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ABSTRACT 
Abrupt changes in environmental temperature, wind and humidity can lead to great threats to human life safety. The 

Gansu marathon disaster of China highlights the importance of early warning of hypothermia from extremely low appar-
ent temperature (AT). Here a deep convolutional neural network model together with a statistical downscaling framework 
is developed to forecast environmental factors for 1 to 12 h in advance to evaluate the effectiveness of deep learning for 
AT prediction at 1 km resolution. The experiments use data for temperature, wind speed and relative humidity in ERA-5 
and the results show that the developed deep learning model can predict the upcoming extreme low temperature AT event 
in the Gansu marathon region several hours in advance with better accuracy than climatological and persistence forecast-
ing methods. The hypothermia time estimated by the deep learning method with a heat loss model agrees well with the 
observed estimation at 3-hour lead. Therefore, the developed deep learning forecasting method is effective for short-term 
AT prediction and hypothermia warnings at local areas. 
Keywords: Apparent Temperature Forecasting; Deep Learning; Neural Network; Spatiotemporal Forecasting; AI Appli-
cations 

1. Introduction
Extremely low apparent temperature forecasting is of great im-

portance to protect people’s health and safety. Previous studies showed 
that more than five million deaths are related to non-optimum temper-
ature per year, accounting for ~9.4% of global mortality, of which 
8.52% are cold-related and 0.91% are heat-related[1,2]. The cold-related 
extreme events are a great threat to people’s lives and could bring 
potential mortality risk when the ambient temperature goes down 
quickly[3]. On 22 May 2021, 21 professional runners died from hypo-
thermia out of 172 participants in a 100 km marathon race in Jingtai 
County, Gansu Province, China[4], which is one of the most severe 
disasters in marathon history. The Gansu marathon disaster is at-
tributed to the abrupt decline of air temperature, strong wind, high 
humidity and the unawareness of the extreme event and the delayed 
weather forecasting service accounts partly for the disaster[5]. There-
fore, timely and accurate forecasting of the instantaneous cold event 
can help reduce socioeconomic losses[6]. The human-perceived tem-
perature, also called apparent temperature (AT), measures the 
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combined effect of air temperature, wind and relative 
humidity on human body feeling[7]. Hypothermia oc-
curs when the heat supply cannot satisfy the heat loss 
from low AT conditions for a continuous period, 
leading to a drop of body core temperature below 35 ℃ 
and potential symptoms such as shivering, mental 
confusion, cardiorespiratory failure or even death[8]. 
The Gansu marathon disaster occurred during the 
middle of the race (between the second and third 
checkpoint, out of the nine checkpoints) where the 
altitude is continuously increasing in this area[5]. The 
meteorological center of the Gansu government is-
sued a notice in the previous night that there is a drop 
in temperature with wind gusts and potential precip-
itation on 21–22 May, but could not predict the tim-
ing and spatial locations of the cold event[5]. There-
fore, the disaster-related early warning information 
in space and time is lacking for the marathon organ-
izer and runners to prepare for the potential risk. 

Data-driven forecasting using learning methods 
provides a way for prediction in near real time[9–11]. 
The data-driven methods predict the target variable 
for the future time period based on the learned rela-
tionships from historical data, which is appealing for 
its simplicity and usability[12,13]. The deep learning 
related forecasting methods have shown some poten-
tial for hydrometeorological prediction, such as sea 
surface temperature and precipitation[10,14,15]. The 
flexible model structures and the nonlinear modeling 
of deep learning methods provide powerful predic-
tive ability by elaborate training processes[14,16,17]. 
Compared with numerical models, the data-driven 
deep learning methods focus on the mathematical re-
lationships between predictors and predictands, 
while numerical models pay more attention to the 
physical mechanisms of system dynamics[11,13]. The 
data-driven deep learning methods can complement 
in physical process understanding through explora-
tory data modeling[18,19]. 

As mentioned above, the Gansu marathon dis-
aster is the compound effects of numerous relevant 
factors while the abrupt decline of temperature, 
strong wind gusts and high humidity are the direct 
causes[4,5]. Therefore, successful forecasting of these 
weather-related factors is the key of early warning of 
hypothermia and mortality caused by extreme AT. 

