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ABSTRACT
Tidal sea level variations in the Mediterranean basin, although altered and amplified by resonance phenomena in

confined sub-basins (e.g., Adriatic Sea), are generally confined within 0.5 meters and exceptionally up to 1.5 meters. Here
we explore the possibility to retrieve sea level measurements using data from GNSS antennas on duty for ground motion
monitoring and analyze the spectral outcomes of such distinctive measurements. We estimate one year of GNSS data
collected on the Mediterranean coasts in order to get reliable sea level data from all public-available data and compare it
with collocated tide gauges. A total amount of eleven stations was suitable for interferometric analysis (as for 2021) and
all were able to supply centimeter level sea level estimates. The spectra in the tidal frequency windows are remarkably
similar to tide gauges data. We find that the O1 and M2 diurnal and semidiurnal tides and MK3, MS4 shallow sea water
tides may be disturbed by aliasing effects.
keywords: GNSS Reflectometry; sea level variations; tides; Mediterranean Sea

1. Introduction
Sea level is considered an Essential Ocean Variable (EOV) by the

Global Ocean Observing System[1]. Since the XIX century tide gauges
are a key procedure to monitor the sea level. Tide gauges measure the
relative sea level (RSL) with respect to a local reference on land and
are currently used to study mean sea level variations, assess anomalous
events, make tidal predictions, develop geodetic applications and
support harbor operations and navigation. RSL is a combination of
global sea level variations and local vertical land motion; tide gauges
only measure the sea level with respect to the local ground, without
regard to ground movement. As demonstrated by Larson et al.[2], sea
surface height can be monitored at the level of a few centimeters using
a single GNSS antenna facing the seashore. In that case, the local
reference point matches with the GNSS antenna mount that can be
monitored directly in a global reference frame. Therefore, the GNSS-
derived sea level is consistently an absolute measurement, sensitive to
the absolute sea level trend. The technique is based on the
Interferometric Reflectometry (IR) process and uses the signal-to-noise
ratio (SNR) measured for each GNSS carrier frequency. The SNR,
recorded for each GNSS satellite’s carrier frequency, contains a
characteristic interference pattern caused by the signal reflection on a
planar reflector underlying the GNSS antenna, i.e., the Sea surface, and
proportional to the reflector’s height. Thus, sea level variations become
available through the analysis of GNSS-SNR data. We screened all
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existing GNSS stations in the Mediterranean area to assess the feasibility and the precision of the technique. 
For those stations that allow the estimation of sea level, we estimate one year of sea level variations (2021) 
and compare it to the nearest tide gauge. 

2. Data source and analysis methods 
In the Mediterranean area, EUREF (European Geodetic Reference Frame) and other national based GNSS 

networks usually provide high-quality observations aimed to obtain time series of precise positions. We select 
all sites located very close to the seashore in which the antenna height does not exceed 20 meters from the Sea 
surface. We limit the observations to very low elevation angles (<30°) and adopt a proper azimuthal mask for 
each site in order to maximize the Sea surface visibility, avoiding obstructions or other sources of reflections 
on the ground. All GNSS data analyzed in this work are available on the web (verified on 31 December 2022). 

We estimate Sea-level variations using the “gnssrefl” open source software available on the github 
platform (https://github.com/kristinemlarson/gnssrefl[3]). The software extracts the SNR data from the RINEX 
raw data and analyzes the interference pattern caused by the beating signal between the direct and reflected 
GNSS signal during satellites’ rising and setting periods. It performs the analysis for each available carrier 
frequency and for each available satellite, in any given range of elevation and azimuthal angles. The azimuth-
elevation mask is easily restricted using the web-app developed by the GNSS-IR research group (https://gnss-
reflections.org/rzones). It allows visualizing actual reflection zones in the surroundings of the GNSS antenna 
and determining the optimal azimuth and elevations ranges. The analysis software then estimates the reflector 
height (i.e., the Sea level height) at each satellite pass and for each carrier frequency, crossing the azimuth-
elevation sector. This produces a time series of reflector heights (RH) determined at times of satellite’s pass 
that represents the raw GNSS estimates of the Sea level. Since the sea-surface is not stationary during the 
satellite’s pass, all height determination are corrected for the instantaneous sea-level variation (Hdot correction, 
Larson et al.[4]). We adopt a running box average to smooth the Sea level time series, using a sliding window 
of 2–3 h, depending on the noise content of the series. 

