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ABSTRACT 
In order to strengthen the study of soil-landscape relationships in mountain areas, a digital soil mapping ap-

proach based on fuzzy set theory was applied. Initially, soil properties were estimated with the regression kriging (RK) 
method, combining soil data and auxiliary information derived from a digital elevation model (DEM) and satellite images. 
Subsequently, the grouping of soil properties in raster format was performed with the fuzzy c-means (FCM) algorithm, 
whose final product resulted in a fuzzy soil class variation model at a semi-detailed scale. The validation of the model 
showed an overall reliability of 88% and a Kappa index of 84%, which shows the usefulness of fuzzy clustering in the 
evaluation of soil-landscape relationships and in the correlation with soil taxonomic categories. 
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1. Introduction 
Emerging technologies have created new opportunities to support 

quantitative soil survey methods that generate predictions with greater 
precision and accuracy. However, the needs of users of soil information 
are diverse. Knowledge of the spatial variation of soil properties should 
satisfy the requirements of agricultural and environmental models, 
strengthen decision making related to the spatial variation of some par-
ticular soil properties as well as visualize the behavior of several relevant 
soil properties together in a model of spatial variation of soil classes. In 
this regard, digital soil mapping allows the representation of the spatial 
variation of specific soil properties, and provides the possibility of inte-
grating the various property models to obtain soil classes, in order to sup-
port decision making on soil conservation, watershed management and 
development of agro-environmental projects, among others. 

At present, numerous statistical models have been applied for the 
interpolation of soil properties, among which geostatistical methods 
stand out, which are demanding in terms of the number of samples and 
the small geographical extension they represent. One of the most signif-
icant methodological developments for the prediction of soil properties 
are the predictive methods that combine multiple linear regression and 
interpolation of residuals[1,2]. This method of analysis, together with the 
development of geographic information systems (GIS), supported with 
auxiliary information of adequate spatial resolution (DEM and its deriv-
atives, and satellite images), offers new opportunities 



 

69 

to produce edaphic information efficiently, in the 
shortest possible time. Similarly, fuzzy set theory[3] 
is one of the most important scientific advances used 
in soil classification. The algorithms developed un-
der fuzzy logic have the ability to learn from the data 
provided and to process a large amount of complex 
and imprecise information. This feature makes it 
possible to explore and evaluate soil-landscape rela-
tionships in highly complex sectors such as moun-
tainous areas. 

The aforementioned techniques provide a broad 
scientific basis for strengthening CDS. The RK 
model can play an important role in geostatistics, be-
cause many covariates are available with the ad-
vancement in remote sensing and positioning tech-
nologies[2]. Many studies have shown that RK is easy 
to use and its accuracy often outperforms ordinary 
linear regression, ordinary kriging[4] and co-kriging. 
In this regard, Bishop and McBratney found that RK 
is more accurate in predicting soil CEC; it has been 
of great importance in predicting effective soil 
depth[5], and is most appropriate when auxiliary in-
formation can explain part of the variation in the es-
timated variable[6]. 

The most relevant applications of fuzzy logic in 
the edaphological field stand out in: a) soil classifi-
cation[7–14]; b) soil survey and land assessment[15,16]; 
c) soil-landscape relationship modeling[17,18]; d) dig-
ital soil mapping[19–22]; e) soil property predic-
tion[23,24]; f) zones for site-specific management[25]; g) 
landscape ecology[26]; h) soil quality assessment[27,28]; 
i) land cover change assessment[29]. 

In most of the cases studied where fuzzy logic 
is applied, a set of soil data obtained from a system-
atic sampling is initially grouped. Subsequently, the 
ordinary kriging or cokriging interpolation method is 
applied for the estimation of soil properties, and fi-
nally the values of the membership function are in-
terpolated using the parameters obtained from the 
adjusted variograms for the prediction of soil prop-
erties. In other investigations, the algorithm is ap-
plied with the purpose of classifying the soil data set 
to generate important explanations about soil-land-
scape relationships, but without reaching the carto-
graphic representation of soil classes. 

