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Abstract: To study the environment of the Kipushi mining locality (LMK), the evolution of 

its landscape was observed using Landsat images from 2000 to 2020. The evolution of the 

landscape was generally modified by the unplanned expansion of human settlements, 

agricultural areas, associated with the increase in firewood collection, carbonization, and 

exploitation of quarry materials. The problem is that this area has never benefited from 

change detection studies and the LMK area is very heterogeneous. The objective of the study 

is to evaluate the performance of classification algorithms and apply change detection to 

highlight the degradation of the LMK. The first approach concerned the classifications based 

on the stacking of the analyzed Landsat image bands of 2000 and 2020. And the second 

method performed the classifications on neo-images derived from concatenations of the 

spectral indices: Normalized Difference Vegetation Index (NDVI), Normalized Difference 

Building Index (NDBI) and Normalized Difference Water Index (NDWI). In both cases, the 

study comparatively examined the performance of five variants of classification algorithms, 

namely, Maximum Likelihood (ML), Minimum Distance (MD), Neural Network (NN), 

Parallelepiped (Para) and Spectral Angle Mapper (SAM). The results of the controlled 

classifications on the stacking of Landsat image bands from 2000 and 2020 were less 

consistent than those obtained with the index concatenation approach. The Para and DM 

classification algorithms were less efficient. With their respective Kappa scores ranging from 

0.27 (2000 image) to 0.43 (2020 image) for Para and from 0.64 (2000 image) to 0.84 (2020 

image) for DM. The results of the SAM classifier were satisfactory for the Kappa score of 

0.83 (2000) and 0.88 (2020). The ML and NN were more suitable for the study area. Their 

respective Kappa scores ranged between 0.91 (image 2000) and 0.99 (image 2020) for the 

LM algorithm and between 0.95 (image 2000) and 0.96 (image 2020) for the NN algorithm. 
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1. Introduction 

Overall, primary tropical forests declined by 10% from 2021 to 2022 [1]. At the 

national level, the Democratic Republic of Congo (DRC) loses approximately 1.25 

million hectares of its vegetation cover each year [2]. Rapid population growth in 

sub-Saharan Africa [3] and its corollaries are at the root of spatial changes [4,5] that 

can be characterized using remote sensing tools. This phenomenon is observed in all 

major cities and their surroundings in the DRC, where the population increased 

according to [6] from 30.7 million to 81.3 million between 1984 and 2017. 

In the southeast of the country, mining activities promote the concentration of 

populations around countless copper (Cu) and cobalt (Co) mines, with the 
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consequences of the anthropization of natural spaces [7]. Recent work by [8] on the 

assessment and mapping of deforestation in Katanga, by [9] which relates to the 

dynamics of Katanga forest ecosystems in the copper arc and the field observations 

carried out as part of this study, highlights significant environmental upheavals, 

which result from deforestation and anarchic mining. Khoji et al. [10] revealed that 

around Lubumbashi, Likasi, Fungurume and Kolwezi, the natural cover that dominated 

the landscape in 1979 lost more than 60% of its area in 41 years (1979–2020) to 

agricultural and energy production. This spatial dynamic was reported by [11]. Around 

Lubumbashi, 30 km from the Kipushi Mining Locality (LMK), between 1990 and 

2022 approximately 40% of the Miombo forest was replaced by pasture [12]. 

The Kipushi Mining Locality (LMK), which became the rural commune of the 

same name, was born thanks to the development of the underground mine [13] of Zn, 

Cu and Lead (Pb) by the mining union of Haut-Katanga which later became the 

General Mines and Quarries (GCM). Since the fall of the latter in the 1990s, the 

population of this territory has resorted to agronomic practices, small cross-border 

trade, the exploitation of quarry materials and the collection of rocks containing Cu 

and Zn ores from the old backfill stored by the GCM. These activities have the 

consequences [14] of the restructuring of the spatial and landscape morphology in 

addition to [15,16] the fragmentation of natural landscapes that were already 

impacted by the activities of the CGM [17]. 

