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Abstract: Mangrove forests are vital to coastal protection, biodiversity support, and climate 

regulation. In the Niger Delta, these ecosystems are increasingly threatened by oil spill 

incidents linked to intensive petroleum activities. This study investigates the extent of 

mangrove degradation between 1986 and 2022 in the lower Niger Delta, specifically the region 

between the San Bartolomeo and Imo Rivers, using remote sensing and machine learning. 

Landsat 5 TM (1986) and Landsat 8 OLI (2022) imagery were classified using the Support 

Vector Machine (SVM) algorithm. Classification accuracy was high, with overall accuracies 

of 98% (1986) and 99% (2022) and Kappa coefficients of 0.97 and 0.98. Healthy mangrove 

cover declined from 2804.37 km2 (58%) to 2509.18 km2 (52%), while degraded mangroves 

increased from 72.03 km2 (1%) to 327.35 km2 (7%), reflecting a 354.46% rise. Water bodies 

expanded by 101.17 km2 (5.61%), potentially due to dredging, erosion, and sea-level rise. 

Built-up areas declined from 131.85 km2 to 61.14 km2, possibly reflecting socio-environmental 

displacement. Statistical analyses, including Chi-square (χ2 = 1091.33, p < 0.001) and 

Kendall’s Tau (τ = 1, p < 0.001), showed strong correlations between oil spills and mangrove 

degradation. From 2012 to 2022, over 21,914 barrels of oil were spilled, with only 38% 

recovered. Although paired t-tests and ANOVA results indicated no statistically significant 

changes at broad scales, localized ecological shifts remain severe. These findings highlight the 

urgent need for integrated environmental policies and restoration efforts to mitigate mangrove 

loss and enhance sustainability in the Niger Delta. 

Keywords: conservation; land cover change; machine learning; mangrove degradation; Niger 

Delta; oil spills; remote sensing; Support Vector Machine (SVM) 

1. Introduction 

Mangrove forest ecosystems are among the most ecologically and economically 

significant coastal environments, providing a range of critical ecosystem services. 

These include coastal protection, carbon sequestration, biodiversity conservation, 

fisheries support, and contributions to local livelihoods through timber, fuelwood, and 

other forest products [1–3]. As blue carbon ecosystems, mangroves play a pivotal role 

in mitigating climate change by acting as effective carbon sinks, storing substantial 

amounts of carbon in their biomass and sediments. They also serve as natural buffers 

against coastal erosion, storm surges, and rising sea levels, which are becoming 

increasingly prevalent due to anthropogenic climate change. Despite their immense 

ecological value, mangrove forests are among the most threatened ecosystems 

globally, facing severe degradation due to a combination of anthropogenic activities, 

including oil exploration, pollution, deforestation, land reclamation, and the expansion 

of aquaculture [4,5]. These threats have led to significant losses in mangrove cover, 
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diminishing their ecological integrity and functionality [6,7]. Understanding the 

spatiotemporal patterns of mangrove degradation, particularly in response to oil spills, 

is essential for effective conservation, restoration, and management of these fragile 

ecosystems. The Niger Delta, one of the largest wetland and mangrove ecosystems in 

Africa, covers approximately 76,000 km2, with its mangroves extending across an 

estimated 11,000 km2 [1]. It supports an extensive range of biodiversity and provides 

critical socio-economic benefits to local communities. However, it is also one of the 

most heavily degraded mangrove ecosystems in the world due to industrial activities, 

particularly those associated with the oil and gas sector [4,5,8]. Since the discovery of 

oil in the late 1950s, the Niger Delta has experienced frequent oil spills, which have 

had devastating consequences for the region’s mangrove forests. In addition to direct 

contamination, other oil industry activities such as dredging, pipeline construction, 

and the disposal of drilling waste have further exacerbated environmental degradation 

[8]. Illegal crude oil bunkering and the proliferation of artisanal refineries have 

significantly increased oil spill incidents in recent years, leading to the contamination 

of mangrove forests and water bodies at an alarming rate [9,10]. Despite these 

concerns, there remains a lack of comprehensive quantitative assessments of the extent 

of mangrove degradation attributable to oil spills, necessitating an in-depth spatial and 

temporal analysis. 

Remote sensing and machine learning techniques provide powerful tools for 

assessing and monitoring changes in mangrove cover over time. Land cover change 

detection using satellite imagery has been widely applied to study ecosystem 

dynamics, particularly in environments vulnerable to anthropogenic disturbances 

[11,12]. Among various classification algorithms, Support Vector Machines (SVMs) 

have emerged as one of the most effective techniques for land cover classification due 

to their ability to handle complex, nonlinear relationships and their robustness against 

noise and outliers [13,14]. SVMs are particularly advantageous for analyzing 

mangrove ecosystems because of their ability to accurately distinguish mangroves 

from other land cover types using multispectral and hyperspectral data [15]. Compared 

to traditional classification methods such as Maximum Likelihood Classification 

(MLC) and Decision Trees (DTs), SVMs have consistently demonstrated superior 

accuracy in land cover mapping, making them a preferred choice for monitoring 

mangrove degradation [14,16]. The non-parametric nature of SVMs enables them to 

effectively model intricate spectral variations in mangrove forests, which is critical 

given the spectral similarities between mangroves, other coastal vegetation, and oil-

affected areas [17]. Furthermore, SVMs are well-suited for handling high-dimensional 

satellite data, making them an optimal choice for long-term mangrove monitoring [18]. 

