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Abstract: Soil salinization is a difficult challenge for agricultural productivity and 

environmental sustainability, particularly in arid and semi-arid coastal regions. This study 

investigates the spatial variability of soil electrical conductivity (EC) and its relationship with 

key cations and anions (Na+, K+, Ca2+, Mg2+, Cl⁻, CO3
2⁻, HCO3⁻, SO4

2⁻) along the southeastern 

coast of the Caspian Sea in Iran. Using a combination of field-based soil sampling, laboratory 

analyses, and Landsat 8 spectral data, linear Multiple Linear Regression and Partial Least 

Squares Regression (MLR, PLSR) and nonlinear Artifician Neural Network and Support 

Vector Machine (ANN, SVM) modeling approaches were employed to estimate and map soil 

EC. Results identified Na+ and Cl⁻ as the primary contributors to salinity (r = 0.78 and r = 0.88, 

respectively), with NaCl salts dominating the region’s soil salinity dynamics. Secondary 

contributions from Potassium Chloride KCl and Magnesium Chloride MgCl2 were also 

observed. Coastal landforms such as lagoon relicts and coastal plains exhibited the highest 

salinity levels, attributed to geomorphic processes and anthropogenic activities. Among the 

predictive models, the SVM algorithm outperformed others, achieving higher R2 values and 

lower RMSE (RMSETest = 27.35 and RMSETrain = 24.62, respectively), underscoring its 

effectiveness in capturing complex soil-environment interactions. This study highlights the 

utility of digital soil mapping (DSM) for assessing soil salinity and provides actionable insights 

for sustainable land management, particularly in mitigating salinity and enhancing agricultural 

practices in vulnerable coastal systems. 
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1. Introduction 

Soil electrical conductivity (EC) is widely recognized as a reliable indicator for 

assessing soil salinity and monitoring soil salinization. EC values directly correlate 

with the ionic concentration of the soil solution, increasing as salt content rises under 

specific moisture conditions [1]. However, a major challenge in soil quality 

assessment lies in addressing the significant spatial and temporal variability of soil 

properties across different observational scales [2]. 

Soil salinization and sodification represent critical processes of soil degradation, 

posing significant threats to ecosystems, particularly in arid and semi-arid regions. 

These processes profoundly affect agricultural productivity and sustainability by 

altering soil properties and reducing fertility. Sodium (Na+) dominance in the soil 

solution leads to the dispersion of clay particles, which disrupts soil structure and 

significantly decreases soil permeability. Among the salts contributing to salinization, 

their impact decreases in the order of NaCl > CaSO4
2⁻ > CaHCO3 > MgCl2 > 

Mg(HCO3)2. Elevated salinity negatively influences all aspects of plant growth by 
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disrupting ion uptake balance, inducing osmotic stress, and impairing water absorption 

by plant roots [3–5]. 

According to the U.S. Salinity Laboratory standards, soils are classified as saline 

when their electrical conductivity of the saturation extract (ECe) exceeds 4 dS·m⁻1 at 

25 °C, with an Exchangeable Sodium Percentage (ESP) below 15 and a pH less than 

8.5. These soils are characterized by high concentrations of ions such as Na+, Mg2+, 

Ca2+, sulfate (SO4
2⁻), and chloride (Cl⁻) [6]. Ion detection in soils is critical across 

various domains, including human health, food security, and environmental 

monitoring, as ion concentrations provide vital information about soil and water 

quality. For instance, the analysis of ions such as calcium (Ca2+), sodium (Na+), 

potassium (K+), and magnesium (Mg2+) is essential in evaluating water suitability for 

human consumption and agricultural irrigation. Elevated concentrations of these ions 

are indicative of increased soil salinity or sodicity, which can adversely affect plant 

growth. Similarly, ion monitoring plays a crucial role in food processing, with specific 

ions such as nitrate (NO3⁻) and nitrite (NO2⁻) in meat products, calcium (Ca2+) in dairy, 

and potassium (K+) in fruit juices being key indicators of food safety and quality [7,8]. 

Coastal regions, where terrestrial and marine ecosystems converge, are highly 

susceptible to soil salinization driven by both natural processes and anthropogenic 

activities. These areas support a significant proportion of the global population and are 

characterized by high biodiversity and unique ecological features. Additionally, 

coastal zones function as hubs for economic, agricultural, and recreational activities. 