On the one hand, because of the expansion of human habitat both under the 

impetus of the LMK cores and the neighboring city of Lubumbashi. And on the other 

hand, the extension of agricultural areas [12], the increased collection of firewood, 

carbonization [18] and the exploitation of quarry materials from waste stored by the 

GCM. The movements of the latter reconfigure their footprints by modifying the 

landscape and land use. These claim the characterization of the change of spaces that 

it is important to capture, quantify and map in order to understand and evaluate the 

influence of human activities on the essential processes that govern the geosphere-

biosphere system. And the remote sensing tool can precisely respond to this concern; 

but it is unclear which image classification or change detection method(s) would be 

appropriate for the heterogeneity of the study area. 

The LMK has not benefited from studies on its land use dynamics at the scale 

of its territory. This foreshadowed the ignorance of the methods of remote sensing of 

change that would be relevantly applicable to our study environment. To ensure the 

robust extraction of information and their adequate groupings, before the multi-date 

comparison of the results. This reasoning was highlighted by several publications: 1) 

El Kharki et al. and N’guessan et al. [19,20] to evaluate the merits of the various 

methods of classification of satellite images; 2) Cabala et al. and André et al. [14,21] 

to quantify the anthropogenic effects or the dynamics of the landscape in the 

Lubumbashi plain; 3) Mas [22] to make the critical analysis of the main algorithms 

and techniques of remote sensing of change; 4) Nsiami [23] proposed the 

classification based on the textural analysis approach, considered suitable for 

mapping land use in a very heterogeneous urban environment. 

Although remote sensing is emerging by democratizing data collection 

technologies and algorithms for extracting information contained in optical images, 

the choice of a method in this field remains judicious. This study aims to evaluate 
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and compare two post-classification approaches to change detection, applied from 

independent classifications of Landsat images from 2000 and 2020. (1) Using 

supervised classification on images of colored compositions; (2) by exploiting the 

advanced classification method based on the technique of calculation and fusion of 

spectral indices (Normalized Difference Vegetation Index (NDVI), Normalized 

Difference Built-up Index (NDBI) and the Normalized Difference Water Index 

(NDWI)). In both cases, the research carried out a comparative evaluation of the 

performance of five variants of classifier algorithms, namely, Maximum likelihood, 

minimum distance, neural network, parallelepiped, and spectral angle mapper, to 

identify the tool adapted to the reality of the LMK environment. 

The comparative study of performance was carried out on Landsat Thematic 

Mapper (TM), year 2000 and Enhanced Thematic Mapper Plus (ETM+) year 2020 

images covering the LMK. Robustness tests were carried out on matrices of class 

separabilities and transitions whose statistical characteristics express the merit of 

each of the five methods evaluated. 

2. Materials and methods 

2.1. Study area 

 

Figure 1. Study area. 

The Kipushi Mining Locality (LMK) (became a rural commune about 10 years 

ago) has 38.95 km2 and occupies ± 0.3% of the surface area of the territory of 

Kipushi in the south-east of the D.R. Congo, as shown in Figure 1. The diagonal 

coordinates: 27°13′26″ and 27°15′5″ East; −11°48′6″ and −11°44′27″ South, limit 

the study area with the city of Lubumbashi at the level of Mukulubwe stream to the 

north and the territory of Kasenga further; the terroir of Sakania to the south; the 

Republic of Zambia to the east and west. The north-western part of the research area 
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shares the limits with the territory of Kambove and the Kaponda group via the 

Maimbudu River. Five districts: Kamarenge, Changalawe area, Chachacha GCM, 

Chachacha city and GCM Safricas installation—form the Kipishi in the Katangais 

CopperBelt (KCB), where mining operations and related activities are concentrated. 

The LMK was separated from the city of Lubumbashi, located about 30 km 

away, by agricultural and forest areas. Some of these areas have undergone profound 

ecological transformations. Impacting the natural landscape which is deteriorating at 

a rate inversely proportional to the increase in human populations, highly dependent 

on natural resources and agriculture. In the region, the characterization of socio-

ecological [24] MALAISSE and socio-economic [25] impacts of forests having been 

established, the situation of the spatio-temporal dynamics of occupation in the LMK 

would be less recorded due to the lack of specific studies. 

2.2. Data and data sets 

The study used multi-sensor optical images recorded respectively on the dates: 

(1) 10 August 2000; (2) 9 August 2020; in the same area (path: 173 and row: 068). 

Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus 

(ETM+) level 1, downloaded from the USGS Earth Explorer platforms. They all had 

the same spatial resolution of 30 m, suitable for spatial and temporal analysis of land 

cover changes between 2000 (LT05_L1TP_173068_20000810_20200907_02_T1) 

and 2020 (LE07_L1TP_173068_20200809_20200915_02_T1). The use of Landsat 

data for change detection is encouraged by several scientists: [26–28] because they 

offer long and continuous series of synoptic images. 

Field data include direct observations and surveys of training areas. The Garmin 

Map 72 GPS with a precision of ± 3 m was used to locate the training areas, which 

facilitated the recognition of objects in the discrimination of land use classes 

according to their nomenclatures. Legacy data such as the plan of the city of Kipushi, 

developed by the Special Committee of Katanga (CSK) in 1957, the Shapefiles of 

administrative boundaries obtained from the open platform OpenStreetMap, 

supplemented the satellite images in the spirit of [29]. 

2.3. Image preprocessing 

The quasi-permanent cloud cover in the tropical zone [30,31] radiation and 

others influence the shooting of optical images by introducing noise that could be 

reduced via atmospheric correction. Its application produced the complete 

radiometric calibration by standardizing the radiometric values between the two 

processed Landsat image scenes. This allowed the reproducibility of the analyses on 

multi-date images, covering the same geographical area studied. This calibration 

consisted of converting the pixel value (initially in relative luminance) into 

reflectance at the level of the atmosphere (TOA, for Top Of Atmosphere) from the 

sensor parameters and the spectral properties of the bands in the spirit of [32,33] by 

successively applying the two equations below: 

1) Conversion to absolute luminance: 

𝐿 = GAIN × DN × absacalfactor × effectivebandwidth + OFFSET (1) 
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From where: DN is the digital count of the pixel; Gain is the gain for each 

spectral band, updated by DigitalGlobe; Offset is the offset for each spectral band, 

updated by DigitalGlobe; Abscalfactor is the calibration factor of the spectral band; 

Effective bandwith is the width of the spectral band. 

2) Conversion to reflectance: 

𝜌(TAO)𝜆 =
𝐿𝜆𝑑2𝜋

𝐸𝜆𝐶𝑜𝑠 𝜃𝑠
 (2) 

where: 𝐿𝜆 is the absolute luminance of the sensor for the spectral band λ expressed in 

W/m2/µm/sr; d is the Earth-Sun distance in astronomical units; 𝐸𝜆 is the 

exoatmospheric irradiance of the spectral band, in W/m2/µm; and 𝜃𝑠 the solar zenith 

angle. 

The Principal Components (PC) Spectral Sharpening model was applied to 

refine the spatial resolutions of multi-band images in order to benefit from the best 

15 m resolution of the panchromatic band. This allowed us to resample the 

multispectral bands by changing them from 30 m to 15 m resolution. The Layer 

Stack files allowed us to act on all the bands targeted by the operation at the same 

time. This was followed by the extraction of the study area using the “Resize Data” 

algorithm. The reduction in the volume of information to be processed had the effect 

of optimizing the calculation time of the various parameters at the time of 

processing. 

2.4. Processing 

After the pre-processing, i.e., atmospheric and radiometric corrections and 

image cutting according to the limits of the study area, the calculations of the indices: 

Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up 

Index (NDBI) and Normalized Difference Water Index (NDWI) followed, which 

produced 3 neo-images that were combined to have a single image in colored 

composition. The layer stracking tool was used for this purpose by combining six 

bands (b): b1, b2, b3, b4, b5, b6 for the 2000 image and seven bands (b): b1, b2, b3, 

b4, b5, b6 and b7 for the 2020 image. It was possible to group the two images, 

respectively, from their metadata, then combine them with the neo-images. 

Envi 5.1 software was used for remote sensing processing relating to the 

extraction and classification of information. And QGIS 3.4 facilitated the integration 

of data into a Geographic Information System (GIS) for further analysis and the 

edition of final maps of land use dynamics in the LMK. 