Their resilience to data noise caused by atmospheric interference during satellite 

acquisition ensures reliable classification results, which is crucial when analyzing 

multi-temporal datasets [19]. SVMs also provide clear classification outputs by 

delineating support vectors, allowing for precise identification of areas experiencing 

mangrove degradation [20]. Their ability to generalize well, even when trained on 

limited datasets, makes them highly effective for detecting land cover changes in new 

and previously unmonitored areas [21]. This study utilizes Landsat satellite imagery 

spanning a 36-year period (1986–2022) to analyze changes in mangrove cover in the 

Niger Delta, employing a Support Vector Machine (SVM) classifier for accurate 
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classification and change detection. The primary objectives of this research include 

analyzing land cover changes over the study period using Landsat imagery and an 

SVM classifier, evaluating the extent of mangrove degradation, and quantifying 

changes in both healthy and degraded mangrove cover. Additionally, the study 

investigates the statistical relationship between oil spill occurrences and mangrove 

degradation through Chi-square tests and Kendall’s Tau analysis. Beyond mangroves, 

the research also assesses other environmental changes, such as variations in water 

bodies and built-up areas, and explores their potential links to anthropogenic activities. 

Ultimately, the study aims to provide valuable insights into conservation strategies and 

recommend policy interventions to mitigate mangrove loss and promote sustainable 

ecosystem management in the Niger Delta. The study’s methodology will involve 

processing multi-temporal Landsat satellite imagery to classify land cover using an 

SVM classifier, with a particular focus on distinguishing healthy mangroves from 

degraded mangroves and other land cover types. Change detection analysis will be 

conducted to quantify the extent of mangrove loss over the study period, while 

statistical techniques will be employed to examine the correlation between oil spill 

events and observed mangrove degradation. By leveraging machine learning and 

geospatial analysis, this research will offer a comprehensive assessment of mangrove 

ecosystem health in the Niger Delta, shedding light on the specific impacts of oil spills 

and other anthropogenic pressures. The findings will provide critical insights for 

policymakers, conservationists, and stakeholders engaged in ecosystem restoration 

and sustainable environmental management. Ultimately, this study aims to contribute 

to a deeper understanding of how oil spills influence mangrove ecosystem degradation 

in the Niger Delta and inform evidence-based conservation and policy interventions. 

By integrating advanced remote sensing and machine learning techniques with robust 

statistical analysis, the research seeks to bridge knowledge gaps in mangrove 

ecosystem monitoring and support the implementation of effective conservation 

strategies. Given the growing environmental and socio-economic implications of 

mangrove loss, the results of this study will be instrumental in advocating for stronger 

environmental policies and remediation measures to safeguard the Niger Delta’s 

mangrove ecosystems for future generations. 

2. Study area 

The study area is situated within the mangrove-dominated coastal wetlands of the 

Niger Delta, specifically along the lower reaches of the San Bartolomeo and Imo 

Rivers as they discharge into the Atlantic Ocean (Figure 1) in 4.5° N–5.5° N and 6.5° 

E–7.5° E). This region represents one of the most ecologically significant yet 

environmentally stressed landscapes in West Africa, characterized by extensive tidal 

channels, estuarine creeks, and intertidal mudflats that support highly productive 

mangrove ecosystems [1,22]. The region experiences substantial annual rainfall, 

averaging approximately 4000 mm, which plays a crucial role in groundwater recharge 

within the Niger Delta, and the mangrove forests, among the largest in Africa, play a 

crucial role in coastal protection, carbon sequestration, and biodiversity conservation 

[23]. However, the area is also a hub for intensive hydrocarbon exploration and 

production, hosting a dense infrastructure of oil wells, flow stations, pipelines, and 
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related facilities [24]. Decades of petroleum exploitation have led to significant 

ecological disturbances, including deforestation, hydrological alterations, and frequent 

oil spills, which threaten both the natural ecosystem and the livelihoods of indigenous 

communities dependent on fisheries, aquaculture, and forest resources [25]. Given the 

critical ecological services provided by these mangrove forests and the growing 

anthropogenic pressures, continuous monitoring of land cover changes is imperative 

for sustainable management and conservation efforts [26]. 

 
Figure 1. Study area showing towns. 

3. Materials and methods 

This study employed a comprehensive approach combining remote sensing, 

geospatial analysis, and machine learning techniques to assess mangrove cover 

changes in the lower Niger Delta region, specifically focusing on the San Bartolomeo 

River and Imo River areas using the ArcGIS version 10.5 environment and a Python 

program. The methodology included several key steps (Figure 2): data acquisition, 

image preprocessing, training data preparation, Support Vector Machine (SVM) 

classification, change detection, map generation, accuracy assessment, and statistical 

analysis. 
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Figure 2. Data processing steps. 

3.1. Data acquisition 

The initial step of the study involved the acquisition of multi-temporal satellite 

imagery essential for land cover change detection. Landsat 5 Thematic Mapper (TM) 

for the year 1986 and Landsat 8 Operational Land Imager (OLI) for 2022 were 

obtained from the United States Geological Survey (USGS) Earth Explorer platform 

[27]. These datasets were selected based on their long-term availability, consistent 30-

m spatial resolution, and reliability in land use/land cover (LULC) assessments across 

time [28,29]. Metadata files, including radiometric calibration parameters and solar 

geometry data, were downloaded alongside each scene to facilitate accurate 

preprocessing. 

⚫ Landsat 5 TM (1986): Bands 1–7, spatial resolution of 30 m. 

⚫ Landsat 8 OLI (2022): Bands 1–9, spatial resolution of 30 m. 

Accompanying metadata files were obtained to ensure proper image calibration 

and preprocessing. 
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The field data using GIS and a geotagged camera for mapping of mangrove spots 

and non-mangrove areas to enable us to train the sample properly.  

3.1.1. Field survey and ground truth data 

To improve classification accuracy, fieldwork was conducted using GPS-enabled 

devices and a geotagged camera to map mangrove and non-mangrove zones. These 

geo-referenced points served as ground truth data for supervised classification. A total 

of 200 samples were collected, covering key LULC classes such as mangroves, 

degraded mangroves, built-up areas, bare land, and water bodies [30]. 