The number of daily Sea level determinations depend mainly on the Sea surface visibility and the number 
of satellites tracked by the receiver; we generally observe an average of 60 up to 200 determinations per day 
(see Table 1). High sampling rates allow sub-daily tidal determinations but, at the same time, the estimates are 
unevenly sampled since the satellite’s transits do not repeat at regular time intervals. 

Table 1. GNSS stations analyzed in this study, among all public stations only 11 allow reliable sea level variations estimation. The 
last two columns in the table report the correlation coefficient computed among sea level estimates and Tide Gauges data, and the 
relative noise. i.e., the standard deviation of differences. 

Place Site ID Net Sats Lat (°) Lon (°) N.obs 
day1) 

Average 
height 

Tide gauge Corr 
(%)2) 

Noise 
(cm) 

Barcelona, ES BCL1 IGNE G, R, E, C 41.3418 2.1657 112 7.0 Barcelona, ES 96.2 2.9 

Melilla, ES MLLL IGNE G,R,E,C 35.2907 −2.9285 218 4.9 Melilla, ES 94.8 2.9 

Tarifa, ES TAR0 EUREF G,R,E 36.0086 −5.6027 132 8.6 Tarifa, ES 98.4 4.8 

S.Severa, FR LURI RGP G,R 42.8884 9.4759 66 6.0 Centuri, FR 90.5 5.1 

Tarragona, ES TRRG IGNE G,R,E,C 41.0790 1.2132 55 6.0 Tarragona, ES 85.0 5.7 

Alicante, ES ALAC EUREF G,R,E,C 38.3389 −0.4812 126 13.5 Alicante, ES 83.2 7.4 

Sète, FR SETE RENAG G,R,E 43.3976 3.6991 68 5.5 Sète, FR 84.0 8.0 

Mallorca, ES MAL1 IGNE G,R,E,C 39.5602 2.6375 63 5.0 Mallorca, ES 79.6 8.3 

P.Garibaldi, IT GARI EUREF G,R,E,C 44.6769 12.2494 67 7.7 Ravenna, IT 87.9 8.3 

Poreč, HR PORE EUREF G,R,E 45.2260 13.5951 58 22.1 Venezia19, IT 90.9 10.5 

Venezia, IT VEN1 EUREF G,R,E,C 45.4306 12.3541 128 16.9 Venezia19, IT 92.0 11.3 

1) N.obs day: Average number of observations per day; 
2) Corr: correlation 

https://github.com/kristinemlarson/gnssrefl
https://gnss-reflections.org/rzones
https://gnss-reflections.org/rzones
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Among all the public GNSS permanent stations, we found only eleven stations suitable for the GNSS-IR
analysis (see Figure 1). The most common factors that prevent Sea level determinations are: 1) the absence of
SNR observations registered in the RINEX files, 2) a high elevation mask, typically set to 10° and finally, 3)
unfavorable position or reduced Sea surface visibility. Most of the receivers considered in this work have the
multi-constellation tracking capability (at least GPS, Glonass and Galileo) and almost all of them are located
within a short distance (less than 20 km) from an active tide-gauge station. The Sea level estimates are
compared and cross-correlated with the nearest Tide-gauge data. The cross-correlation procedure foresees the
following steps: both the GNSS and Tide-gauge time series are smoothed through a moving average filter
using a 3-hour sliding window in order to filter out the high frequency signal. The filtered series were then
linearly interpolated at hourly time intervals and eventual data gaps were discarded in both time series. Finally,
we used the Matlab® function xcorr to compute the normalized cross-correlation among the two series. Note
that the correlation coefficient encompasses the daily tidal signatures, since the smoothing procedure does not
alter the diurnal and sub-diurnal tidal bands. The same interpolated series are then used to compute residuals,
so to assess the relative agreement of the sea-level measurements. The GNSS-IR and Tide-gauge time series
are aligned by subtracting an arbitrary average value computed over the entire observation period.

Figure 1. Map of the Mediterranean region showing the GNSS stations (red circles) and tide gauges (blue triangles) considered in
this work.