2.4.1. Calculation of indices 

The use of indices [34] to improve discrimination between classes is a common 

practice in remote sensing [35]. Thus, we calculated as shown in Figure 2, three 

spectral indices: Normalized Difference Vegetation Index (NDVI), Normalized 

Difference Built-up Index (NDBI) and Modified Normalized Difference Water Index 

(MNDWI), to simplify multi-temporal mapping of land use in the CRK. These 

indices, the most used to characterize vegetation [36], buildings [37], bare soils and 

wetlands, made it possible to synthesize and perform a binary reduction of a large 
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volume of spectral information. This offered the study the possibility of 

discriminating classes based on a thresholding technique on a neo-image. 

 

Figure 2. The indices: (a) and (d) NDVI; (b) and (e) MNDWI; and (c) and (f) NDBI, calculated on Landsat images 

from 2000 (left) and 2020 (right). 
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In different eco-geographic study contexts, Rouse JK et al. [38]; Bannari A et 

al. [39]; Yan Y et al. [40]; Le Gal A et al. [41] and Muhammad SR, Sarah S [42] 

calculated the NDVI by the following equation: 

NDVI =
NIR − Red

NIR + Red
 (3) 

As for the calculation of NDBI, Doumit JAV, Sakr SC [35] and Zha Y, Gao J, 

Ni S. [43] propose the following formula: 

NDBI =
SWIR1 − NIR

SWIR1 + NIR
 (4) 

The expression of MNDWI was proposed by [35,44] it is written: 

MNDWI =
Green − SWIR1

Green + SWIR1
 (5) 

where, NIR stands for Near Infrared and SWIR stands for Short Wave Infrared. 

2.4.2. Combination of special indices: NDVI, NDBI and MNDWI 

In Figure 3 we concatenated the indices using the sum and mean combination 

method, which are relatively simple to interpret and commonly used for various 

indices. The resulting distributions have the same form; only the scale is different. 

Therefore, the resulting index map has the same appearance. Only the values differ. 

This method allows high values in one variable to compensate for low values in 

another variable. This could avoid the problem of overestimating classes sensitive to 

one of the indices used, if it were exploited individually. 

 

Figure 3. Normalized concatenation vegetation, water and built up indices (NCVWB) which vary between −2 and 2. 

In a 2000 (left) and 2020 (right) image before making classifications on them. 



Journal of Geography and Cartography 2025, 8(2), 11424.  

8 

We had to impose the same class intervals for both maps to support the 

semantic value of the concatenation results. These intervals had the function of 

identifying the different land use classes by the technique of successive 

thresholdings. We approximately managed to characterize the classes by using just 

this concatenation of indices. 

The classification technique based on a simple thresholding technique applied 

to a neo-image (index) has a weakness. That of statistical overestimation when 

discriminating classes from the group of objects with more sensitivity compared to 

the spectral bands involved in the mathematical calculation of this index. For 

example, the NDVI saturates when the vegetation cover is too important [45]. So, to 

get around this difficulty, the study used the index combination method: NDVI, 

NDBI and MNDWI, to respectively compose two multi-index neo-images from 2000 

and 2020. On which we selected the training areas for assisted classifications using 

samples from the predefined classes. 

2.4.3. Selection of training zones 

The discrimination of degraded forests, less degraded forests, buildings, mine 

materials, bare soil and bodies of water was based on twelve training samples 

recorded in Shapefile format. Due to six classes (Table 1 gives the descriptions) for 

each of the images from 2000 and 2020. The manual selection technique combined 

with photo-interpretation of the image was used to ensure the relative homogeneity 

of the sample sizes for each year considered. This step of major impact on the entire 

process of classifying an optical image led to the identification of two types of 

specimens. The first, known as training samples, covered on average 11.7% of 

processed images and were used in the classification calculation. The second type of 

samples consisted of 137 control points, surveyed with a pocket GPS, and made it 

possible to assess the quality of the classifications produced by the study. 

Table 1. Categories land cover description. 

Land cover Number of pixels Description 

Waters and wetland 783 Vegetated lands with a high water table; standing water including rivers and water ponds. 

Built-up 734 
Residential land with minimal vegetation with impervious surfaces, constructed or paved 

roads. 

Bare soil 775 Bare land with sparse vegetation, soil background and dirt roads. 

Mine materials 689 Bare land with sparse vegetation, soil background and dirt roads. 

Degraded forest 817 

Woody vegetation cover is dominated by shrub species with interspersed savannas and 

meadows. It is distinguished from less degraded forest by the low density or abundance of the 

tree layer and the height of the trees. It contains trees and herbaceous vegetation. 