The numerical prediction is known to have a rela-
tively coarse spatial resolution and has uncertainties 
in parameterization and initialization[20–22]. The deep 
learning methods have shown some potential for 
short-term precipitation nowcasting, seasonal fore-
casting and multiyear oscillation prediction relative 
to numerical models[10,13,15,16]. For short-term 
weather forecasting or nowcasting, the deep learning 
models can learn the propagation and movement of 
weather patterns from spatial maps of historical ob-
servations[15,16], which is theoretically reasonable for 
extrapolating the weather process. The physics of 
weather processes are reflected in historical observa-
tions and are modeled by data-driven artificial intel-
ligence models. The intelligence models learn the 
potential physics from data and predict future pro-
cesses using the learned rules[23–25]. The forecasting 
processes are similar between intelligence models 
and numerical models from an application perspec-
tive[11]. Although the intelligence models may not 
beat numerical models[26], the former can be a strong 
supporter of the latter for earth system understanding 
and applications[11,13]. 

This study aims to develop a deep learning 
model and a statistical downscaling framework to 
predict AT conditions at 1 km resolution for 1 to 12 
h in advance. We show that the developed deep 
learning forecasting framework together with the 
heat loss model of human body is able to provide 
timely and useful disaster warning information for 
extremely low AT conditions for a few hours in ad-
vance. The developed framework can be used as a 
short-term forecasting tool to assist extreme low AT 
disaster prevention and warning at a relatively high 
spatiotemporal resolution for local areas. The rest of 
this study is organized as follows. Section 2 de-
scribes the methods and materials used. Section 3 
presents the results and discussions. Section 4 con-
cludes this study. 

2. Study area and methodology 
2.1 Study area 

The study area is the Gansu marathon area in 
Jingtai County, Baiyin City, Gansu Province, China 
(Figure 1). The Jingtai County features a temperate 
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arid continental climate, with large temperature dif-
ferences between the four seasons, low precipitation 
and concentration in the summer, low relative hu-
midity and high winds due to the relatively flat ter-
rain. The annual average temperature is 8.2 ℃, rain-
fall is 185 mm and the relative humidity is 56%. The 
marathon route starts from the bottom right corner of 
the study area in an anticlockwise direction. The dig-
ital elevation model (DEM) data is obtained from the 
Global 30 Arc-Second Elevation (GTOPO30)[27] at 1 
km resolution, and the resolution is consistent with 
the resolution of the experimental data after statisti-
cal downscaling for better data visualization and 
presentation. GTOPO30, whose full name is Global 
30 Arc-Second Elevation Data Set, is a global digital 
elevation model dataset produced and published by 
the United States Geological Survey (USGS). It co-
vers the elevation data of the global surface and can 
be used for Geographic Information System (GIS) 

analysis and applications on a global scale. The 
Gansu marathon disaster occurred between the 
checkpoint 2 (cp2) to cp3, where the elevation in-
creases continuously by approximately 1 km during 
the race. The marathon route from cp2 to cp3 is filled 
with hoodoos, which is one of the severest parts dur-
ing the 100 km ultramarathon. The extreme weather 
exhibits different spatial patterns over Gansu Prov-
ince in recent years, with increasing and decreasing 
precipitation extremes in the north and south of 
Gansu, respectively[28,29]. Although the temperature 
extremes may not increase in Gansu Province over 
the years, the compound weather conditions are 
fickle in this area. The abrupt change of one weather 
factor (e.g., temperature) may have limited effects on 
human body, while the abrupt changes of compound 
weather factors (e.g., temperature and wind speed) 
may cause great disasters such as the Gansu mara-
thon catastrophe.

 
Figure 1. A demonstration of the marathon region in Baiyin City, Gansu Province, China. The checkpoints from 1 to 9 are shown in 
the marathon route. “O” is the origin and “D” is the destination of the marathon route. 