3.1.2. Image preprocessing 

Image preprocessing is a critical step to enhance the quality and accuracy of 

satellite data before any analytical procedures. The following preprocessing steps were 

undertaken: 

1) Radiometric correction: Radiometric corrections were applied to the imagery 

to correct sensor-related issues and atmospheric distortions. This involved 

converting the digital numbers (DNs) of the satellite images into top-of-

atmosphere (TOA) reflectance values. The conversion process utilized the 

radiometric calibration coefficients available in the metadata, accounting for any 

sensor degradation over time. This step ensured that the reflectance values were 

consistent across different images, facilitating accurate comparison [31,32]. 

TOA Reflectance =
π ∗ Lλ ∗ d^2

ESUNλ ∗ cos(ϴS)
 (1) 

where: 

⚫ Lλ is the spectral radiance; 

⚫ d is the Earth-Sun distance in astronomical units; 

⚫ ESUNλ is the mean solar exoatmospheric irradiance; 

⚫ Θs is the solar zenith angle.  

Radiometric correction ensured comparability of reflectance values across 

temporal scenes, compensating for changes in illumination geometry and sensor 

characteristics. 

Atmospheric correction 

Atmospheric interference from water vapor, dust, and aerosols was mitigated 

using the Dark Object Subtraction (DOS) method, an image-based correction 

technique that assumes certain dark pixels (e.g., deep water) should have near-zero 

reflectance. This process eliminated additive atmospheric noise and improved the 

retrieval of surface reflectance [33,34]. 

Geometric correction and georeferencing 

All images were geometrically corrected to ensure pixel-level alignment. Ground 

Control Points (GCPs) collected from high-resolution Google Earth imagery and field 

GPS data were used to register the images. The final georeferencing was implemented 

in the Universal Transverse Mercator (UTM) projection, Zone 32N, using the WGS84 

datum. This process eliminated spatial distortions and ensured consistency across 

image dates [35]. 

Image stacking and subsetting 
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Post-correction, multispectral bands relevant to vegetation and land use 

classification—Red, Green, Blue, and Near-Infrared (NIR)—were extracted and 

stacked using ENVI. The resulting composite images were subset to a defined Region 

of Interest (ROI) encompassing areas of ecological and socio-economic relevance. The 

ROI was delineated using administrative boundaries, field coordinates, and ecological 

risk zones [36]. 

Training data preparation 

Accurate classification requires high-quality training data: 

Ground-truth data collection 

A total of 200 georeferenced training samples were collected during fieldwork. 

These were categorized into mangrove, degraded mangrove, built-up, bare land, and 

water classes, verified visually and with historical land cover information. 

Spectral signature extraction 

Using ArcGIS 10.8, the spectral reflectance values for each sample point were 

extracted across all selected bands. The extracted values were plotted to analyze 

variability among classes. 

Feature selection and dimensionality reduction 

Principal Component Analysis (PCA) was conducted using Python (scikit-learn 

module) to reduce dimensionality and identify features with the highest discriminative 

power, following the procedure by Veraverbeke et al. [37]. 

Support Vector Machine (SVM) classification 

The classification of land cover was performed using the Support Vector Machine 

(SVM) algorithm, a powerful machine-learning technique known for its effectiveness 

in handling high-dimensional data and small sample sizes. The classification process 

involved the following steps: 

1) Model training: The SVM classifier was trained using the selected training 

dataset. The radial basis function (RBF) kernel was chosen for the SVM model 

due to its ability to handle non-linear relationships between features. The kernel 

type, along with the regularization parameter (C), was optimized through grid 

search and cross-validation techniques to achieve the highest possible 

classification accuracy. 

2) Classification execution: Once trained, the SVM model was applied to the entire 

multiband imagery from both 1986 and 2022. The model classified each pixel 

into one of the predefined land cover classes, such as mangroves and non-

mangroves. The classification results were then subjected to a post-processing 

step to remove any spurious classifications, ensuring smooth and contiguous land 

cover maps. 

K(xi, xj) = exp(−γ ∥ xi − xj ∥ ^2)  (2) 

where: 

xi and xj are feature vectors; γ is a kernel parameter that defines the influence of 

a single training example. 

Change detection 
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Change detection is a crucial step in understanding the dynamics of land cover 

over time. In this study, change detection focused on identifying shifts in mangrove 

forest cover between 1986 and 2022. The process involved: 

1) Comparative analysis: The classified images from 1986 and 2022 were compared 

pixel by pixel to detect changes in land cover. Areas where mangroves were 

converted to other land cover types or vice versa were identified. 

2) Quantification of changes: The extent of mangrove loss and gain was quantified 

by calculating the area covered by mangroves in each year. This quantification 

provided insights into the rate of change and the factors contributing to mangrove 

degradation or restoration in the study area. 

Map generation 

To effectively communicate the results of the study, detailed maps and 

visualizations were generated using ArcGIS 10.5. The map generation process 

included: 

1) Creation of land cover maps: Land cover maps for both 1986 and 2022 were 

produced, highlighting the distribution of different land cover types within the 

study area. Special attention was given to the visualization of mangrove cover, 

using distinct color schemes to differentiate between areas of gain, loss, and 

stability. 

2) Change detection maps: Change detection maps were created to visualize the 

spatial distribution of changes in mangrove cover. These maps provided a clear 

representation of areas where significant changes had occurred, enabling easy 

interpretation and identification of hotspots of mangrove loss or gain. 

3) Layout design and annotation: The maps were designed with a clear layout, 

including legends, north arrows, and scale bars, to enhance readability. 

Annotations were added to highlight key areas and provide context to the 

visualizations, making the results accessible to a broad audience, including 

policymakers and conservationists. 

Accuracy assessment 

The accuracy of the land cover classification was rigorously assessed to ensure 

the reliability of the results. The accuracy assessment process involved: 

1) Validation data: A separate set of validation data, comprising ground truth points 

that were not used in the training phase, was used to assess classification 

accuracy. These points were randomly distributed across the study area and 

represented all land cover classes. 

2) Confusion matrix: A confusion matrix was generated by comparing the classified 

land cover types with the actual land cover at each validation point. This matrix 

provided detailed insights into the classification performance, indicating the 

number of correctly and incorrectly classified pixels for each class. 