The objective of this research was to produce a 
map of fuzzy soil classes by applying the FCM algo-
rithm for the clustering of soil property prediction 
models in raster format, previously obtained with the 
kriging regression method. The algorithm allows the 
establishment of gradual boundaries between classes, 
which in turn can facilitate the establishment of cor-
relations with geomorphological characteristics and 
taxonomic categories of soils in a sector of the upper 
Guárico River basin, specifically in the Caramacate 
River basin in Aragua State (Venezuela). 

2. Materials and methods 
2.1 Description of the study area 

The research was carried out in a sector of the 
upper Guárico river basin, specifically in the Cara-
macate river basin, which is located between the mu-
nicipalities of Santos Michelena and San Sebastián 
de los Reyes in Aragua State (Venezuela), between 
the geographical coordinates 9.55 to 10.09° North 
and 67.12 to 67.03° West (Figure 1). The Carama-
cate river basin represents 8.5% of the upper Guárico 
river basin, of which it is a tributary. Although this 
basin supplies 60% of the water consumed by the Ca-
racas metropolitan area, it is subject to intense envi-
ronmental degradation processes and lacks sufficient 
information to support the implementation of man-
agement plans. 

A sample of 6,760 ha was selected for the soil 
grouping test, where the landscape is dominated by 
mountain slopes with slopes of 40%. The geology is 
represented by metavolcanic rocks and basalts of the 
El Caño-El Chino formation, and by mafic metallif-
erous rocks of the El Carmen formation[30]. The 
zone’s altitude ranges from 334 to 1,405 masl, with 
average annual precipitation ranging from 1,100 to 
1,400 mm and average annual temperatures ranging 
from 22 to 26 ºC. Herbaceous vegetation occupies 
more than 50% of the sector's cover, as a result of 
extensive livestock use, overgrazing and annual 
burns. The soils are mostly Entisols, Inceptisols and 
Alfisols, whose variability has increased due to land 
use based on extensive cattle ranching and the inci-
dence of mass movements[31]. 
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Figure 1. Relative location of the study area within the Guárico river basin, Aragua state, Venezuela. 

2.2 Prediction of soil properties 
Soil properties were estimated by applying the 

spatial prediction model called regression kriging 
(RK) or residual kriging, based on the combination 
of the ordinary kriging technique and multiple linear 
regression. This statistical model allowed the inte-
gration of the regression values of edaphic variables 
and environmental attributes with the interpolation 
values of the residuals of this regression[32]. The RK 
algorithm considers the local correlation between en-
vironmental variables and the unsatisfactory good-
ness of fit of spatial variation models for a given data 
set. The auxiliary variables were derived in previous 
studies, starting from a digital elevation model of 8 
m resolution(altitude(msnm), slope(rad), slope ori-
entation(rad), topographic moisture index,arearecap-
ture(m2), perfildecurvature(m.m–2), plane of curva-
ture(m.m–2), relative position) and the red and 
infrared bands of a SPOT(NDVI) satellite image, at 
15 m spatial resolution[33]. Additionally, a precipita-
tion map estimated by ordinary kriging was used[34]. 

With RK, models were generated for the varia-
tion of nine (9) soil properties, organized according 
to their nature in: a) morphological: thickness of 
horizon A (Esp A), thickness of solum (Esp AB), ef-
fective depth (PEF); b) physical: coarse skeleton 

(%EG), sand (%a) and clay (%A), and c) chemical: 
organic carbon content (%CO), percentage of satura-
tion with bases (PSB) and pH of the soil in water 
(1:1). In the prediction of edaphic properties, 100 soil 
profiles were used to generate the models (75%), and 
33 profiles were used for validation (25%). The val-
idation of soil properties indicated that the agreement 
index between the estimated values and the observed 
values exceeded 72% on average, with a degree of 
agreement of 61% for morphological variables, 74% 
for physical variables, and 84% for chemical varia-
bles. These variables were used as input parameters 
to the network. 