2.2 The deep learning forecasting frame-
work 

Figure 2 demonstrates the developed deep 
learning framework for hourly AT prediction at 1 km 
resolution. Here the air temperature, wind gust and 
relative humidity variables are forecasted based on 
the historical observations in the previous three 
hours. The wind gust is the instantaneous 10 m wind 

gust over 3-second intervals from the fifth generation 
European Centre for Medium-Range Weather Fore-
casts (ECMWF) reanalysis (ERA-5) data[30], which 
is selected to highlight the potential mortality risk at 
an upper limit. The temporal weather memory is con-
sidered by including the data in the recent three hours 
and the spatial dependences are modeled by the spa-
tial convolution and pooling layers in the deep learn- 
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Figure 2. The developed deep learning framework for apparent temperature forecasting. 

ing model[15,16]. The 2-dimensional convolution 
modulates different predictors in space by multiple 
kernels, resulting in a series of feature maps used for 
subsequent processing. The max pooling layer ex-
tracts local typical features and reduces spatial di-
mensionality. The fully connected layer maps the in-
put features to output data through artificial neural 
networks. 

In the convolution process, the value of the jth 
feature in the ith convolutional layer for a specific 
pixel (x,y) (denoted as 𝑧𝑧𝑖𝑖,𝑗𝑗

𝑥𝑥,𝑦𝑦) is calculated as follows: 

𝑧𝑧𝑖𝑖,𝑗𝑗
𝑥𝑥,𝑦𝑦 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ��� � 𝑤𝑤𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑙𝑙,𝑚𝑚
𝑀𝑀𝑖𝑖

𝑚𝑚=1

𝐿𝐿𝑖𝑖

𝑙𝑙=1

𝐾𝐾𝑖𝑖−1

𝑘𝑘=1

𝑧𝑧(𝑖𝑖−1),𝑘𝑘
�𝑥𝑥+𝑙𝑙−𝐿𝐿𝑖𝑖2 ,𝑦𝑦+𝑚𝑚−𝑄𝑄𝑖𝑖2 �

+ 𝑏𝑏𝑖𝑖,𝑗𝑗� 

(1) 
where 𝐿𝐿𝑖𝑖 and 𝑀𝑀𝑖𝑖 are the horizontal and vertical di-
mensions of the convolution filter for the ith layer, 
respectively. A rectified linear unit (relu) function is 
used as the activation function. The convolution fil-
ter size is set at 2 × 2 for all the convolutional layers 
in Figure 2. 𝐾𝐾𝑖𝑖−1 represents the number of features 
in the (i − 1)th layer. 𝑤𝑤𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑙𝑙,𝑚𝑚  is the weight at point (x,y) 
for the convolution filter to connect the kth feature in 
the (i − 1)th layer to the jth feature in the ith layer. 
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𝑧𝑧(𝑖𝑖−1),𝑘𝑘
(𝑥𝑥+𝑙𝑙−𝐿𝐿𝑖𝑖2 ,𝑦𝑦+𝑚𝑚−𝑄𝑄𝑖𝑖2 )

 is the value of the kth feature in the 

(i − 1)th layer for the point (𝑥𝑥 + 𝑟𝑟 − 𝐿𝐿𝑖𝑖
2

,𝑦𝑦 + 𝑚𝑚 − 𝑄𝑄𝑖𝑖
2

). 

In the training process, the number of filters is 
set to 20, 30, 40 and 50 to consider the uncertainty of 
parameters to produce an ensemble of prediction. 
The ensemble mean is regarded as the forecasting re-
sult and the standard deviation is the predictive 
spread. The parameters are trained with an iteration 
of 1,000 epochs and an initial learning rate of 0.001. 
The Adam algorithm[31] is used to optimize the pa-
rameters with the mean square error loss function. 
The deep learning model is trained for 1–12 h lead 
times separately. The ERA-5 data during 2015–2018, 
2019–2020 and 2021 are adopted as the training data, 
validation data and testing data, respectively. 

The deep learning model is compared with two 
baseline forecasting methods, namely the climatol-
ogy forecast and the persistence forecast[32]. The cli-
matology forecast is to perform prediction using 
multiyear averaged values over the same hourly pe-
riod. For example, the climatology forecast for the 
8:00 temperature prediction on 21 May 2021 is esti-
mated by the averaged 8:00 temperature on 21 May 
from 2015 to 2020. The persistence forecast uses the 
weather memory in the previous day to forecast the 
weather today. The persistence forecast for the 8:00 
temperature prediction on 21 May 2021 is obtained 
using the observed temperature at 8:00 on 20 May 
2021. The two baselines are often used as references 
to measure the forecasting skill of new models[33]. 
The Pearson’s correlation coefficient and the root 
mean square error (RMSE) are used to assess the per-
formance of prediction. 