3) Accuracy metrics: Several accuracy metrics were calculated from the confusion 

matrix, including overall accuracy, producer’s accuracy, and user’s accuracy for 

each land cover class. The Kappa coefficient, which measures the agreement 

between the classified and actual land cover types beyond chance, was also 

computed. A Kappa coefficient close to unity indicated a high level of accuracy 

in the classification process. 
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4) Error analysis: An error analysis was conducted to identify and understand the 

sources of misclassification. This analysis helped refine the classification process 

and provided insights into potential improvements for future studies. 

κ =
po − pe

1 − pe
 (3) 

where: 

⚫ po is the observed accuracy, 

⚫ pe is the expected accuracy. 

The Kappa coefficient close to 1 indicates a high degree of classification accuracy  

Percentage change calculation 

This formula is used to calculate the percentage change in land cover classes over 

time. It provides insight into how much an area has increased or decreased relative to 

its original extent in 1986. A positive value indicates an increase in land cover, while 

a negative value represents a loss. This approach is widely used in remote sensing and 

land use change studies to quantify environmental transformations. By analyzing 

percentage change, researchers can track forest loss, urban expansion, and 

hydrological changes, making it a crucial metric in landscape dynamics analysis [39]. 

Percentage Change = (
Area in 2022 − Area in 1986

Area in 1986
) × 100 (4) 

Cohen’s d effect size 

Cohen’s d measures the magnitude of change between two datasets [40]. It 

standardizes the difference between the mean land cover areas in 1986 and 2022, 

allowing for interpretation of effect size. 

d =
X1
̅̅ ̅ − X2

̅̅ ̅

sp
 (5) 

sp  =  √
s1

2  +  s2
2

2
 (6) 

where: 

⚫ X1
̅̅ ̅, X2

̅̅ ̅ are the means of land cover areas in 1986 and 2022. 

⚫ s1, s2 are the standard deviations of land cover areas in 1986 and 2022. 

Paired t-test statistic 

The paired t-test determines if the difference between land cover areas in 1986 

and 2022 is statistically significant. It compares two dependent datasets, assessing 

whether changes over time occur due to random fluctuations or actual transformation 

[41]. 

where: 

⚫ sd is the standard deviation of the differences. 

⚫ n is the number of observations. 

𝐭 =
𝐗𝟏
̅̅̅̅ − 𝐗𝟐

̅̅̅̅

𝐬𝐝

√𝐧

 (7) 
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One-way ANOVA 

One-way ANOVA tests if there is a statistically significant difference between 

land cover areas across different years (1986 and 2022). It compares within-group 

variance (changes within each land cover type) against between-group variance 

(differences across years) [42]. 

Formula  

𝐹 =
Between-group variance

Within-group variance
=

∑ ni(Xi̅̅̅̅ −X̅)2

k−1

∑(Xij−Xi̅̅̅̅ )
2

N−k

  (8) 

where: 

⚫ ni is the number of samples in each group. 

⚫ Xˉi is the mean of each group. 

⚫ Xˉ is the overall mean. 

⚫ k is the number of groups. 

⚫ N is the total number of observations. 

Linear regression model  

Linear regression is a fundamental statistical and machine learning technique 

used for modeling the relationship between a dependent variable and one or more 

independent variables [43] 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜖 (9) 

where: 

⚫ 𝑌 is the land cover area. 

⚫ 𝑋 is the year. 

⚫ 𝛽0 is the intercept. 

⚫ 𝛽1 is the slope coefficient. 

⚫ 𝜖 is the error term. 

Oil spill data processing 

Given the prevalence of oil exploration activities in the study area, data on oil 

spills from 2012 to 2022 were obtained from the National Oil Spill Detection and 

Response Agency (NOSDRA) website, https://oilspillmonitor.ng/. This data was 

processed in ArcGIS to identify spill locations, extents, and frequencies. The 

processed oil spill data was then correlated with the observed changes in mangrove 

cover to assess the impact of oil spills on the mangrove ecosystem. Statistical analyses 

were conducted using Python programming to visualize trends and establish 

relationships between oil spill incidents and mangrove degradation. 

Chi-square test (χ2) 

The Chi-square test is used to determine whether there is a significant association 

between two categorical variables [44]. 

χ2 = ∑
(Oi − Ei)

2

Ei
 (10) 

where: 

⚫ Oi = Observed frequency; 

⚫ Ei = Expected frequency. 

https://oilspillmonitor.ng/


Journal of Geography and Cartography 2025, 8(2), 11707. 
 

11 

Kruskal-Wallis test (H) 

The Kruskal-Wallis test is a non-parametric test used to compare medians across 

multiple groups when normality assumptions are violated. It ranks the data instead of 

using raw values and calculates [45]. 

H =
12

n(n + 1)
∑

Ri
2

ni
− 3(n + 1) (11) 

where: 

⚫ n = Total number of observations 

⚫ Ri = Sum of ranks for group I 

⚫ ni = Number of observations in group I. 

Kendall’s Tau (τ) trend test 

The Kendall’s Tau test measures the strength and direction of the trend between 

two variables over time [46]. 

τ =
C − D

1
2 n(n − 1)

 (12) 

where: 

⚫ C = Number of concordant pairs; 

⚫ D = Number of discordant pairs; 

⚫ 𝑛 = Number of observations. 