Less degraded forest 762 

Mosaic of several types of forests: Dry and riparian evergreen forests, dominated by Miombo. 

Plant formations with more or less closed stands. Riparian evergreen forests include forest 

ecosystems that colonize along rivers and islets, and thus benefit from particular soil 

conditions in areas characterized by a long dry season. Miombo forest is a type of vegetation, 

dominant in the Zambezian region, characterized by the predominance of species belonging to 

the genera Brachystegia, Julbernardia and Isoberlinia. 

2.4.4. Image classification from 2000 and 2020 

Remote sensing is increasingly democratizing data collection technologies and 

enhancing the accessibility of algorithms for extracting information from optical 
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imagery. However, selecting an appropriate method remains a critical step in 

ensuring reliable results. This study evaluated and compared two post-classification 

approaches for land use and land cover change detection, applied to independently 

classified Landsat images from 2000 and 2020. 

1) Supervised classification of multispectral imagery 

This approach involved the classification of color composite images using 

supervised learning techniques. 

2) Advanced classification based on spectral index fusion 

This method utilized the calculation and combination of multiple spectral 

indices, namely the Normalized Difference Vegetation Index (NDVI), Normalized 

Difference Built-up Index (NDBI), and Modified Normalized Difference Water 

Index (MNDWI), to enhance class separability and reduce classification errors 

related to interclass confusion. 

In both approaches, the classification accuracy was assessed by comparing the 

performance of five supervised machine-learning classifiers (see Table 2): 

⚫ Maximum Likelihood Classifier (MLC): A probabilistic classifier based on 

Bayesian decision theory that assumes normal distribution for each class and 

calculates the probability of a pixel belonging to a given class. 

⚫ Minimum Distance Classifier (MDC): A simple algorithm that assigns a pixel 

to the class whose mean spectral signature is closest in feature space. 

⚫ Artificial Neural Network (ANN): A machine learning model that learns 

complex patterns in spectral data through a system of interconnected neurons, 

optimizing classification based on training data. 

⚫ Parallelepiped Classifier: A rule-based classification technique that assigns 

pixels to classes based on predefined spectral range thresholds for each band. 

⚫ Spectral Angle Mapper (SAM): A physically-based classifier that calculates the 

spectral angle between the pixel’s reflectance spectrum and reference spectra, 

assigning the pixel to the class with the smallest angle. 

These algorithms were trained using region of interest (ROI) samples collected 

from the images. Training samples were selected through a stratified random 

sampling approach to ensure representative coverage of different land cover types. 

The classification was then applied separately to two Landsat scenes (2000 and 

2020), with accuracy evaluated on a pixel-by-pixel basis. The post-classification 

change detection was conducted using a change matrix, comparing land cover 

transitions between the two years. 

Since classification accuracy is a crucial factor in change detection, particular 

attention was given to the impact of spectral index fusion. The classification approach 

based on spectral index fusion aimed to minimize the overestimation of interclass 

changes commonly observed in conventional classification techniques [22]. 
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Table 2. Classification scores with different algorithms used. 

Classification with the maximum likelihood algorithm (LM) 

Year 2000 2020 

Overall Accuracy (%) 92.75 99.11 

Kappa (%) 0.91 0.99 

Classification with the Minimum Distance algorithm (DM) 

Year 2000 2020 

Overall Accuracy (%) 71.33 87.26 

Kappa (%) 0.64 0.84 

Classification with Neural Network algorithm (NN) 

Year 2000 2020 

Overall Accuracy (%) 95.43 95.43 

Kappa (%) 0.95 0.96 

Classification with the Parallepiped algorithm (Para) 

Year 2000 2020 

Overall Accuracy (%) 24.93 32.83 

Kappa (%) 0.27 0.43 

Classification with the Spectral Angle Mapper algorithm (SAM) 

Year 2000 2020 

Overall Accuracy (%) 87.12 90.30 

Kappa (%) 0.83 0.88 

In order to characterize the dynamics of land use in the rural commune of 

Kipushi, we have at this stage assigned a specific class to each pixel. The 

classifications integrated the pixels according to their attributes by linking them to an 

object (region of interest: ROI). The assignment of a pixel was based on the 

resemblance between the spectral signature of the pixel and the spectral signature of 

the class according to the prescription of [46]. 