2.3 The statistical downscaling scheme 
The ERA-5 data is used to produce a prelimi-

nary forecasting result at a resolution of 25 km for 
the next 1 to 12 h. A statistical downscaling method 
is utilized to downscale the coarse-resolution fore-
casts to a fine resolution of 1 km. The downscaling 
method establishes a statistical relationship between 
the two spatial scales through a linear regression 
modeling[34]. The fine-resolution data is generated by 
a three-layer nested Weather Research and Forecast-
ing (WRF) model[35] with the Kain–Fritsch convec-
tive parameterization[36] and the Lin microphysics 

scheme[37] using the 0.25° National Centers for En-
vironmental Prediction (NCEP) Final Analysis (FNL) 
data[38] and is then used for regression. The statistical 
downscaling method assumes the stationarity be-
tween large and small-scale dynamics and ignores 
the complex interactions of predictors. The tempera-
ture variable is relatively continuous in space and is 
dependent on elevation, season, latitude and large-
scale weather conditions. The regression-based 
downscaling process could reflect the temperature 
variations with elevation, which is a key step for es-
timating temperature distinction in mountainous ar-
eas[39]. Based on statistical regression, the downscal-
ing of wind gusts and relative humidity can maintain 
the coarse-resolution variations and large-scale dy-
namics. 

The apparent temperature is calculated based 
on the following formula[7]. 

𝐴𝐴𝐴𝐴 = 1.04 × 𝐴𝐴𝑎𝑎 + 0.2 × 𝑟𝑟 − 0.65 × 𝑣𝑣 − 2.7 
(2) 

𝑟𝑟 =
𝑟𝑟ℎ

100
× 6.105 × 𝑟𝑟𝑥𝑥𝑒𝑒 �

17.27 × 𝐴𝐴𝑎𝑎
237.7 + 𝐴𝐴𝑎𝑎

� 

(3) 
where 𝐴𝐴𝑎𝑎 is the air temperature (℃); e is the water 
vapour pressure (hPa); v is the wind gust (m/s) and 
rh is the relative humidity (%). 

2.4 The heat loss model 

The heat loss model is constructed by the con-
sideration of radiation, convection and conduction 
processes[7,40–42]. In the radiation, core body tissues 
transfer heat in blood vessels by emitting infrared 
rays from the skin surface to lose heat. Convection is 
a heat transfer process from the skin to the surround-
ings by the movement of the fluid. Conduction is a 
process of the heat transfer from the hot area of an 
object to the cool area. In low temperature conditions, 
the heat loss due to evaporation is small and the 
evaporation process is neglected here. The heat loss 
formula is expressed as follows. 
𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑙𝑙 = 𝐿𝐿𝑟𝑟𝑎𝑎𝑑𝑑𝑖𝑖𝑎𝑎𝑡𝑡𝑖𝑖𝑡𝑡𝑑𝑑 + 𝐿𝐿𝑐𝑐𝑡𝑡𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖𝑡𝑡𝑑𝑑 + 𝐿𝐿𝑐𝑐𝑡𝑡𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖𝑡𝑡𝑑𝑑 

(4) 
𝐿𝐿𝑟𝑟𝑎𝑎𝑑𝑑𝑖𝑖𝑎𝑎𝑡𝑡𝑖𝑖𝑡𝑡𝑑𝑑 = 𝜖𝜖 ∙ 𝐴𝐴𝑐𝑐𝜎𝜎�𝐴𝐴𝑠𝑠𝑘𝑘𝑖𝑖𝑑𝑑4 − 𝐴𝐴𝑎𝑎4� 

(5) 
𝐿𝐿𝑐𝑐𝑡𝑡𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖𝑡𝑡𝑑𝑑 = �12.12− 1.16𝑣𝑣 + 11.6√𝑣𝑣� ∙ 𝐴𝐴𝑐𝑐