However, rapid population growth and escalating freshwater demands have intensified 

the intrusion of seawater into groundwater reserves. This saltwater intrusion elevates 

groundwater salinity, which subsequently migrates into the rhizosphere through 

capillary action, depositing salt minerals. This process adversely affects soil fertility, 

reducing crop yields and, in severe cases, causing complete crop failure [6,9]. 

Remote sensing is an essential tool for multi-scale and long-term monitoring of 

soil salinization due to its efficiency in acquiring extensive datasets over large areas. 

However, factors such as atmospheric conditions, soil-atmosphere electromagnetic 

radiation interactions, and overlapping spectral signals from different soil components 

can significantly reduce the accuracy of remotely sensed data, often resulting in 

inconsistent outcomes. Consequently, remote sensing is predominantly employed for 

mapping the spatial distribution of soil salinity and classifying salinity levels, rather 

than generating precise quantitative measurements [10–12]. 

To improve the reliability of remote sensing applications, researchers frequently 

integrate satellite imagery and remotely sensed data with ground-based field and 

laboratory measurements to estimate and map soil properties [13,14]. Linear 

multivariate models, such as Multiple Linear Regression (MLR) and Partial Least 

Squares Regression (PLSR), have been successfully applied to analyze spectral 

absorption patterns and their relationships with soil characteristics. In recent years, 

nonlinear modeling approaches, including Support Vector Machines (SVM) and 

Artificial Neural Networks (ANN), have gained prominence for their superior ability 

to capture complex interactions between soil physical and chemical properties and 

spectral data [15,16]. 

The primary objectives of this research were to: 

(1) Assess the relationship between soil electrical conductivity and ion 
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concentrations: Investigate the correlation between soil electrical conductivity 

(ECe) and the concentrations of key cations (Na+, K+, Ca2+, Mg2+) and anions 

(Cl⁻, CO3
2⁻, HCO3⁻, SO4

2⁻) to identify the dominant drivers of soil salinity that 

could negatively affect agriculture. 

(2) Characterize spatial variability of soil salinity: Map and analyze the spatial 

distribution of soil salinity and its association with geomorphological landforms, 

including lagoons, lagoon relicts, coastal plains, and barriers, to understand the 

influence of geomorphic processes on salinity dynamics. 

(3) Evaluate the performance of Digital Soil Mapping (DSM) algorithms for salinity 

landscape modeling: Compare the predictive accuracy of linear models (Multiple 

Linear Regression [MLR] and Partial Least Squares Regression [PLSR]) and 

nonlinear models (Support Vector Machines [SVM] and Artificial Neural 

Networks [ANN]) in estimating soil EC and ion distributions using Landsat 8 

spectral data. 

(4) Develop a framework for soil salinity monitoring and management to support 

agriculture: Provide actionable insights for land management by integrating DSM 

outputs with geomorphological analysis to inform sustainable agricultural 

practices and salinity mitigation strategies in vulnerable coastal regions. 

These objectives aim to advance the understanding of soil salinity dynamics 

while leveraging modern remote sensing and modeling approaches to support 

sustainable land use and agricultural productivity in semi-arid climates with salinity 

management concerns. 

2. Methods 

2.1. Study area 

The study was conducted over a 480 km2 area along the southeastern coast of the 

Caspian Sea in Iran, spanning from 54°21′10″ E, 37°18′57″ N to 53°54′58″ E, 

37°18′57″ N (Figure 1). This region has a semi-arid climate, with an average annual 

temperature of 17.6 ℃ and annual precipitation of 350 mm [17,18]. The landscape 

comprises diverse coastal landforms, including lagoons, lagoon relicts, coastal plains, 

and barriers, each significantly influencing soil salinity dynamics. These landforms 

are particularly susceptible to salinization due to geomorphic processes and 

agricultural activities, making them an ideal setting for investigating the spatial 

variability of soil electrical conductivity (EC) [19,20]. 
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Figure 1. Setting of the study area. 

2.2. Sampling 

A systematic grid-based sampling network was established, comprising seven 

parallel rows spaced 3 km apart, with 20 sampling points per row at 1 km intervals. 

Soil samples were collected from the top 20 cm of the soil profile. The samples were 

air-dried, sieved through a 2-mm mesh, and subjected to laboratory analysis. The 

electrical conductivity (EC) of the soil-saturated extracts was measured using an EC 

meter. 