2.4.5. Change detection 

The highlighting of the human impact on the change of land use in the area was 

obtained using the transition matrix created to identify the transition frequencies 

between land use classes over the time interval studied [47]. This matrix is obtained 

by crossing the land use maps of two comparative periods (2000 and 2020). Indeed, 

the transition matrix is one of the main models for assessing landscape changes [47]. 

It is a graph showing the transitions between classes over a given period, therefore 

the transition percentages observed over a specific time [11]. 

In this study, the comparative transition matrices were developed in post-

classification processing after classification with the algorithms of Maximum 

likelihood, minimum distance, neural network, parallelepiped, and spectral angle 

mapper. Table 3 compares their performances via the analysis of Landsat TM (2000) 

and ETM+ (2020) images covering the CRK. 
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Table 3. Accuracy assessment and area estimate for land cover and land cover change maps from 2000 to 2020. 

2000–2020 Waters and wetlands Built-up Bare soil Mine materials Degraded forest Less degraded forest 

Accuracy measure 

Prod. acc. 78.51% 40.58% 48.55% 42.83% 85.73% 55.62% 

User acc. 100% 100% 100% 100% 100% 100% 

Overall acc. 95.43%      

Stratified estimators of area ± CI [% of total map area] 

Area 21.49% 59.42% 51.45% 57.17% 14.23% 44.38% 

95% CI −13.8% 6.88% 83.43% −47.77% 3.96% −15.51% 

Robustness tests were carried out on matrices of class separabilities and 

transitions whose statistical characteristics express the merit of each of the five 

methods evaluated. 

3. Results and discussion 

3.1. Land cover mapping 

 
Figure 4. Classification from the methods evaluated for the years 2000 and 2020. 
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This study produced ten land cover maps from these analyses based on five 

classification algorithms. The interpretation based on visual analysis of the results 

revealed that each of the six land cover classes assessed presents either a regressive 

trend or a progressive trend in terms of spatiotemporal dynamics. In detail, the 

change matrix recorded a decrease in less degraded forest cover in 2020 compared to 

2000. Indeed, the large forest areas that dominated the landscape of the Kipushi 

mining locality (LMK) in 2000 have been replaced by bare soil, buildings and 

degraded forests (Figure 4). 

3.2. Land cover composition based on results: LM, DM, NN, Para and 

SAM 

The evaluation of the five classification methods, namely, Maximum 

Likelihood (ML), Minimum Distance (MD), Neural Network (NN), Parallelepiped 

(Para) and Spectral Angle Map (SAM), shows that the Para and DM classification 

algorithms were less efficient. With their respective Kappa scores ranging between 

0.27 (image 2000) and 0.43 (image 2020) for Para and between 0.64 (image 2000) 

and 0.84 (image 2020) for DM. The results from the SAM classifier were 

satisfactory for the Kappa score of 0.83 (2000) and 0.88 (2020). The ML and NN 

were more suitable for the study area. Their respective Kappa scores had varied 

between 0.91 (image 2000) and 0.99 (image 2020) for the LM and between 0.95 

(image 2000) and 0.96 (image 2020) for the NN algorithm. As we could read via 

Table 2, their performances were better compared to those shown by the Kappa 

scores obtained with the three other methods: Para, DM and SAM. 

3.3. Land cover transfers between 2000 and 2020 

In the study area, degraded forest was found to be the most stable land use class 

between 2000 and 2020 (Table 3). The built-up area class comes second with a 

stability of around 7%. Furthermore, the remarkable dynamics of the bare soil class 

emerged in the landscape, particularly at the expense of less degraded forest 

(−15.51%), water and wetlands (−13.8%) and bare soil (83%). wooded savannah 

(3.1%) and grassy savannah (1.0%). In the interval of the study period, 60% of the 

quarry and mining materials occupation class evolved towards bare soil (55%) and 

built-up soil (5%). Between 2000 and 2020, the other classes (Waters and wetlands, 

bare soil, less degraded forest) of the mining locality of Kipushi decreased in favor 

of Built-up; in variable extents (2.5% to 17.6%). Table 4 below provides a summary 

of the changes that each of the occupation classes had recorded in 20 years. 