4. Results and discussion 

4.1. Mangrove cover 

Mangrove forests, vital for coastal protection, carbon sequestration, and 

biodiversity, have experienced a noticeable decline in the study area over the 36-year 

period. In 1986, mangrove and cover accounted for approximately 2804.37 km2, or 

58% of the total study area (Table 1, Figures 3–6). However, by 2022, this had 

reduced to 2509.18 km2, representing 52% coverage (Table 1, Figures 5 and 7). This 

decline translates to a loss of 295.19 km2, equivalent to a 6% reduction in mangrove 

habitat (Table 1 and Figure 8). In contrast, degraded mangrove areas increased 

significantly, from 72.03 km2 (1%) in 1986 to 327.35 km2 (7%) in 2022, a gain of 

255.32 km2, or 6% (Table 1 and Figure 8). The decline in healthy mangroves and the 

corresponding rise in degraded mangroves raises serious concerns. Mangrove 

degradation can adversely affect biodiversity, reducing habitat availability for 

numerous species and undermining the ecosystem services provided by mangroves, 

such as coastal erosion control and carbon storage. This trend underscores the urgent 

need for a detailed investigation into the drivers of mangrove loss. Anthropogenic 

activities, including deforestation, oil exploration, and urban expansion, are likely 

contributors. Changes in hydrological patterns due to climate change or human 

interventions, such as canal dredging for the petroleum industry, exacerbate the issue. 
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Table 1. Results from Support Vector Machine classification in the study area. 

Classification 1986 km2 1986 % 2022 km2 2022 % Gain/Loss km2 Percentage Change 

Mangrove 2804.37 58 2509.18 52 −295.19 −10.5261 

Degraded Mangrove 72.03 1 327.35 7 255.32 354.4634 

Bare land 35.49 1 46.9 1 11.41 32.1499 

Built up area 131.85 3 61.14 1 −70.71 −53.6291 

Waterbody 1803.45 37 1904.62 39 101.17 5.609803 

 
Figure 3. Land cover in the study area 1986. 

 
Figure 4. Land cover in the study area 2022. 
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Figure 5. Comparison of land classification in 1986 and 2022. 

 
Figure 6. Land classification in 1986. 
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Figure 7. Land classification in 2022. 

 
Figure 8. Land cover gain /loss between 1986 and 2022. 

4.2. Waterbody dynamics 

During the same study period, waterbody cover increased from 1803.45 km2 

(37%) in 1986 to 1904.62 km2 (39%) in 2022, reflecting a gain of 101.17 km2, which 

is about a 2% increase in Table 1, Figures 5 and 8. Changes in waterbody dynamics 

can have cascading effects on the entire ecosystem, affecting hydrological cycles, 

aquatic habitats, and overall ecosystem resilience [47]. The rise in waterbody cover 

emphasizes the need for comprehensive studies on the drivers of this change. Factors 

such as climate patterns, land-use practices, and human interventions in water 
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management should be explored to understand the implications for biodiversity and 

ecosystem health. However, the petroleum industry is known to carry out both capital 

and routine maintenance dredging in support of their exploration activities. Oil 

industry access canals have been shown to increase water bodies while decreasing 

mangrove cover and have been shown to cause hydrological and microtopographic 

changes [47]. Ohimain et al. [48] demonstrated how abandoned dredged spoils support 

the replacement of former mangrove cover with non-mangroves.  

4.3. Built-up areas 

Contrary to the global trend of urban expansion, built-up areas in the study region 

decreased significantly over the study period. In 1986, built-up areas occupied 131.85 

km2, or 3% of the total area (Table 1 and Figure 6). By 2022, this had declined to 

61.14 km2, representing only 1% of the area in Table 1 and Figure 7. This 70.71 km2 

reduction in built-up areas, or a 2% decrease, is an intriguing finding that raises 

questions about urbanization dynamics and land-use policies in the region in Figure 

8. The decline in built-up areas may be influenced by several factors, including 

environmental regulations, economic shifts, or the relocation of settlements due to 

environmental degradation or flooding. The Niger Delta is prone to severe flooding, 

which could have prompted the abandonment or relocation of certain settlements. 

Additionally, sociopolitical factors, such as land tenure issues or community 

displacement, may have played a role.  

4.4. Bare land cover 

Bare land, a relatively minor land cover class in the region, showed a modest 

increase over the study period. In 1986, bare land accounted for 35.49 km2, or 1% of 

the total area (Table 1 and Figure 6). By 2022, this had increased slightly to 46.9 km2, 

still representing 1% of the area (Table 1 and Figure 7). This gain of 11.41 km2 may 

seem minor compared to the changes in other land cover classes (Figure 8), but it 

warrants attention due to its potential implications for ecosystem stability. Changes in 

bare land can affect soil erosion, habitat loss, and overall landscape stability. The 

modest increase observed in this study may be linked to specific land management 

practices or natural ecological processes. For example, areas cleared for agriculture or 

construction that were later abandoned could contribute to the rise in bare land. 

Monitoring these changes is essential for understanding their broader ecological and 

environmental implications.  

4.5. Percentage change analysis 

The percentage change in land cover classes over the 36-year period highlights 

significant ecological shifts in Table 1 and Figure 9. The mangrove forest witnessed 

a 10.53% decline, losing 295.19 km2 (Table 1 and Figure 10). This is concerning, as 

mangroves serve as essential coastal barriers and carbon sinks. The factors 

contributing to this decline could be deforestation for fuelwood, aquaculture, coastal 

development, and natural climatic changes. 
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Figure 9. Land cover change in the study area from 1986 and 2022. 

 
Figure 10. Percentage change in land cover (1986 and 2022). 

In contrast, the degraded mangrove class saw an astounding 354.46% increase, 

rising from 72.03 km2 to 327.35 km2 (Table 1 and Figure 10). This dramatic 

expansion indicates widespread degradation of once-healthy mangrove forests, likely 

due to pollution, sedimentation, and human encroachment. Bare land increased by 

32.15%, from 35.49 km2 to 46.90 km2 in Table 1 and Figure 10. Though the absolute 

area change (11.41 km2) is small, it signifies areas that have lost vegetation cover. This 

could be linked to deforestation, soil erosion, and industrial expansion. The built-up 

area category saw the largest relative decline at −53.63%, decreasing from 131.85 km2 

to 61.14 km2 (Table 1 and Figure 10). This decline contradicts expected urban 
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expansion trends, suggesting that coastal erosion, sea-level rise, or environmental 

rehabilitation efforts might have contributed to the reduction. 