Cation (Na+, K+, Ca2+, Mg2+) and anion (Cl⁻, CO3
2⁻, HCO3⁻, SO4

2⁻) 

concentrations were analyzed following the standardized protocols outlined in the 

methods of soil analysis [21]. These methods ensured precise quantification of ion 

concentrations, facilitating robust correlation analyses between ion content and soil 

EC. The resulting dataset provided a reliable foundation for calibrating remote sensing 

models and enhancing the understanding of salinity dynamics within the study area. 

This study employed statistical analyses, including Multiple Linear Regression 

(MLR), Partial Least Squares Regression (PLSR), Artificial Neural Networks (ANN), 

and Support Vector Machines (SVM), to estimate and map soil electrical conductivity 

(EC). The Digital Elevation Model (DEM) data was obtained from the Iranian 

Mapping Organization [19,20]. The primary software used for data processing and 

modeling included GIS tools for spatial analysis and machine learning platforms 

(MATLAB 2019b) for predictive modeling. The predictive models incorporated key 

soil variables such as Na+, K+, Ca2+, Mg2+, Cl⁻, CO3
2⁻, HCO3⁻, and SO4

2⁻, sourced from 

laboratory analyses and spectral data from Landsat 8 imagery. In particular, the SVM 

model used a Gaussian kernel, which contributed to its superior predictive 
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performance. The methodology involved field soil sampling, laboratory analysis, 

spectral data extraction, and statistical modeling to establish relationships between soil 

properties and salinity dynamics, providing a comprehensive framework for soil 

salinity assessment in coastal environments. 

3. Results 

Principal Component Analysis (PCA) was employed to evaluate the relationships 

between soil electrical conductivity (ECe) and the concentrations of laboratory-

measured cations and anions (Na+, K+, Ca2+, Mg2+, Cl⁻, CO3
2⁻, HCO3⁻, and SO4

2⁻). As 

illustrated in Figure 2a, Cl⁻ exhibited the strongest correlation with ECe (r = 0.88), 

followed by Na+ (r = 0.78), indicating their dominant influence on soil salinity in the 

study area. Soil K+, Mg2+, and SO4
2⁻ were the next most influential ions, with 

correlation values of 0.69, 0.69, and 0.51, respectively. Among the cations, Ca2+ 

demonstrated the lowest impact on ECe (r = 0.30), while CO3
2⁻ and HCO3⁻ had 

negligible or negative correlations (r = 0.02 and −0.28, respectively). 

 
(a) 

 
(b) 

Figure 2. (a) Correlation heatmap of EC with cations and anions; (b) radar chart of 

the effect of each ion on the EC. 
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Figure 2b provides a visual representation of the relationships between the 

investigated ions and EC, highlighting the relative influence of each ion on soil ECe. 

These findings confirm that NaCl salts are the primary drivers of soil salinity in the 

southeastern Caspian Sea region. Further analysis of the correlation heatmap reveals 

that KCl salts have a comparable effect on ECe, as evidenced by the strong correlations 

among Na+, K+, and Cl⁻. Additionally, the significant relationship between Mg2+ and 

Cl⁻ (r = 0.68) underscores the greater impact of Mg2+ on ECe compared to Ca2+. These 

results emphasize the importance of specific ions in shaping the salinity dynamics of 

the study area. 

Figure 3 illustrates the distribution patterns of the analyzed cations (Na+, K+, 

Ca2+, Mg2+) and anions (Cl⁻, CO3
2⁻, HCO3⁻, SO4

2⁻) as predicted by the Support Vector 

Machine (SVM) algorithm. Figure 4 depicts the detected coastal landforms in the 

study area, mapped by the authors using the Geopedological Definition System (GDS) 

and Zinck’s geopedology approach, integrating particle size distribution (PSD) 

analysis and digital elevation model (DEM) data [19,20]. 

Figure 3 maps reveal that the lowest to moderate values of Na+, K+, Ca2+, Mg2+, 

Cl⁻, CO3
2⁻, HCO3⁻, SO4

2⁻, and soil EC are predominantly associated with the modern 

lagoon landform in the western part of the study area, located between the present-day 

barrier (near the current shoreline) and the old barrier (east of the modern lagoon). 

Conversely, the highest EC values are concentrated in the coastal plain and lagoon 

relict landforms, situated in the central and southeastern portions of the study area. 

A strong alignment exists between the EC distribution and the patterns of Na+ 

and Cl⁻ (Figure 3: Na+ and Cl⁻), followed by K+, Mg2+, and SO4
2⁻ (Figure 3: K+, Mg2+, 

and SO4
2⁻); these results are consistent with the validation metrics presented in Table 

1, which detail the correlation coefficients, relative percent differences (RPD), and 

root mean square errors (RMSE) obtained using both linear (MLR, PLSR) and 

nonlinear (ANN, SVM) algorithms. The superior performance of SVM and ANN 

models in capturing the complex relationships between soil EC and ion content further 

validates these observations. 