∙ (𝐴𝐴𝑠𝑠𝑘𝑘𝑖𝑖𝑑𝑑 − 𝐴𝐴𝑎𝑎) 
(6) 
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𝐿𝐿𝑐𝑐𝑡𝑡𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖𝑡𝑡𝑑𝑑 =
𝐾𝐾𝑐𝑐𝑡𝑡𝑑𝑑𝑑𝑑 ∙ 𝐴𝐴𝑐𝑐

𝐿𝐿
∙ (𝐴𝐴𝑠𝑠𝑘𝑘𝑖𝑖𝑑𝑑 − 𝐴𝐴𝑎𝑎)

=
𝐴𝐴𝑐𝑐
𝐼𝐼
∙ (𝐴𝐴𝑠𝑠𝑘𝑘𝑖𝑖𝑑𝑑 − 𝐴𝐴𝑎𝑎) 

(7) 
where 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑙𝑙  is the total heat loss; 
𝐿𝐿𝑟𝑟𝑎𝑎𝑑𝑑𝑖𝑖𝑎𝑎𝑡𝑡𝑖𝑖𝑡𝑡𝑑𝑑 ,  𝐿𝐿𝑐𝑐𝑡𝑡𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖𝑡𝑡𝑑𝑑  and 𝐿𝐿𝑐𝑐𝑡𝑡𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖𝑡𝑡𝑑𝑑  are the 
heat loss due to radiation, convection and conduction, 
respectively; 𝜖𝜖 is the emissivity of the skin and is 
set to 1 here[43]; 𝐴𝐴𝑐𝑐  denotes the uncovered body 
area and is assumed as 50% of the body area in mar-
athon race; 𝜎𝜎  is the Stefan-Boltzmann constant, 
5.67 × 10−8 W/m2/K4; v is the wind speed with a unit 
of m/s; The formula (12.12− 1.16𝑣𝑣 + 11.6√𝑣𝑣) is 
an empirical estimate of the wind cooling effect on 
human body and is valid between 2 m/s and 20 
m/s[44,45]; 𝐾𝐾𝑐𝑐𝑡𝑡𝑑𝑑𝑑𝑑 is the thermal conductivity of the 
clothing material; L is the thickness of the clothing 
material; 𝐼𝐼 = 𝐿𝐿/𝐾𝐾𝑐𝑐𝑡𝑡𝑑𝑑𝑑𝑑 is the insulation value of the 
clothes in the unit of clo; A long-sleeve dress shirt 
has an insulation value of 0.25 clo and a suit jacket 
has an insulation of 1.0 clo[46]; here the insulation 
value in the marathon race is set to 0.5 clo for a ref-
erence. 

The heat supply is mainly provided by body 
metabolism during the marathon race. The basal 
metabolic rate (BMR) is the basic rate of energy ex-
penditure when maintaining the body’s life-sustain-
ing function. When the body is at active during ac-
tivity, additional heat is generated compared to the 
resting condition and the total metabolic rate (TMR) 
will be 2–20 times of the BMR[47]. The BMR is cal-
culated based on the Mifflin-St Jeor equation[48] with 
a height of 1.7 m, a weight of 70 kg and an age of 30 
years old. The TMR is set as 10 times of the BMR 
during the Gansu marathon race, which is relatively 
a high rate as the limit of the top runners may be up 
to 16 times of the BMR[47]. The hypothermia time 
from heat loss is estimated by calculating the time of 
heat loss from the normal body temperature (37 ℃) 
to the moderate hypothermia temperature (32 ℃). 
The coordinated universal time (UTC) is used 
throughout the study, while the Beijing time is eight 
hours ahead of UTC (UTC + 8:00). 