The Waterbody category expanded by 5.61%, increasing from 1803.45 km2 to 

1904.62 km2 in Table 1 and Figure 10. This is a net gain of 101.17 km2, suggesting 

possible land subsidence, expansion of river channels, or sea-level rise leading to the 

inundation of former land areas. The standard deviation for the percentage change 

values was 164.45%, showing a high level of variability across different land cover 

types. The mean percentage change was 65.61%, heavily skewed by the large increase 

in degraded mangrove. The minimum percentage change was −53.63% for built-up 

area, while the maximum was 354.46% for degraded mangrove. Therefore, the 

percentage change analysis suggests a shift from intact mangrove forests to degraded 

mangrove states, with a corresponding increase in water coverage. This pattern aligns 

with ongoing environmental stressors such as deforestation, pollution, and climate 

change. 

4.6. Statistical analysis 

The statistical validation of the land cover classification results was carried out 

using analysis of variance (ANOVA) and a paired t-test to determine the significance 

of changes between 1986 and 2022. The ANOVA test yielded a p-value of 0.9996, 

indicating that the variance between the land cover classes over time is not statistically 

significant at the 95% confidence level. Similarly, the paired t-test produced a t-

statistic of −0.0044 and a p-value of 0.9967, reinforcing the conclusion that no 

statistically significant difference exists between the total land cover areas in 1986 and 

2022. Although the absolute values of specific land cover types, such as mangrove 

(−295.19 km2) and degraded mangrove (+255.32 km2), have undergone notable shifts, 

these changes are not statistically significant when comparing the overall dataset. This 

suggests that, despite the observed fluctuations, the relative proportions of land cover 

classes remain relatively stable over time. However, it is essential to note that 

statistical insignificance does not equate to ecological insignificance, as localized 

changes could still have profound environmental and socio-economic impacts. To 

further assess the magnitude of land cover changes, Cohen’s d effect size was 

computed, yielding a value of 0.00033. This is an extremely low effect size, indicating 

that, when considering the entire study area, the overall land cover change impact is 

minimal. A Cohen’s d value below 0.2 generally indicates negligible differences, 

which aligns with the high p-values from the ANOVA and t-test. Despite this low 

overall effect size, individual land cover categories exhibit ecologically significant 

transformations. The mangrove forest loss (−295.19 km2) and waterbody expansion 

(+101.17 km2) are particularly concerning, as they indicate potential deforestation and 

hydrological changes that could affect biodiversity, carbon sequestration, and flood 

control. The 354.46% increase in degraded mangrove shows that previously healthy 

mangrove ecosystems are deteriorating, which could have long-term consequences on 

coastal resilience. Another factor that may contribute to the low effect size is the 

spatial heterogeneity of the Niger Delta ecosystem. Environmental pressures such as 

oil exploration, land subsidence, coastal erosion, and human encroachment may 
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disproportionately affect specific locations, leading to significant localized changes 

that broader statistical analyses fail to capture. 

A linear regression analysis was conducted to evaluate trends in land cover 

changes over time. The R-squared values (R2) for all land cover categories were 1.0, 

indicating a perfect linear trend for each class. This indicates that the observed changes 

are highly predictable and are likely to continue along the same trajectory if no 

interventions are implemented. The trend analysis highlights the progressive 

degradation of the mangrove ecosystem and expansion of waterbodies, which could 

be attributed to climate change, rising sea levels, and anthropogenic activities. The 

loss of built-up areas (−70.71 km2) is an unexpected trend, potentially linked to land 

subsidence or abandonment due to environmental degradation. Based on the 

regression model, projected land cover changes indicate a worsening scenario if 

mitigation strategies are not put in place. Without targeted conservation efforts, 

mangrove forests may continue to decline, further exacerbating coastal erosion and 

biodiversity loss. In contrast, the expansion of degraded mangrove areas and water 

bodies suggests a shift toward less stable and more flood-prone environments. 

4.7. Comparison with other studies 

Few other studies have examined land cover changes in the Niger Delta 

mangrove forest ecosystem. For instance, Adoki [49], using satellite imagery, 

investigated land cover trends in the Bonny River Estuary, which borders the current 

study area. Their study, covering an area of 327.74 km2, recorded land cover 

classifications as follows: 26.55% mangrove, 29.54% non-mangrove vegetation, 1.6% 

sparse vegetation, 5% degraded or stressed vegetation, 34.15% water, and 3.16% built-

up area/bare land in 1986. By 2007, these proportions had shifted to 32.58% 

mangrove, 25.20% non-mangrove vegetation, 2.95% sparse vegetation, 0% degraded 

or stressed vegetation, 31.55% water, and 7.71% built-up area/bare land. In 

comparison, our study covers a broader and slightly different area, focusing 

specifically on the lower Niger Delta mangrove forest ecosystem. While both studies 

utilize satellite imagery and share similar land cover categories, the specific 

percentages and trends reveal notable differences. While Adoki’s [49] study shows a 

decrease in mangrove cover over time, our findings highlight a more nuanced trend 

with variations in other categories. Additionally, our study captures more recent data, 

potentially reflecting more current environmental conditions and anthropogenic 

influences. Both studies illustrate significant land cover changes, though the extent 

and nature of these changes vary. Such differences underscore the complexity of land 

cover dynamics in the Niger Delta and the importance of localized studies for 

understanding regional environmental transformations. 

4.8. Accuracy assessment 

Accuracy assessment is a critical step in remote sensing studies, as it ensures the 

reliability and validity of the classification results. The result in Table 2 in the study, 

the overall accuracy and Kappa coefficient were used to evaluate the performance of 

the Support Vector Machine (SVM) in detecting land cover changes in the Lower 

Niger Delta mangrove forest ecosystem for the years 1986 and 2022. 
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Table 2. Accuracy assessment in the study area. 