2.3 Prediction of soil classes 
The Fuzzy C-means (FCM) algorithm, imple-

mented in the FuzME program by Minasny and 
McBratney, was used to generate the digital fuzzy 
soil class model. 

2.3.1 Fuzzy C-means algorithm (FCM) 
The FCM fuzzy classification algorithm is also 

called Fuzzy k-Means, and produces an unsuper-
vised classification of individuals into fuzzy classes. 
The FCM optimally divides a dataset into a number 
of classes and computes the memberships of each of 
the elements to each of the categories. The algorithm 
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requires a previous training process with a certain 
number of classes and diffusivity coefficients. Gen-
erally, it ends when it reaches the maximum number 
of iterations or when the result of one iteration and 
the previous one is less than or equal to the conver-
gence coefficient, which are user-defined learning 
parameters. 

The objective of the FCM algorithm[35,36] is to 
minimize the weighted root mean square sum of the 
distances between the points Zk and the center of the 
class Ck, and the distances ik, are weighted with the 
membership value i,k. Therefore, the objective func-
tion is: 

              (1) 

where { }1 2 nZ , Z , , Z= …Z  is the data to be clas-

sified, [ ]ikµ=U , is the fuzzy partition matrix of Z, 

[ ]1 2 cc ,c , , c= …C  is the vector of centroids or pat-

terns of the classes to be determined, 2
ikd   is the 

squared distance between ik, and (1) is a weighting 
exponent that determines the degree of fuzziness of 
the resulting classes. 

The membership function µ from the i-th object 
to the k-th cluster in the ordinary fuzzy k-means al-
gorithm employs the distance d used for similarity, 
and the fuzzy exponent to determine the diffusivity 
magnitude: 

      (2) 

Once the membership intensities have been de-
termined, the centroids of the classes ( kc ) are calcu-
lated by means of the following equation: 

            (3) 

As for the initialization process, the FCM 
works by means of an iterative procedure that starts 
with a random distribution of the objects to be clas-
sified into k classes. Given the distribution of the 
classes, the center of each is calculated as the average 
of the attribute values of the objects. In the next step, 
the objects are redistributed among the classes ac-
cording to their relative similarity. The similarity 

index is usually a distance measure (d) such as the 
Euclidean, Diagonal or Mahalanobis distance[37]. 

2.3.2 Number of fuzzy classes 
To obtain the best fuzzy class model, an induc-

tive approach was used, based on the procedure, 
which relates the Fuzziness Performance Index (FPI) 
and the modified partition entropy (MPE) to the 
number of classes. These parameters are obtained us-
ing the Fuzzy c-Means (FCM) algorithm of the 
Fuzme 3.5 program[38]. 

The selection of the optimal number of classes 
in FCM was performed by repeating the classifica-
tion for a range of number of classes. For each clus-
tering obtained, two classification parameters are 
generated, such as the FPI and the modified partition 
entropy (MPE). The FPI estimates the degree of dif-
fusivity generated by each specific number of classes. 
Mathematically, it is defined as: 

               (4) 
where: c is the number of classes and F is the parti-
tion coefficient calculated as: 

                (5) 

F is conceptually comparable to the ratio of the 
set of variances within classes to the variance be-
tween classes and is close to 1 for the most signifi-
cant clustering. In the present study, the clustering of 
maps in raster format was performed by previously 
establishing the following parameters: a) number of 
classes (c = 6 to 12), b) fuzzy exponent = 1.1 to 1.6 
with increments of 0.1; c) a maximum of 50 itera-
tions, and d) stopping criterion (ε = 0.0001). The 
metric distance used was that of Mahalanobis, which 
takes into consideration the correlation found be-
tween some properties present between soils and 
landscapes of the studied area. 