3. Results and discussions 

3.1 Overall performance of temperature, 
wind and relative humidity forecasting 

The predictive skills of temperature, wind gust 
and relative humidity by deep learning, climatology 
and persistence forecast methods are shown in Fig-
ure 3. The correlation of hourly temperature predic-
tion is close to 0.9 even at 12-hour lead for the deep 
learning method, much higher than the climatology 
and persistence approaches which have a correlation 
below 0.7 (Figure 3a). The average RMSE of hourly 
temperature prediction in May 2021 is about 3 ℃ for 
the deep learning model at 12-hour lead, lower than 
the reference methods (Figure 3b). The performance 
of wind gust prediction for deep learning method is 
better than climatology forecast for 1–7 h leads and 
may not contrast with climatology at longer lead 
(Figure 3c–d). As for the relative humidity, the pre-
dictive performance for deep learning outperforms 
persistence forecast at 1–8 h leads in terms of the cor-
relation and at 1–12 h leads in terms of RMSE (Fig-
ure 3e–f). 

Figure 4 exhibits the predictions of temperature, 
wind gusts and relative humidity by deep learning 
for 1-hour and 3-hour leads. The predicted and ob-
served time series of air temperature are consistent 
with each other, with a correlation of 0.98 and 0.97 
and a RMSE of 1.19 ℃ and 1.56 ℃ for 1- and 3-
hour leads, respectively. The wind gust prediction is 
similar to observations, both for mild winds and 
strong gusts, with an average of RMSE of 1.78 m/s 
and 2.60 m/s, respectively at 1- and 3-hour leads. As 
for the relative humidity, a correlation coefficient of 
0.96 (0.91) and a RMSE of 7.08% (9.38%) are ex-
pected for 1- and 3-hour prediction, respectively. 
These predictions suggest overall consistency with 
observations over the Gansu marathon region, indi-
cating the efficiency for early warning of extreme 
weather events by the deep learning model. 

3.2. The forecasting of apparent temperature 
by different methods 

Different results were obtained using different 
methods for predicting AT in the Gansu marathon 
region (Figure 5). The deep learning prediction ex-
hibits good consistency with observation for 1-hour 
and 3-hour AT forecasts, better than the climatology 
and persistence methods (Figure 5a–b). The clima-
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Figure 3. The performance of temperature, wind and relative humidity prediction by different forecasting methods. 

 
Figure 4. The observed and predicted temperature, wind gust and relative humidity prediction by deep learning for 1-hour and 3-
hour leads over the Gansu marathon region. 

tology forecast attempts to average the historical ob-
servations and cannot predict the anomalous high 
and low values[32]. The persistence forecast utilizes 
the weather memory and is not suitable for regions 

where the weather changes rapidly, especially for ex-
treme events. For example, the persistence method 
predicts an extremely low AT on 15 May 2021, 
which overestimates the AT severity considerably. 
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The deep learning model learns the relationship be-
tween large-scale weather dynamics and the weather 
in the target region, such as the spatial propagation 
and movement[15,16,49]. 

The correlation coefficient of AT prediction de-
creases with the increase of lead time (Figure 5c), 
with a value of 0.97 at 1-hour lead and 0.76 at 12-
hour lead, much higher than the climatology (0.56) 
and persistence methods (0.49), consistent with the 
decreasing trend with lead in previous studies[10,16,50]. 
The RMSE of AT prediction by deep learning is 
2.0 ℃ and 4.4 ℃ at 1-hour and 12-hour leads, re-
spectively, much lower than the climatology (5.2 °C) 
and persistence (6.3 ℃) forecasts (Figure 5d). As 
for the spatial patterns, the deep learning prediction 
exhibits the similar spatial distribution of AT with 
observation at 3:00, 21 May 2021 (Figure 5e–f), 
while the climatology and persistence methods can-
not capture the abrupt decline of AT this time (Fig-
ure 5g–h). 

The predictive uncertainty of deep learning is 
represented by the spread of the forecasting from dif-
ferent kernel parameters. The predictive uncertainty 
by deep learning from parameters is indicated in Fig-