Our results show that the Support Vector Machine (SVM) algorithm provided 

more accurate predictions of soil electrical conductivity (EC). In this regard, the SVM 

provided better predictions for associated cations and anions using Landsat 8 spectral 

data compared to Artificial Neural Networks (ANN), Multiple Linear Regression 

(MLR), and Partial Least Squares Regression (PLSR) models (Table 1). The average 

soil EC across sampled points was approximately 45 dS·m⁻1, consistent with the 

spatial distribution patterns observed in the generated maps, particularly in regions 

represented by green and blue color codes (refer to the map legend). 

Our validation results suggest the SVM and ANN models provide superior 

performance, with Relative Percent Difference (RPD) values exceeding 1.1, indicating 

good model reliability. In contrast, the MLR and PLSR models, which had RPD values 

below 1.1, were less effective in estimating soil EC from Landsat 8 data [22]. Root 

Mean Square Error (RMSE) values also indicated lower prediction errors for SVM 

and ANN compared to the linear models, MLR and PLSR. Additionally, the 

coefficient of determination (R2) values for the nonlinear models (SVM and ANN) 

were significantly higher than those of the linear models, reinforcing the enhanced 

predictive capability of nonlinear approaches in capturing the complex relationships 
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between soil properties and spectral data. 

Table 1. Validation results in estimations and mapping of soil EC using different models. 

  RMSE test RMSE train RPD test RPD train R2 test R2 train 

SVM EC 27.35 24.62 1.18 1.29 0.36 0.46 

 Na 236.83 283.97 1.19 1.11 0.45 0.29 

 K 2.28 3.27 1.48 1.31 0.64 0.48 

 Ca 16.71 14.01 1.97 1.13 0.26 0.30 

 Mg 195.50 164.68 1.05 1.13 0.17 0.37 

 Cl 195.50 164.68 1.05 1.13 0.25 0.44 

 CO3
2− 0.26 0.29 1.44 1.35 0.69 0.52 

 HCO3
− 0.60 0.86 1.26 1.14 0.42 0.36 

 SO4
2− 42.27 38.82 1.14 1.15 0.40 0.31 

ANN EC 27.69 25.85 1.17 1.23 0.27 0.34 

 Na 237.14 257.17 1.19 1.22 0.29 0.34 

 K 2.43 2.99 1.39 1.20 0.51 0.32 

 Ca 25.96 13.60 1.20 1.16 0.36 0.26 

 Mg 193.48 155.53 1.06 1.20 0.12 0.31 

 Cl 361.58 217.52 1.11 1.44 0.22 0.52 

 CO3
2− 0.35 0.35 1.06 1.19 0.12 0.15 

 HCO3
− 0.58 0.82 1.30 1.20 0.43 0.31 

 SO4
2− 42.30 41.44 1.14 1.07 0.28 0.14 

MLR EC 30.70 30.82 1.06 1.03 0.11 0.06 

 Na 269.84 301.14 1.04 1.04 0.08 0.08 

 K 3.13 3.60 1.08 1.00 0.15 0.01 

 Ca 26.04 15.70 0.99 1.00 0.02 0.02 

 Mg 203.42 180.68 1.01 1.03 0.03 0.06 

 Cl 203.42 180.68 1.01 1.03 0.01 0.13 

 CO3
2− 0.37 0.32 1.02 1.00 0.14 0.12 

 HCO3
− 0.70 0.97 1.07 1.02 0.23 0.04 

 SO4
2− 46.08 43.47 1.04 1.02 0.10 0.05 

PLSR EC 30.95 30.96 1.05 1.02 0.10 0.05 

 Na 278.97 307.53 1.01 1.02 0.03 0.05 

 K 3.13 3.60 1.08 1.00 0.15 0.01 

 Ca 26.04 15.70 0.99 1.00 0.02 0.02 

 Mg 203.42 180.68 1.01 1.03 0.03 0.06 

 Cl 414.95 297.49 0.97 1.05 0.07 0.11 

 CO3
2− 0.37 0.329 1.01 1.00 0.11 0.01 

 HCO3
− 0.75 0.99 1.00 1.00 0.06 0.01 

 SO4
2− 46.08 43.47 1.04 1.023 0.097 0.05 
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Figure 3. Distribution maps of Na+, K+, Ca2+, Mg2+, Cl−, CO3
2−, HCO3−, and SO4

2− (m eq∙L−1), soil EC (dS∙m−1) in the 

study area. 
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Figure 4. Detected landforms based on GDS and soil EC distribution maps of the 

study area. 