We also compare the spectra of the GNSS and tide gauge data in order to evaluate the sensitivity of
GNSS-IR data at different frequencies. We evaluate the Lomb-Scargle periodogram using the “plomb”
function of Matlab® software[5]. This algorithm is able to deal with unevenly and randomly sampled data. The
first requirement is undoubtedly met for GNSS reflection observations, since they rely on satellite’s pass and
cannot be regularly sampled, instead random sampling is generally not met because satellites do exhibit
systematic revisit periods. Hence, the sea level data are somehow in between evenly and randomly sampled
data. A simple test conducted on a synthetic signal will clarify some theoretical aspects of non-randomly
sampled data in appendix A. In paragraph 4 we briefly discuss the effects of GNSS constellation periodicities
on the sea level periodograms.

3. Sea level results
In Figure 2, we show the sea-level time series obtained at Melilla, the autonomous city of Spain in North

Africa (GNSS station MLLL located on the edge of a large pier in the port of Melilla). The color of sea-level
markers show the satellite’s constellations that contribute to the estimation, in this case all four constellations
are useful for IR observations throughout the year. In the bottom panel of Figure 2, the GNSS time series is
compared with mareographic data recorded from a station located a few meters away from the GNSS antenna.
In this case we observe an average discrepancy of about 3 centimeters between GNSS and tide gauge data.
The sea level variations of all stations are reported in supplementary Figure 1S, where the observations are
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distinguished by satellite constellations. In general at least three constellations (GPS, GALILEO and 
GLONASS) are always available and for half of the stations also BEIDOU satellites are available. The number 
of observed satellites depend on the tracked frequencies of the GNSS receiver, each constellation contribute 
with a few tens of observations per day (see supplementary Figure 2S), the most prolific being the GPS 
satellites. On average, most of the stations provide 2–3 observations per hour, all over the day (see 
supplementary Figure 3S). 

 
Figure 2. Top, one year of GNSS-IR Sea level estimates (different colors for each satellite constellation) at Melilla GNSS station 
(MLLL, IGNE network). Bottom, a zoom at mid of March for the same data compared with sea level data observed at the collocated 
tide gauge (Meli). 

Not all stations yield similar residuals, the noise of the sea-level measurements depends partly on the 
nearby freight activities. Harbors and piers, where GNSS antennas are usually hosted, may be very busy 
environments in which marine traffic, boat docking and cargo operations cause odd reflections that may bias 
the measurements in different ways. Table 1 summarizes the results in terms of residuals for all stations 
analyzed in this study. We define the discrepancy as the standard deviation (STD) of residuals between the 
GNSS and tide gauge sea levels, both series interpolated at hourly values. The best agreement has been 
observed for BCL1 and MLLL stations (Barcelona and Mellilla, respectively), both showing 29 mm of STD. 
The worst agreement is found at VEN1 (Venezia, Italy) with 113 mm, but here the tide gauge is located just 
outside the lagoon of Venice whereas the GNSS antenna is facing the “Canal Grande” inside the lagoon at 5 
km distance from the tide gauge. Thus, we expect these differences to be caused principally by different tidal 
responses at these two sites. The overall correlation coefficient computed over the entire year of data is always 
greater than 80% approaching 98% for the best case (see Table 1). 

In Figure 3, we display the spectral coherence obtained after stacking all GNSS results in order to get a 
global overview at different frequencies. The most outstanding coherence is in the diurnal and semidiurnal 
band (>75%), i.e., where the strongest gravitational tidal constituents are effective. Lower coherence (10%–
20%) is observed in the ter-diurnal and quarter diurnal band, where GNSS show a certain degree of coherence 
with these particular overtides and compound tides caused by shallow water effects. As an example, we 
illustrate in Figure 4 the spectrum of station TAR0 (Tarifa, Spain), all others are reported in supplementary 
Figure 5S. The spectra are limited to four main spectral windows (near 1-2-3-4 cycles/day) and both the GNSS 
and tide gauge sea level spectra are overlayed in the same graph. In the diurnal band, the K1 tide (luni-solar 
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diurnal) is dominant and P1 (solar diurnal) and O1 (lunar diurnal) are in most cases recognizable, although 
below the 1% threshold. The major tidal constituent is usually in the semidiurnal band M2 (lunar semidiurnal), 
related to the direct gravitational effect of the Moon resulting in two highs every 24 h and 50 min. Minor 
constituents are the S2 (solar semidiurnal) and N2 (lunar semidiurnal), that are visible well above the detection 
threshold for all stations. Higher frequencies are due to tidal distortion caused by shallow water effects, making 
the tides asymmetric so that tidal rise and fall are no longer equal. The ter-diurnal constituents, although 
recognizable by tide gauge and GNSS data, are always below the threshold and barely visible. Quarter diurnal 
constituents are almost ubiquitous, in which the M4 overtide and the compound tides MN4 and MS4 are 
significant in a few stations. 