2.3.3 Evaluation of the soil class model 
For the evaluation of the reliability of the soil 

classes, confusion matrices were developed and cal-
culations of the overall accuracy (EG)[39] and the 
Kappa(k) index[40] were performed. The Kappa con-
cordance index is used as a method to evaluate multi-
categorical classifications, allowing to determine to 
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what extent the observed concordance is superior to 
that expected to be obtained by pure chance, and is 
defined as follows: 

            (6) 
where fo is the sum of the observed frequencies on 
the main diagonal of a cross-tabulation, fe is the sum 
of the expected frequencies on that diagonal, and n is 
the total number of cases (categories). 

The overall accuracy of the model (EG) was ob-
tained from the number of well-assigned classes ver-
sus the total number of categories (n) used in the cal-
ibration or validation of a model, with respect to the 
frequencies observed in the main diagonal of the 
confusion matrix, with the following formula: 

                      (7) 

The soil map validation module of the digital 
soil mapping software SoLIM Solutions was used to 

calculate the indices used. The validation was per-
formed with an independent dataset of soil profiles 
used in the prediction of soil classes. Thirty-three 
soil profiles were used and the morphological, phys-
ical, and chemical variables were validated. 

3. Results and discussion 
3.1 Number of diffuse soil classes 

For the soil fuzzy classes, the FCM algorithm 
indicated that 10 categories were optimal for group-
ing the soil property maps. The combination of the 
number of classes and the FPI parameter presented 
an inflection point showing the most suitable number 
of classes, characterized by the highest internal or-
ganization of the fuzzy classes. The central concepts 
of each of the soil fuzzy classes are shown in Table 
1, where it can be corroborated that all the classes 
present differences among themselves, according to 
the contribution of the centroids of the soil property 
values. 

Table 1. Centroids of the representative diffuse soil classes of the Caramacate River basin, integrated with FCM 
Class Eng A Eng AB PEF %EG %A %a PSB pH %CO 
A 15 15 43 40 25.6 24.0 63 5.43 1.90 
B 18 36 74 26 33.0 28.8 56 5.29 1.88 
C 18 43 89 20 25.8 26.9 53 5.27 1.90 
D 17 45 80 30 27.0 28.6 45 5.26 1.90 
E 20 58 72 18 24.4 35.3 56 5.32 1.87 
F 17 43 79 26 23.8 27.1 53 5.09 1.87 
G 23 98 116 8 25.0 26.7 58 5.36 2.10 
H 21 86 95 15 23.2 25.7 51 5.29 2.34 
I 18 85 80 27 21.4 28.7 50 5.16 2.49 
J 18 107 111 21 35.7 28.2 45 4.65 2.57 
Eng A: thickness A (cm), Eng AB: solum thickness (cm), PEF: effective depth (cm), EG: coarse skeleton, A: sand, a: clay, PSB: per-
centage of saturation with bases, CO: organic carbon, phin water (1:1). 

Class A groups superficial or shallow soils and 
have a very thin A horizon. They have a silty-loam 
surface texture, with a moderately acid pH, a 
high base-saturation exchange complex, and an 
abundant amount of coarse fragments on the surface. 
Classes B and C are characterized by grouping soils 
of moderate depth, with a thin surface horizon of 
loam to clay loam textures. Both differ in the thick-
ness of the solum, in the effective depth and in the 
coarse skeleton content of the surface layer. Chemi-
cal properties are similar, with a strongly acidic pH 
and an exchange complex with moderate to high sat-
uration of exchangeable bases. Class D, E and F soils 
have a solum of variable thickness, with a thin A 

horizon. They have textures ranging from clay loam 
to loam with few to frequent coarse fragments on the 
surface; they are of moderate pH strongly acidic and 
medium saturation with bases. Classes G and H in-
clude very deep to deep soils, with a very coarse so-
lum, loam and silt loam surface texture respectively, 
with few coarse surface fragments, have a coarse A 
horizon with high CO contents. The soils are moder-
ately to strongly acidic pH, with moderate PSB in the 
exchange complex. Classes I and J include deep to 
very deep soils, with a well-developed solum, loamy 
to clay loam surface texture, with frequent coarse 
surface fragments, have a thin A horizon with high 
CO contents. Soils of both classes are strongly acidic 



 

73 

pH, with moderate PSB in the exchange complex. 