4. Discussion 

The efficiency of digital soil mapping (DSM) in generating categorical soil 

property maps is influenced by several factors, including cost-effectiveness, sampling 

resolution, model accuracy, and the chosen scale of mapping [14]. The study area 

along the southeastern coast of the Caspian Sea exhibits high salinity levels, 

classifying it as a very saline region. Agricultural activities in this area depend heavily 

on effective soil drainage and reclamation measures, alongside the cultivation of salt-

tolerant crops such as barley. Field observations confirmed that rainfed barley is the 

dominant crop, aligning with the traditional practices of local communities, including 

the Turkmen Sahara's reliance on camel and horse breeding for livelihoods. 

4.1. Impact of soil EC on coastal landforms 

Land degradation driven by soil salinity, flooding, and overuse of fields is a 

significant factor reducing soil productivity in the region [23]. This study emphasizes 

the influence of coastal landforms on soil electrical conductivity (EC) patterns and 

productivity. Six distinct landforms were identified using the Geopedological 

Definition System (GDS) and Zinck’s geopedology approach [24], including lagoons, 

lagoonal deposits, barriers, and coastal plains. These landforms exhibit a clear 

relationship between geomorphological processes and soil EC. 

Lagoonal landforms, defined as shallow saline or brackish water bodies separated 

from the sea by barriers, were found to contain soils with elevated salinity. This 

observation aligns with the study’s results, which showed high EC values in these 

areas. Barriers and barrier flats, described as subaerial and gently sloping landforms 

adjacent to lagoons, exhibited increased EC levels at their edges, with a sharp decline 

within the barrier flats, likely due to sediment movement and leaching processes. 

These findings suggest that the dynamic interplay of geomorphic processes and saline 

water transport significantly influences EC distribution. 

The highest EC levels were observed in coastal plains and lagoon relict 
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landforms, which represent remnants of old lagoons. These features remain largely 

unburied, preserving the saline characteristics of their historical environments. The 

similarity in EC distribution patterns between lagoonal deposits and these landforms 

underscores the critical role of past hydrological and geomorphological conditions. 

Lagoonal deposits, primarily composed of sand, silt, or clay transported by wind, flux 

flows, and currents, were deposited in low-energy saline environments. The observed 

alignment of EC patterns in these sediments with those in coastal plains and lagoon 

relics reinforces the connection between landform genesis and soil salinity (Figure 2). 

4.2. Contributions of cations, anions, and PCA analysis 

Principal Component Analysis (PCA) revealed Cl⁻ and Na+ as the primary 

contributors to soil EC, exhibiting the strongest correlations. These findings highlight 

the dominant role of NaCl salts in driving salinity in the region. Moderate correlations 

between K+, Mg2+, and SO4
2⁻ with EC suggest the additional influence of salts such as 

KCl. The strong relationship between Mg2+ and Cl⁻ further indicates the significant 

impact of Mg2+ on soil salinity, surpassing that of Ca2+, which showed the lowest 

correlation among the investigated cations. The negligible or negative correlations of 

CO3
2⁻ and HCO3⁻ with EC confirm their limited role in salinity dynamics in this area, 

consistent with the dominance of chloride-based salts. 

4.3. Performance of DSM algorithms 

The study validated the performance of DSM algorithms in mapping soil salinity 

and related properties using Landsat 8 spectral data. Among the models evaluated, the 

Support Vector Machine (SVM) algorithm demonstrated superior accuracy in 

predicting soil EC and cation/anion concentrations, outperforming ANN, MLR, and 

PLSR models. This was evident from higher R2 and RPD values and lower RMSE 

scores for SVM and ANN compared to the poorer performance of MLR and PLSR. 

These findings align with prior research [22] emphasizing the advantages of non-linear 

models in capturing complex soil-environment interactions. The SVM algorithm’s 

ability to accurately predict EC and ion distribution patterns underscores its 

effectiveness for soil mapping in saline environments. 

