectral indices, and 

machine learning algorithms. This study considers the phenological metric Start of 

Season (SOS) as a critical feature in distinguishing wheat from other crops, 

especially in regions with diverse cropping patterns and small, fragmented fields, 

such as Haridwar district in Uttarakhand, India. 

The methodology underscores the advantages of using high-resolution satellite 

imagery Sentinel-2, having a spatial resolution of 10 m and a temporal resolution of 

five days. This makes it particularly effective for monitoring crops at field level. Pre-

processing of the data is done using the Savitzky-Golay filter, which smoothens 

NDVI time-series data, preserving essential growth characteristics while reducing 

noise, thereby improving model performance. 

The study considers three machine learning algorithms—Random Forest (RF), 

Convolutional Neural Networks (CNN), and Support Vector Machines (SVM)—to 

extract SOS and classify wheat crops. Among these, the Random Forest model 

outperformed the others in terms of accuracy, RMSE, and spatial distribution. The 

RF model achieved an overall classification accuracy of 69% and a mean IoU of 0.5, 

surpassing CNN, which showed an overclassified output, and SVM, which failed to 

provide reliable results. This outcome demonstrates the robustness of ensemble 
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methods like RF, particularly in scenarios where diverse and high-dimensional 

datasets are used. 

Another strength of the study is its focus on phenological parameters, such as 

SOS, as a distinguishing feature for wheat. Since sowing dates often vary across 

farmers in a region, incorporating phenology into classification models offers a more 

reliable means of differentiating crops. The integration of spectral bands (R, G, B, 

NIR) and NDVI further enriched the model's inputs, allowing it to account for both 

spectral and temporal variations. 

Overall, this study demonstrates the potential of combining remote sensing data, 

phenological metrics, and machine learning to address critical agricultural challenges. 

It offers valuable insights for improving crop monitoring and decision-making 

processes, particularly in regions where accurate and timely crop type information is 

essential for food security, yield estimation, and disaster management. 

6. Conclusion 

In this study, we used Sentinel-2 time-series data to classify the wheat crop in 

the Haridwar district, Uttarakhand, India, as it has good spatiotemporal properties of 

10 m spatial resolution and five days temporal resolution (for combined 

constellation). Phenological parameter (SOS) was included along with visible, NIR 

bands and NDVI values to classify wheat crops. Since sowing date is different for 

farmers so SOS and other phenological parameters can be useful parameter to 

identify a particular crop. The RMSE value of SOS calculated from the Random 

Forest model was less than the other models considered. RF gave an RMSE of 19.58 

days, and CNN gave an RMSE of 21.57 days. While Support Vector Machine could 

not learn and gave same SOS for all the pixels. Although CNN gave a better 

correlation coefficient, Random Forest outperformed it in other metrics as well as in 

spatial distribution. The Random Forest model identified the wheat crop more 

accurately with and accuracy of 69% and 0.5 mean IoU. The overall result of this 

research manifested that the Random Forest model is suitable for both expected 

outcomes, i.e., for phenology extraction and crop type (wheat) classification. Further 

following ways may be tried to improve crop type classification accuracy. 

• Further study on implementing all the phenology metrics with external 

parameters like temperature, irrigation, etc., and study on crop characteristics 

can be conducted. 

• The usage of the Red Edge band is also suggested while calculating NDVI, as it 

highlights the reflectance change and helps in identifying the vegetation with 

better precision. 
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