Table 4. Estimation of land use conversions between 2000 and 2020 in the mining town of Kipushi. 

2000–2020 Waters and wetlands Built-up Bare soil Mine materials Degraded forest Less degraded forest 

95% CI −13.8% 6.88% 83.43% −47.77% 3.96% −15.51% 
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3.4. Dynamics of spatial changes 

Table 5. Transition probability matrix (as a percentage of class area) illustrating the conversion of land use class areas 

between 2000 and 2020 in the Kipushi mining town. The stability of the land use area is illustrated by the bold values. 

LM 2000–2020 Waters and wetlands Built-up Bare soil Mine materials Degraded forest Less degraded forest   

Waters and wetlands 13.60 0.18 0.00 0.01 0.42 0.20   

Built-up 0 2.85 1.59 0.15 0.15 0.00   

Bare soil 0.00 0.76 5.30 0.15 0.13 0.00   

Mine materials 0.00 0.99 0.59 20.36 0.09 0.00   

Degraded forest 0.14 1.11 2.94 0.11 17.10 6.95   

Less degraded forest 0.00 0.03 0.06 0.01 13.81 10.20   

Total 13.74 5.92 10.49 20.78 31.71 17.36 100.00  

DM 2000–2020 Waters and wetlands Built-up Bare soil Mine materials Degraded forest Less degraded forest   

Waters and wetlands 15.90 0.00 0.00 0.00 0.13 0.01   

Built-up 0.00 8.30 0.10 0.01 0.00 0.04   

Bare soil 0.00 0.07 14.20 0.21 0.00 0.00   

Mine materials 0.00 0.63 0.17 26.50 0.00 0.00   

Degraded forest 0.08 0.79 0.00 0.03 12.20 2.34   

Less degraded forest 0.10 0.00 0.00 0.00 8.80 9.39   

Total 16.07 9.79 14.47 26.75 21.13 11.78 100.00  

NN 2000–2020 Waters and wetlands Built-up Bare soil Mine materials Degraded forest Less degraded forest   

Waters and wetlands 14.10 0.00 0.00 0.00 1.17 1.29   

Built-up 0.00 3.45 0.01 0.13 0.02 0.00   

Bare soil 0.00 0.22 8.60 0.00 0.21 0.00   

Mine materials 0.03 1.51 0.00 25.70 0.50 0.00   

Degraded forest 0.09 0.75 0.00 0.01 17.10 10.44   

Less degraded forest 0.01 0.04 0.00 0.00 1.30 13.30   

Total 14.24 5.97 8.61 25.84 20.31 25.04 100.00  

Para 2000–2020 Waters and wetlands Built-up Bare soil Mine materials Degraded forest Less degraded forest Unclassified 

Waters and wetlands 11.50 0.00 0.00 0.00 0.00 0.00 0.00  

Built-up 0.00 4.00 0.01 0.00 0.00 0.00 0.00  

Bare soil 0.00 0.01 6.80 0.00 0.00 0.00 0.00  

Mine materials 0.00 0.00 0.00 12.60 0.00 0.00 0.00  

Degraded forest 0.00 0.00 0.00 0.00 15.82 0.00 0.00  

Less degraded forest 0.00 0.00 0.00 0.00 0.00 13.01 0.00  

Unclassified 0.03 0.13 0.08 0.30 7.94 7.91 19.85  

Total 11.53 4.14 6.89 12.90 23.76 20.92 19.85 100.00 
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Table 5. (Continued). 

SAM 2000–2020 Waters and wetlands Built-up Bare soil Mine materials 
Degraded 

forest 
Less degraded forest  

Waters and wetlands 12.30 0.02 0.00 0.00 0.00 0.00  

Built-up 0.00 5.24 4.79 0.05 0.53 0.00  

Bare soil 0.00 0.65 7.54 0.24 0.05 0.00  

Mine materials 0.00 0.48 0.03 23.78 0.00 0.00  

Degraded forest 0.02 0.01 0.51 0.08 18.68 8.18  

Less degraded forest 0.00 0.00 0.00 0.00 4.31 12.50  

Total 12.33 6.41 12.87 24.15 23.56 20.68 100.00 

The analysis and interpretation of Table 5 highlight two major phenomena: 