4.4. Implications for land management 

The observed spatial patterns in soil EC and ion distributions underscore the need 

for targeted reclamation strategies across coastal landforms. High salinity levels in 

lagoonal deposits and coastal plains necessitate focused interventions, such as 

improved drainage and salinity mitigation measures. In contrast, barrier flats and 

modern lagoons, with relatively lower salinity, present opportunities for cultivating 

salt-tolerant crops like barley. By integrating geomorphological analysis with DSM 

outputs, this study provides actionable insights into the spatial variability of soil 

salinity. These findings can guide sustainable land management practices, promoting 

soil productivity and environmental conservation in vulnerable coastal agricultural 

systems. 
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4.5. Practical applications and perspectives 

The findings of this study provide valuable insights into sustainable land 

management and soil salinity mitigation in coastal agricultural regions. By leveraging 

DSM techniques, policymakers and land managers can implement targeted 

interventions to enhance soil productivity. The high spatial variability of soil EC 

suggests the need for adaptive management strategies, including the promotion of salt-

tolerant crops such as barley in high-salinity areas and the implementation of effective 

artificial drainage systems to reduce salt accumulation. Additionally, the identification 

of coastal landforms with distinct salinity patterns enables site-specific reclamation 

approaches, optimizing land use planning in vulnerable regions. From a broader 

perspective, this study highlights the importance of using remote sensing data, 

machine learning algorithms, and geomorphological analysis for environmental 

monitoring. The superior performance of SVM models underscores their potential for 

refining predictive soil mapping techniques, which could be further enhanced by 

incorporating additional high-resolution spectral datasets. Future research could 

explore the impact of climate variability on salinity dynamics, integrating temporal 

monitoring to develop long-term mitigation strategies. By expanding the application 

of DSM in other arid and semi-arid coastal areas, these methodologies can contribute 

to global efforts in combating soil degradation and ensuring agricultural sustainability. 

5. Conclusion 

This study underscores the importance of understanding soil salinity dynamics in 

coastal regions, particularly in the southeastern Caspian Sea, where salinization poses 

significant challenges to agricultural productivity and environmental sustainability. 

The research confirms that soil electrical conductivity (EC) is a reliable indicator of 

salinity, with chloride (Cl⁻) and sodium (Na+) emerging as the primary contributors. 

Secondary influences from potassium (K+), magnesium (Mg2+), and sulfate (SO4
2⁻) 

further emphasize the complex interactions among soil ions in shaping salinity 

patterns. 

The findings reveal distinct spatial variability in soil EC linked to 

geomorphological processes and landform characteristics. Lagoonal deposits, coastal 

plains, and lagoon relict landforms exhibit the highest salinity levels, reflecting their 

susceptibility to saline water intrusion and historical geomorphic conditions. 

Conversely, barrier flats and modern lagoons demonstrate lower salinity levels, 

offering potential for sustainable agricultural practices. 

In terms of methodology, the study highlights the superiority of nonlinear 

modeling approaches, particularly the Support Vector Machine (SVM) algorithm, in 

predicting soil EC and ion distributions using Landsat 8 spectral data. SVM 

outperformed other models, including Artificial Neural Networks (ANN), Multiple 

Linear Regression (MLR), and Partial Least Squares Regression (PLSR), as evidenced 

by higher R2 values, lower RMSE scores, and better Relative Percent Difference 

(RPD) values. These results validate the utility of nonlinear models for capturing 

complex soil-environment interactions in digital soil mapping (DSM). 

The implications for land management are clear: effective salinity mitigation 

strategies must target high-risk areas, such as lagoonal deposits and coastal plains, 
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through improved drainage and soil reclamation measures. Meanwhile, the lower 

salinity in barrier flats and modern lagoons supports the cultivation of salt-tolerant 

crops, such as barley. By integrating geomorphological analysis with DSM outputs, 

this study provides a robust framework for addressing soil salinity challenges, 

enabling more informed and sustainable land use practices in coastal agricultural 

systems. 

Limitations of the study 

Despite its valuable contributions, the present study has certain limitations. The 

reliance on Landsat 8 spectral data, while effective, may not capture fine-scale 

variations in soil salinity as accurately as higher-resolution remote sensing 

technologies such as hyperspectral or UAV-based imagery. Additionally, the study's 

focus on a specific coastal region limits the generalizability of the findings to other 

environments with various climatic and geomorphological conditions. The use of 

DSM models, particularly SVM, though robust, may benefit from further optimization 

by incorporating additional environmental covariates such as groundwater depth and 

soil moisture dynamics. Future research should address the mentioned restrictions by 

integrating multi-source data and expanding frequent monitoring to assess long-term 

salinity trends under changing environmental conditions. 
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