 
Figure 3. Stacked spectral coherence of the GNSS sea level data for all 11 stations considered. Coherence is normalized, frequency 
is expressed in units of cycles per day. 

 
Figure 4. Spectra of one year of sea level determinations at TAR0 (Tarifa, ESP) GNSS station and tide gauge data. Tidal frequencies 
of the diurnal, semidiurnal, ter-diurnal and quarter diurnal constituents are shown respectively from left to right panels. Red line 
refers to the GNSS data and cyan line to the tide gauge data. The horizontal dashed line represents the 1% confidence level of the 
spectral amplitudes. 

4. Spectral leakage of GNSS-IR sea level data 
Here we will briefly summarize a spectral feature, very peculiar for GNSS data and may represent a 

source of confusion and misunderstanding of the results. GNSS satellites operate in almost circular orbits at 
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altitudes of about 20,000 km, and orbital periods of almost half of a sidereal day, (i.e., the sidereal day is the 
time the Earth takes to complete one rotation about its axis with respect to fixed stars). Because of the prograde 
orbits, the GNSS satellites’ revisit time (i.e., the time satellites need to pass over again, as viewed from the 
Earth), are close to one sidereal day. Moreover, GALILEO, GLONASS and BEIDOU satellites are arranged 
into three different orbital planes, containing each nominally eight satellites having orbital periods of 
respectively 14h 05’, 11h 16’ and 12h 53’. Whereas GPS satellites are distributed over six orbital planes 
containing each four satellites, having a revolution period of nearly 11h 58’, very close to half sidereal day 
(11h 58’ 02”). 

To get a rough idea of possible revisit times for satellites belonging to a given constellation, we can form 
integer combinations of the two fundamental oscillations, the satellite orbital period and the Earth rotation 
period. This dependency may formally be explicited as:  

𝑓𝑓𝑟𝑟 = |𝑛𝑛𝑓𝑓𝑆𝑆 + 𝑚𝑚𝑓𝑓𝐸𝐸| and 𝑛𝑛,𝑚𝑚 = ⋯ ,−2,−1, 0, 1, 2, … (1) 

where 𝑓𝑓𝐸𝐸  is the Earth rotation frequency and 𝑓𝑓𝑆𝑆 is the orbital frequency and 𝑓𝑓𝑟𝑟 are the resonance frequencies. 
Equation (1) identifies a family of GNSS system-specific signals that could affect the sampling rate of the 
observations. Such spurious signals, not correlated with sea level variations, are clearly visible in our spectra 
at different frequencies. As an example the spectra for station BCL1 (Barcelona, Spain) is shown in Figure 5 
for different satellite constellations, the satellite-specific resonant frequencies (Equation (1)) are indicated as 
grey vertical bars. The lowest frequency represents the fundamental revisiting frequency for that specific 
constellation, a sort of “beating frequency” that combines an integer number of Earth rotations and orbital 
revolutions. In terms of period, the revisiting frequency represents the smallest number of sidereal days that 
contain an integer number of orbits. All higher system-specific frequencies are harmonics (overtones) of this 
fundamental frequency. Assuming the aforementioned orbital periods for respectively GPS, GLONASS, 
GALILEO and BEIDOU constellations, we recognize the following revisiting frequencies: 2 orbits per day, 
17 orbits every 8 days, 17 orbits every 10 days and 13 orbits every 7 days. Resonances and aliasing produced 
by such signals on different geodetic parameters are well documented in the literature[6–11] In particular Ray et 
al.[11] first proposed a mechanism that involves the repeating geometry of the satellite constellation with respect 
to the tracking stations. The authors observe that the daily advance of the orbital repeat geometry causes an 
alias period of 350 days for the GPS constellation, so that any observational bias (such as multipath) could be 
expected to repeat at such aliasing period. Of course, since the sea level parameters are derived from the 
interaction of multipath disturbances on the recorded GNSS signal, we expect that these observations are 
strongly affected by the satellite’s repeating frequencies. 