3.2 Fuzzy soil class model 
The integration of the soil properties data in ras-

ter format allowed obtaining models of spatial varia-
tion of the values of the membership function for 
each soil class. These maps are an intermediate prod-
uct of the FCM algorithm, whose output is expressed 
in raster format and reflects the spatial variation of 

the degrees of membership between 0 and 1, where 
light colors represent absolute membership and dark 
colors indicate non-membership of the class. Of the 
ten models obtained, Figure 2 spatially represents 
the membership functions of four representative soil 
classes (A, D, G and J), which show the similarity 
with the geographical pattern discriminated in the 
digital model of diffuse soil classes (Figure 3). 

 
Figure 2. Maps of membership function values for some fuzzy soil classes. The degrees of membership vary between 0(black) and 
1(white). 

 
Figure 3. Digital model of diffuse soil classes in a sector of Caramacate, upper Guárico river basin. 

The values of the degrees of belonging to each 
soil class obtained with the fuzzy clustering method, 
allowed corroborating the influence provided by the 
information of the minimum spatial units (pixel), 
whose geographical expression is given by the limits 
of the auxiliary variables derived from the DEM and 
the satellite image. In this sense, most of the classes 

are represented physiographically by a diversity of 
mountain landscape slopes, with different orienta-
tions and relative heights (A, B, C, E, H, I, J). 

In this regard, class A represents the type of re-
lief of slopes that predominantly occupy the eastern 
sector, with a gradual gradient towards the central re-
gion and very little representation in the western 
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region of the studied area, and class J is represented 
by mountain slopes with the highest altitude of the 
sector, where the land cover is dominated by forest 
vegetation. In contrast, classes D and E correspond 
to relief types of ridges and beams of the dominant 
mountain landscape units in the entire sector evalu-
ated, and class G corresponds to the meadows of in-
tramountain valley landscapes, whose course drains 
in a north-south direction. Under the fuzzy sets ap-
proach, the variation structure of soil classes allowed 
the evaluation of soil-landscape relationships, and 
facilitated the correlation with taxonomic categories 
at the family level of particle size classes in the study 
area (Table 2). 

At the slope level, the low stability and suscep-
tibility to mass movements have promoted the occur-
rence of soils with little to moderate pedogenetic de-
velopment (Typic Haplustepts intermixed with 
Lithic Ustorthents). These classes occupy an area 
equivalent to 59.6% of the evaluated area in the zone. 
This situation contrasts slightly with the dominant 

mountain landscape slopes in the northeastern region 
of the study area, where pedogenetic processes are 
highly influenced by the combined action of relief, 
vegetation and climate. In this sector, the distribution 
of soil classes is characterized by the dominance of 
the taxonomic subgroups Typic Haplustalfs and Ultic 
Haplustalfs (corresponding to 15.3% of the studied 
area). 

On the ridges and slope beams there are also 
soils of incipient development, which present varia-
ble depths; with a dominance of the Lithic Hap-
lustepts subgroup, mixed with soils of the large 
Ustorthents group. This group occupies about 19.8% 
of the soils present in geomorphological positions. In 
the meadows of the intramontane valleys, localized 
accumulation processes occur, creating a stable sur-
face with sufficient time for the development of a 
Cambrian endopedon, with soils of the Typic Hap-
lustepts subgroup occupying 5.3% of the area con-
sidered. 