ure 5a–d and is very small, suggesting that the num-
ber of kernel filters in the deep learning model has a 
very limited effect on the forecasting performance. It 
should be noted that other uncertainties exist in the 
prediction, including data, model structure and pa-
rameters[11,51]. The data uncertainty from ERA-5 is 
not estimated here as the in-situ measurements are 
not available. Different structures of deep learning 
models may lead to differences of forecasting accu-
racy. The deep convolutional neural network (CNN) 
model developed here considers the spatiotemporal 
interactions of multiple variables. The spatial convo-
lution weights the neighboring values to produce 
new features and the fully connected layer maps the 
input features into the outputs by neural net-
works[12,16]. The stacked convolution layers simulate 
nonlinear relationships of multivariate coupling. Pre-
vious studies have demonstrated that the stacked 
CNN models could model the spatial propagation of 
meteorological elements[10,14–16,49]. The important pa-
rameters in CNN models include the number of ker-
nels, kernel size and training rules. The variant ker-
nels can reflect the parametric uncertainty and the 
heuristic training ensures the optimal determination 
of model parameters[52].

 
Figure 5. The predictive performance of AT by different approaches in the Gansu marathon region. 
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3.3 Hypothermia time estimation and early 
warning of mortality 

Figure 6 demonstrates the estimated and pre-
dicted hypothermia time based on the method in sec-
tion 2 over the Gansu marathon region. According to 
observations, the estimated hypothermia time exhib-
its an abrupt decline on 22 May 22 2021 relative to 
21 May. At 6:00 on 21 May, the hypothermia time is 
estimated to be about 6 h (Figure 6a), while the hy-
pothermia time is approximately 30 min at 6:00 
(14:00 for Beijing time) on 22 May (Figure 6b). The 
3-hour prediction by deep learning can generally 
capture the temporal changes of hypothermia estima-
tion, while the climatology and persistence methods 
cannot (Figure 6a–b). The climatology and persis-
tence forecasts estimate a higher hypothermia time 
relative to observation and deep learning methods. 
Although the climatology and persistence ap-
proaches predict a similar hypothermia time in the 
morning of 22 May (2:00 for UTC), while the hypo-
thermia time is severely overestimated in the noon 
(5:00 for UTC). 

Figure 6c exhibits the monthly averaged hypo-
thermia time from observed data. The averaged hy-
pothermia time from checkpoint 2 (cp2) to cp5 is 
overall smaller than other parts of the marathon race 
due to high elevation. The deep learning prediction 
demonstrates a similar spatial distribution of hypo-
thermia time with observation (Figure 6d), while the 
climatology method overestimates the hypothermia 
severity (Figure 6e). The persistence prediction 
agrees well with observation on a monthly average 
(Figure 6f) because the majority of hourly predicted 
values are historical observations. For the day of the 
Gansu marathon disaster, the runners may lose the 
temperature quickly from cp2 to cp3 and may have a 
hypothermia risk within half an hour (Figure 6g). 
The deep learning model is capable of detecting the 
hypothermia risk versus observations for 3 hours in 
advance (Figure 6h), while the climatology and per-
sistence approaches considerably underestimate the 
hypothermia severity (Figure 6i–j).

 
Figure 6. The estimated and predicted hypothermia time by different forecasting methods. 
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Figure 7 demonstrates the correlation between 
the predicted hypothermia time and the observed es-
timation of the Gansu marathon region for the testing 
period. The developed deep learning model achieves 
a correlation coefficient of 0.95 with observations at 
1-hour lead and the prediction agrees well with ob-
servation, especially for hypothermia time less than 

150 min, which is very useful for short-term early 
warning of low-AT related mortality. The correlation 
coefficient for deep learning generally decreases 
with the increase in lead time, with a correlation of 
0.79 at 12-hour lead. The climatology and persis-
tence predictions are not comparable to deep learn-
ing results even at a 12-hour lead time.

 
Figure 7. Comparison of hypothermia time forecasting by different methods. 

Compared with existing forecasting studies[53–

55], the developed deep learning forecasting method 
is a data-driven end-to-end approach to model the 
spatiotemporal relationships between large-scale 
weather dynamics and the dynamics at local areas. 
The spatiotemporal relationships, including the 
movement of cold air, moisture transport and wind 
flow, are inherently simulated by neural network lay-
ers[9,10,13,56,57]. However, the simulations of these re-
lationships by deep learning cannot be explicitly ex-
pressed as differential equations like that of physical 
models, which is the major shortage of data-driven 
artificial intelligence methods. The interpretability 
of deep learning models can be improved by efforts 
in the model structure transparency, physical expla-
nations and understandable tools[18,19,58]. As the deep 

learning model learns the end-to-end relationship be-
tween predictors and predictands, the uncertainties 
of parameterization schemes in physical models are 
not reflected in deep learning models[11]. The deep 
learning based artificial intelligence models may not 
replace the physical models but can complement the 
physical process understanding and predictive mod-
eling[11,13,16]. 