S/No Year Overall Accuracy (%) Kappa coefficient 

1 1986 98 0.97 

2 2022 99 0.98 

4.9. High overall accuracy 

The overall accuracy for the land cover classification was exceptionally high, 

with 98% accuracy recorded for 1986 and 99% for 2022 in Table 2. These results 

indicate that the classification outputs are highly reliable and closely match the ground 

truth data. Such high accuracy is particularly commendable given the complexity of 

the study area, which includes diverse land cover types such as mangroves, degraded 

mangroves, waterbodies, built-up areas, and bare land. The consistency between the 

two years demonstrates the robustness of the SVM algorithm in handling multi-

temporal datasets and its suitability for studies in dynamic and heterogeneous 

environments like the Niger Delta. 

4.10. Robust kappa coefficients 

The Kappa coefficient, a statistical measure that accounts for agreement due to 

chance, further reinforces the reliability of the classification. A Kappa coefficient of 

0.97 for 1986 and 0.98 for 2022 suggests near-perfect agreement between the 

classified results and the reference data in Table 2. These values not only validate the 

classification accuracy but also highlight the effectiveness of the methodology 

employed, including the choice of input features, preprocessing techniques, and the 

SVM classification algorithm. 

4.11. Impact of land cover changes and oil spill trends on environmental 

degradation (1986–2022) 

Table 3 presents an analysis of oil spill data recorded by the National Oil Spill 

Detection and Response Agency (NOSDRA) over a decade, from 2012 to 2022 

(Figures 11–13). The data captures the number of spills, the estimated quantity of oil 

spilled, the quantity of oil recovered, and the estimated volume of oil not recovered, 

providing critical insights into environmental management challenges within the 

lower Niger Delta mangrove forest ecosystem. Table 3 reveals a cumulative total of 

52 recorded oil spill incidents, resulting in an estimated 21,914.5727 barrels (bbl) of 

oil spilled across the ecosystem. However, the recovered volume of oil stands at 8,378 

barrels, leaving a significant portion of 13,536.5727 barrels unaccounted for and 

potentially causing prolonged environmental degradation in Table 3. The data 

showcases considerable disparities in spill occurrences and management across 

different entities operating in the region. Among the entities, one company recorded 

the highest number of spills, with 31 incidents resulting in a total estimated spill 

volume of 4561.0163 barrels. Out of this, 986 barrels were recovered, leaving 

3575.016 barrels unrecovered. These figures underline the scale of environmental 

challenges attributed to operational spills and the limited recovery efforts. Another 

entity had 14 recorded spills during the same period, with an estimated 16,855.5501 

barrels of oil spilled. The recovery effort was relatively significant, with 7370 barrels 
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recovered; however, 9485.55 barrels remained unrecovered, reflecting the challenges 

in oil spill management in larger-scale incidents. A smaller contribution to the overall 

figures recorded five spills amounting to 456 barrels. Despite the lower number of 

incidents and smaller spill volume, only 22 barrels were recovered, leaving 434 barrels 

unrecovered. This highlights that even relatively minor spill events can have 

substantial environmental impacts if not adequately addressed. The smallest 

contributor in terms of spill incidents recorded two spills, with an estimated total spill 

volume of 42.0063 barrels. Notably, none of this oil was recovered, making it an 

outlier in terms of recovery effort. This data underscores the persistent environmental 

and ecological risks posed by oil spills in the Niger Delta mangrove forest ecosystem. 

Despite ongoing monitoring and response efforts, the significant volume of 

unrecovered oil indicates the need for improved recovery technologies, more stringent 

enforcement of environmental regulations, and proactive spill prevention measures. 

Additionally, the disparity in recovery rates among the entities highlights the necessity 

for standardized and more effective response protocols to mitigate the long-term 

environmental impacts of oil spills in the region. 

Table 3. Presents the findings of oil spill data recorded by the National Oil Spill Detection and Response Agency 

from 2012 to 2022. 

Company 
No. of 

spills 

Sum of Estimated Quantity of Oil 

Spill, Bbl 

Sum of Quantity Oil Spill 

Recovered, Bbl 

Sum of Estimated Oil Spill Not 

Recovered, Bbl 

Aiteo E&P 5 456 22 434 

CHEVRON 2 42.0063 0 42.0063 

Eroton 

E&P 
14 16,855.5501 7370 9485.55 

SPDC 31 4561.0163 986 3575.016 

Grand Total 52 21,914.5727 8378 13,536.57 
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Figure 11. Oil spills in the study area from 2012–2022. 

 

 
Figure 12. Oil spill recovered in the study area from 2012–2022. 



Journal of Geography and Cartography 2025, 8(2), 11707. 
 

22 

 

 
Figure 13. Oil spill not recovered in the study area from 2012–2022b. 

The results from the Support Vector Machine Classification (Table 1) indicate 

significant changes in land cover between 1986 and 2022. The mangrove cover 

experienced a decline from 2804.37 km2 (58%) in 1986 to 2509.18 km2 (52%) in 2022, 

showing a net loss of 295.19 km2, equivalent to a 10.53% decrease. This decline may 

be attributed to human activities, environmental degradation, or oil spills, as indicated 

by the statistical test results (Table 4), which confirm a significant association between 

oil spill severity and specific companies (Chi-square test, p < 0.001). 

Table 4. Statistical test results for oil spill data recorded from 2012 to 2022. 

Test Statistic p-value 

Chi-Square Test 1091.33 3.44×10−229 

Kruskal-Wallis Test 1.13 0.57 

Kendall’s Tau Trend Test 1 5.01×10−8 

Conversely, degraded mangrove areas expanded drastically, increasing from 

72.03 km2 (1%) in 1986 to 327.35 km2 (7%) in 2022, marking a 354.46% increase. 

This sharp increase indicates severe ecological stress and possible conversion of 
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healthy mangroves into degraded landscapes, potentially linked to oil spills, as 

supported by the Kendall’s Tau trend test (p < 0.001), which reveals a significant 

increasing trend in oil spill volume over time (Table 4). 