This kind of leakage in the spectra can be reduced by interpolating the estimated time series at regular 
time intervals. In Figure 6 we show the spectra relevant to four different stations obtained from GPS 
observations only. The raw sea level data provide the dotted line whereas the interpolated data provide the 
solid line spectra. The effect of sampling leakage disappears below the significance level when the signal is 
re-sampled at evenly spaced time stamps, demonstrating the fictitious nature of such overtones. The critical 
issue is that the leakage frequencies appear also very close to the major tidal frequencies K1, P1, K2 and S2 (at 
1 and 2 cpd) and partly overlap with them. For this reason, the amplitude and frequencies of tidal components 
have to be interpreted with caution in GNSS-IR estimates. 
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Figure 5. Spectrum of BCL1 sea level data (red) and tide gauge data (cyan) at Barcelona harbor obtained with different constellation 
data (GPS, GLONASS, GALILEO and BEIDOU). Grey vertical lines indicate the family of system resonances for the given 
constellation, the inlet a), zooming at 2 cpd, shows the fine structure of the resonance for the GPS constellation). 

 
Figure 6. Spectra of Sea level data obtained from GPS data at four different stations. 

5. Discussion and conclusions 
The GNSS-IR sea level estimation in the Mediterranean area is feasible at the level of a few centimeters 

precision (ranging from 30 mm up to a hundred of millimeters), consistent with similar findings in the 
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literature[2,12–14]. The repeatabilities of sea level estimates, referenced with respect to tide gauge data, are 
summarized in Table 1 for the eleven GNSS stations considered in this study. Best performing stations are 
characterized by good visibility of the sea surface, relatively quiet environment with limited vessel traffic and 
are equipped with multi-satellite observing capabilities. All eleven GNSS stations sample multi-constellation 
observations at 30 s and are effective for sea-level recovery all around the year. The antenna heights range 
from a few meters above sea level to 22 meters in PORE station. Most of the stations belong to the EUREF 
permanent network and IGNE network in Spain. The majority of permanent stations located on the 
Mediterranean coasts lack at least one of the aforementioned conditions and could not provide reliable sea 
level estimates. Diurnal and semidiurnal frequencies are the most outstanding tidal signals with the dominant 
K1 and M2 tides, but also non-linear tidal components resulting from the interaction of major tides with the 
shallow sea, are clearly visible in the spectra. The ter-diurnal constituents are generally below the detection 
threshold and quarter-diurnal tides, i.e., the M4 overtide and the MN4 and MS4 compound tides, are 
recognizable in a few stations. 

We note that sampling satellite’s observables from the rotating Earth induce strong aliasing effects in the 
spectral output of sea-level estimates, in particular the GPS-derived estimates show severe aliasing effects 
causing spectral overtones at multiples of the sidereal frequency (see Figures 5 and 6). The aliased spikes 
occur close to diurnal O1 and semidiurnal M2 astronomical tides and near the non-linear MK3 and MS4 tidal 
components. Thus, suggesting a careful interpretation of those spectral components whenever the sea levels 
are determined by means of GPS observations. 

Space geodesy is the only tool that may establish a global reference frame in which to express local sea 
level data in a long-term consistent and global reference frame. For this reason, GNSS stations located on 
coasts are useful for climate change and coastal hazard studies. The present analysis recognizes only a limited 
number of GNSS stations available in the Mediterranean area for GNSS-IR studies. The feasibility of 
Interferometric Reflectometry depends critically on the location of the GNSS antenna in proximity of the coast, 
the visibility of the sea surface and the environmental noise. 

Supplementary materials 
As supplementary material we plot a series of station parameters to characterize the sea-level 

determinations at each of the 11 sites considered in this work (i.e., the number of observations per day and for 
different satellite constellations; the number of observations per hour stacked in the 24-hour window; the sea-
level spectral lines in the diurnal semi, ter, quater-diurnal frequency windows).  

In addition, we furnish the sea-level time series for all 11 stations as column-formatted ASCII files. 
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Data availability 
The original GNSS raw data are available on the following public web sites (see Table 1 to cross-

reference the network): 
EUREF: https://www.epncb.oma.be/ 
IGNE: ftp://ftp.geodesia.ign.es/ERGNSS 
RGP: ftp://rgpdata.ign.fr/pub/data 
RENAG: ftp://renag.unice.fr/data 

We download the Tide-gauge data from the Intergovernmental Oceanographic Commission web site: 
IOC: http://www.ioc-sealevelmonitoring.org 

The sea level datasets estimated from GNSS data in the current study are available in the supplementary 
material as simple ASCII files. 
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