3.4 The uncertainty of the forecasting skill 
The uncertainty of modeling results is related to 

the uncertainty of data processing and deep learning 
model parameters. Specifically, the data processing 
uncertainty comes from the uncertainty arising from 
the process of downscaling the data. Since the 
downscaling method of statistical regression may 



11 

have problems, such as overfitting and underfitting, 
the data may produce problems such as feature errors, 
which may lead to inaccurate prediction results of 
downscaled data and thus generate uncertainty. The 
uncertainty of deep learning model parameters 
comes from the uncertainty of CNN parameters, 
where factors such as model parameter initialization 
and optimization algorithms may lead to different 
parameters of the model, thus generating uncer-
tainty[11]. Therefore, data processing and the setting 
of model parameters are crucial to the performance 
and stability of modeling results. For example, here 
we consider the uncertainty of model parameters by 
combining the prediction results of different param-
eters, thus generating an ensemble of predictions, 
and treating the ensemble mean as the prediction re-
sult. 

4. Conclusion 
In this study, a deep convolutional neural net-

work model is developed to forecast the extreme AT 
over the Gansu marathon region. A heat loss model 
is used to calculate the hypothermia time from com-
pound effects of temperature, wind and relative hu-
midity to estimate the hypothermia risk. The deep 
learning model can capture the spatiotemporal pat-
terns of AT evolution and outperforms climatology 
and persistence forecasting methods up to 12-hour 
lead time. The abrupt decline of AT over the Gansu 
marathon region can be predicted by deep learning 
for at least 3 h in advance, which is effective for the 
timely warning of the potential disaster. 

The AT prediction at 1 km resolution is 
achieved through a statistical downscaling process. 
The high-resolution temperature forecasts through 
downscaling are elevation dependent and can reflect 
the spatial variations of temperature due to altitude 
changes, which is especially useful for mountainous 
areas. The direct forecasting at 1 km resolution with-
out the downscaling process is very computationally 
intensive and the numerical prediction at 1 km reso-
lution by nested weather model requires great com-
putation capacity[59]. Therefore, the simple statistical 
downscaling is a cost-effective tool to retrieve high-
resolution temperature prediction. The static statisti-
cal downscaling suffers from uncertainty in high-res-
olution wind gust and relative humidity simulations 

and can be improved by complex spatial downscal-
ing approaches. 

The heat loss model includes the modeling of 
radiation, convection and conduction processes to 
calculate the hypothermia time based on assump-
tions of metabolic rate of a normal person, clothing 
insulation and uncovered body area. In practical 
cases, these assumptions vary person by person and 
the real hypothermia time is dependent on numerous 
factors. Apart from the AT prediction, the estimated 
hypothermia time can be regarded as a reference for 
a preliminary inference of how long the hypothermia 
symptoms may happen. The heat loss model can be 
easily adapted to a specific person according to 
clothing and biological conditions to provide a 
timely warning of hypothermia risk. 

The developed deep learning model is cost-ef-
fective for the early warning of low-AT related hy-
pothermia and mortality. As soon as the deep learn-
ing model is trained using historical observations, 
the forecasting process is very fast and can be done 
in several seconds, which shows an advantage over 
numerical weather prediction. The deep learning 
model can be continuously fine-tuned using observa-
tions in near real-time for operational forecasting 
systems in order to persistently improve the predic-
tive performance. The training process for the devel-
oped deep learning model over large spatial scales 
may be computationally-intensive as that of numeri-
cal models. However, the instant prediction of deep 
learning model is promising for near-real-time fore-
casting applications in earth system science. 

Code availability 
The deep learning codes are written in Python 

language and are partly available on Github: 
https://github.com/xuleihuanying/appar-
ent_tem_forecasting. The code and datasets can be 
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