Attrition and aggregation; which have affected, with varying intensities, the land use 

classes of the mining locality of Kipushi (LMK). On the one hand, the respective 

regressions of the classes: Water and wetlands, Mining materials and less degraded 

forest could be explained by the predominance of the fragmentation process of the 

blocks (plots) constituting the previously mentioned classes. The class of mining and 

quarry materials formerly stored in the form of backfill was striking in the landscape 

of the LMK. Its dynamics in the Katanga CopperBelt could be explained by the 

anthropic-geomorphological mutations studied by [47]. On the other hand, the bare 

soil, the degraded forest and the Built which have spatially conquered spaces would 

have undergone the phenomenon of aggregation; since we observed decreases in the 

spatial dispersions of the pixels constituting these last three classes in favor of the 

increase in their areas marked by the gain in occupied areas. 

4. Discussion 

Many studies: [8–12,14,22] etc. have addressed the problem of detecting land 

use changes in the Lubumbashi region and its surroundings, but they have not 

explored the technique of concatenation of spectral indices (NDVI, NDBI and 

NDWI), nor addressed the problem of evaluating classification methods, evaluated in 

this manuscript. Research similar to ours has been conducted by [43,48] for the 

delimitation of urban areas or for the detection of land use changes [49] from a 

Landsat image. Their studies had valued the NDBI or the NDVI and the NDWI and 

without favoring the technique of concatenation of three indices (NDVI, NDBI and 

NDWI) used by the present study. This is highlighted by the divergence of our 

respective results. For example, Zha Y, Gao J, Ni S. [43] achieved an overall 

accuracy of 39.82% with the NN algorithm in mapping urban areas of Nanjing city 

in southeast China. 

The NN method finds pixel clusters in spectral terms and not in thematic terms. 

Unlike the SAM approach frequently used in spatiotemporal assessment of urban 

extensions [50]. Its advantage is that it assigns each pixel in the image to a class by 

comparing it to reference samples [51]. In this way, the success of remote sensing 

image classification will depend on many factors such as the availability of high-

quality remote images and auxiliary data, the design of a procedure, the choice of an 

appropriate classification method, and the skill and experience of the analyst [52]. 
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5. Conclusion 

The study aimed to evaluate five classification algorithms: (1) Maximum 

likelihood (ML); (2) minimum distance (MD); (3) neural network (NN); (4) 

parallelepiped (Para); and (5) spectral angle mapper (SAM). To identify which of 

these five methods would be suitable for mapping land use dynamics in the mining 

city of Kipushi. This evaluation proceeded by supervised classifications on Landsat 

optical images and on the concatenation products of neoimages from 2000 and 2020, 

resulting from the combination of spectral indices: NDVI, NDBI and NDWI; finally 

to search for the robust tool for extracting the information contained in the images 

and their adequate groupings, before the multi-date comparison of the results. 

The results of the land use mapping obtained in this study showed that each of 

the six land use classes assessed presents either a regressive trend or a progressive 

trend in terms of spatiotemporal dynamics. In detail, the change matrix recorded a 

decrease in less degraded forest cover in 2020 compared to 2000. Indeed, the large 

forest areas that dominated the landscape of the Kipushi mining town in 2000 have 

been replaced by bare soil, buildings and degraded forests. 

It was found that among the five classification methods (LM, DM, NN, Para 

and SAM) the Para and DM classification algorithms were less efficient. Their 

respective Kappa scores ranged between 0.27 (2000 image) and 0.43 (2020 image) 

for Para and between 0.64 (2000 image) and 0.84 (2020 image) for DM. While the 

results from the SAM classifier were satisfactory with the Kappa score of 0.83 

(2000) and 0.88 (2020). The LM and the NN were more suitable for the study area. 

Their respective Kappa scores had varied between 0.91 (image 2000) and 0.99 

(image 2020) for the LM and between 0.95 (image 2000) and 0.96 (image 2020) for 

the NN algorithm. Their performances were better compared to those shown by the 

Kappa scores obtained with the other three methods: Para, DM and SAM. 

The results presented in this work are focused on traditional algorithms. Future 

research should look at the concatenation of land use indices applied in machine 

learning and deep learning in heterogeneous mining environments to test the 

robustness of existing models. 
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