Additionally, Bare land saw a modest increase from 35.49 km2 to 46.9 km2, a 

32.15% rise, suggesting slight land degradation. Meanwhile, the built-up area showed 

a 53.63% decrease from 131.85 km2 to 61.14 km2, which may indicate urban 

contraction, relocation, or land-use conversion. Water bodies slightly expanded by 

101.17 km2 (5.61%), possibly due to rising sea levels, flooding, or oil spill impacts. 

The Kruskal-Wallis Test (p = 0.57) in Table 4 suggests no significant difference 

in oil spill severity among companies, implying that multiple companies contribute to 

oil pollution across the region. The findings collectively highlight the ecological 

consequences of industrial activities, particularly oil spills, on land cover 

transformation. Urgent conservation measures and stricter pollution control policies 

are necessary to mitigate further environmental degradation. 

4.12. Discussion and implications  

This study presents compelling evidence of significant ecological transformation 

within the lower Niger Delta, primarily driven by oil spills and associated 

anthropogenic activities. The analysis of Landsat satellite imagery classified via 

Support Vector Machine (SVM) reveals a marked reduction in healthy mangrove 

cover (−10.53%) and an alarming expansion of degraded mangrove zones (+354.46%) 

between 1986 and 2022. These findings align with global trends of mangrove loss due 

to industrial development, particularly in oil-producing coastal regions [2,5]. When 

compared to similar studies in the Niger Delta, such as Adoki [49], who reported 

moderate mangrove decline in the Bonny Estuary region over a 21-year period, our 

results indicate a more severe degradation pattern. Adoki’s [49] study noted a 

reduction in stressed vegetation, while our findings show a sharp rise in degraded 

mangrove areas. This contrast may reflect increased oil spill incidents in recent 

decades, illegal artisanal refining [9], and limited remediation efforts, especially in 

remote or underregulated regions. The correlation between oil spill occurrences and 

mangrove degradation is statistically robust. The Chi-square test (χ2 = 1091.33, p < 

0.001) and Kendall’s Tau (τ = 1, p < 0.001) confirm a significant association. Over 

21,900 barrels of oil were spilled from 2012–2022, of which over 13,500 barrels 

remained unrecovered. This outcome supports the conclusions of Ohimain et al. [8] 

and Ozigis et al. [22], who highlighted that oil pollution leads to reduced biomass, 

canopy dieback, and eventual conversion of mangrove forests into mudflats or 

degraded patches. Interestingly, built-up areas experienced a decline of 53.63%, 

contrary to urban expansion trends reported in other coastal deltas like those in 

Southeast Asia [5]. This suggests potential abandonment or relocation of settlements, 

possibly due to environmental degradation, recurrent flooding, or socio-political 

factors. Waterbody expansion (+5.61%) also supports the notion of land submergence, 

dredging, or increased canalization, as seen in studies by Darmawan et al. [20] and 

Numbere [26], both of which identified hydrological alterations as a key factor in 

mangrove degradation. The study’s regression analysis, showing R2 = 1.0 for each land 

cover class, suggests deterministic trends in land cover change, especially the 
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conversion of healthy mangroves to degraded states. If current trends persist, this 

trajectory could lead to irreversible ecosystem collapse in some areas. 

From a methodological standpoint, the high classification accuracy (98%–99%) 

and Kappa coefficients (0.97–0.98) validate the reliability of the SVM model and the 

remote sensing approach. These findings reinforce previous conclusions by 

Mountrakis et al. [15] and Shao and Lunetta [21], who emphasized SVM’s robustness 

for land cover classification in complex ecosystems. 

5. Conclusion 

This study utilized Landsat satellite imagery spanning 36 years (1986–2022) to 

assess mangrove cover changes in the Niger Delta, employing a Support Vector 

Machine (SVM) classifier for accurate classification and change detection. The 

analysis revealed a significant decline in healthy mangrove cover, decreasing by 

10.53% (295.19 km2), while degraded mangrove areas expanded by 354.46% (255.32 

km2). These findings highlight severe ecological stress, likely driven by anthropogenic 

activities such as oil exploration, urban expansion, and deforestation. The study also 

quantified land cover changes beyond mangroves, showing a 5.61% increase in water 

bodies, a 32.15% rise in bare land, and an unexpected 53.63% reduction in built-up 

areas. These shifts indicate complex environmental dynamics, possibly linked to 

climate change, hydrological alterations, and socio-economic factors. Furthermore, 

statistical analyses, including Chi-square tests and Kendall’s Tau analysis, established 

a significant relationship between oil spill occurrences and mangrove degradation, 

emphasizing the adverse impacts of industrial activities on coastal ecosystems. The 

study’s regression analysis showed a clear trend of continued environmental 

degradation, reinforcing the need for immediate conservation interventions. These 

findings underscore the urgent need for sustainable management policies to mitigate 

further mangrove loss, restore degraded areas, and regulate industrial activities. 

Strengthening environmental regulations, implementing restoration projects, and 

adopting pollution control measures will be crucial in safeguarding the Niger Delta’s 

ecological integrity. Future research should explore localized conservation strategies 

and assess the long-term socio-economic impacts of mangrove degradation. 

6. Highlight 

⚫ Mangrove cover decreased from 2804.37 km2 (58%) in 1986 to 2509.18 km2 

(52%) in 2022, a 10.53% decline. Meanwhile, degraded mangrove areas 

expanded drastically by 354.46%, highlighting severe ecological stress. 

⚫ Water coverage increased by 101.17 km2 (5.61%), possibly due to rising sea 

levels, flooding, or industrial activities, particularly oil exploration. 

⚫ Built-up areas surprisingly declined by 53.63%, suggesting urban relocation, 

environmental challenges, or shifting land-use policies. 

⚫ Statistical analysis confirms a significant correlation between oil spill 

occurrences and mangrove degradation, necessitating stricter pollution controls. 

⚫ Regression analysis indicates continuous land cover changes, emphasizing the 

urgent need for conservation and intervention measures. 
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