Table 2. Correlation between fuzzy classes and soil taxonomic categories 
Class Correlated family Physiography Surface area (%) 
A Lithic Ustorthents, coarse frank Slopes 10.5 
B Typic Haplustepts, fine loam Slopes 12.2 
C Lithic Haplustepts, coarse lithic loam Slopes 10.7 
D Lithic Haplustepts, coarse lithic loam Crests 12.6 
E Typic Haplustepts, fine loam Ridges, beams 7.2 
F Lithic Haplustepts, fine lithic loam Slopes 11.6 
G Typic Haplustepts, fine loam Vegas 5.3 
H Typic Dystrustepts, fine loam Slopes 14.6 
I Typic Haplustalfs, fine loam Slopes 4.1 
J Ultic Haplustalfs, fine Slopes 11.2 
Source: Soil survey staff, 2014 

3.3 Evaluation of the reliability of fuzzy soil 
classes 

The results of the evaluation of the soil classes 
indicated that most of them have a reliability equiv-
alent to 88%, where the reference classes have been 
well classified (Table 3). The exception is presented 
by classes D, E and H (Lithic Haplustepts and Typic 
Haplustepts in beams and ridges), where some soils 
were not classified in that category (false negatives), 
so they are confused with other classes (slopes), ac-
cording to the accuracy of the producer. Similarly, 
the user’s accuracy in terms of the percentage of each 
diffuse class that has been correctly classified is in-
dicative of the soils classified erroneously (error of 
commission). The most striking case is presented by 

classes A, E and G (Lithic Ustorthents and Typic 
Haplustepts on slopes, ridges and meadows), where 
some soils were classified in some classes and actu-
ally belong to others (false positives). 

The other statistic derived from the integral 
information of the error matrix, and which cor-
roborates the degree of agreement between the 
classes of the model considered, is the Kappa co-
efficient, whose result was 0.84. This index in-
dicates that the fuzzy class model presents a sub-
stantial strength of agreement with respect to the 
reality of the soil classes present. This means 
that the matrix used is 84% better than the one 
that could result from applying another classifier 
that randomly assigns the fuzzy classes. 
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Table 3. Assessment matrix for diffuse soil classes 

Estimated class Class observed 
A D E F G H Total EU 

A 5 0 1 0 0 0  0.83 
D 0  0 0 0 0  1.00 
E 0 1  0 0 0  0.92 
F 0 0 1  0 0 5 1.00 
G 0 0 0 0 1 1  0.50 
H 0 0 0 0 0   1.00 
Total 5 5   1 5   
EP 1.00 0.80 0.92 1.00 1.00 0.80   
Overall reliability: 0.88; Kappa: 0.84; EP: producer’s accuracy; EU: user’s accuracy. 

The results of the validation of the fuzzy set ap-
proach used showed that it is an alternative for the 
generation of soil classes, especially in areas of high 
geomorphological and edaphological complexity. 
These results are slightly superior to those obtained 
by Yang et al., Zhu et al. and McKay et al., in the 
prediction of soil types at the subgroup and soil se-
ries level. The aforementioned authors applied ap-
proaches based on knowledge of soil-environment 
relationships, and obtained digital models with an ac-
curacy of 72%, 76%, 73.7% respectively, and con-
cluded that the validation results were quite accepta-
ble for an initial soil map with data limitations. 

4. Conclusions 
The number of classes derived discriminated 

the spatial variation existing in the soils, which high-
lights the importance of the application of fuzzy set 
theory in areas of high complexity, to obtain inter-
nally homogeneous classes. 

The approach based on the integration of soil 
properties generated with the application of the FCM 
algorithm allowed the establishment of correlations 
between local soil classes with taxonomic families, 
achieving a reliability of 88%. 

The grouping of soils through the application of 
fuzzy set theory generated a gradual variation pattern 
in mountain areas, becoming an alternative for the 
evaluation of the variation structure of soils and an 
option for the support of digital soil mapping in 
mountain areas. 
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