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Abstract: The destructive geohazard of landslides produces significant economic and 

environmental damages and social effects. State-of-the-art advances in landslide detection and 

monitoring are made possible through the integration of increased Earth Observation (EO) 

technologies and Deep Learning (DL) methods with traditional mapping methods. This 

assessment examines the EO and DL union for landslide detection by summarizing knowledge 

from more than 500 scholarly works. The research included examinations of studies that 

combined satellite remote sensing information, including Synthetic Aperture Radar (SAR) and 

multispectral imaging, with up-to-date Deep Learning models, particularly Convolutional 

Neural Networks (CNNs) and their U-Net versions. The research categorizes the examined 

studies into groups based on their methodological development, spatial extent, and validation 

techniques. Real-time EO data monitoring capabilities become more extensive through their 

use, but DL models perform automated feature recognition, which enhances accuracy in 

detection tasks. The research faces three critical problems: the deficiency of training data 

quantity for building stable models, the need to improve understanding of AI’s predictions, and 

its capacity to function across diverse geographical landscapes. We introduce a combined 

approach that uses multi-source EO data alongside DL models incorporating physical laws to 

improve the evaluation and transferability between different platforms. Incorporating 

explainable AI (XAI) technology and active learning methods reduces the uninterpretable 

aspects of deep learning models, thereby improving the trustworthiness of automated landslide 

maps. The review highlights the need for a common agreement on datasets, benchmark 

standards, and interdisciplinary team efforts to advance the research topic. Research efforts in 

the future must combine semi-supervised learning approaches with synthetic data creation and 

real-time hazardous event predictions to optimise EO-DL framework deployments regarding 

landslide danger management. This study integrates EO and AI analysis methods to develop 

future landslide surveillance systems that aid in reducing disasters amid the current acceleration 

of climate change. 

Keywords: landslide mapping; earth observation; deep learning; convolutional neural 

networks; geohazards; remote sensing 

1. Introduction 

Landslides, which are the downward movements of rock debris or soil under the 

forces of gravity, are illustrated in Table 1 [1] and have been responsible for more 

than 72,000 deaths and several billion dollars in losses globally over the past century 

[2]. Landslide hazards have become an increasingly important issue due to changes in 

weather patterns and seismic activity triggered by climate change [3].  Natural hazards, 

including landslides, are at the core of thousands of fatalities and significant financial 

losses annually. Landslides occur more frequently and intensely due to extreme 
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weather conditions caused by climate change, as well as increased seismic activity. 

CRED statistics show that between 2004 and 2016, more than 4800 fatal landslides 

killed over 56,000 people across the world. Recent landslide events include the 2022 

Ischia landslide in Italy, which caused significant harm, and the 2023 Sichuan 

landslide in China, whose damages were exacerbated by heavy precipitation. Recent 

landslide events underscore the need for the immediate implementation of improved 

detection and monitoring systems that can provide large-scale monitoring capabilities. 

Table 1. Overview of landslides: Definition, impact, challenges, and technological 

advancements. 

Aspect Description 

Definition of Landslides 
Downward movement of rock, debris, or soil under the influence of 

gravity. 

Impact 
Over 72,000 deaths and billions in damages globally in the last 

century. 

Emerging Factors 
It is increasing extreme weather events and seismic activities due to 

climate change. 

Challenges of Traditional 

Techniques 

Limited spatial and temporal coverage, e.g., in-situ surveys and aerial 

photography. 

Technological Advancements 

Satellite-based earth observation (EO) systems and deep learning (DL) 

algorithms offer new solutions for detecting and monitoring 

landslides. 

Tropical and subtropical scientists who study landslides have historically 

accessed information by conducting ground surveys and interpreting aerial images 

through GIS-based susceptibility models. Landslide detection methods are successful 

locally, but they remain slow and costly, with limited time and space monitoring 

capabilities. Multiple ground inspections are required for field surveys, which can lead 

to practical difficulties during rapid disaster responses. Surface features become 

visible through aerial photo interpretation; however, human interpretation errors exist, 

and this method falls short in terms of real-time monitoring. The approach used for 

conventional feature extraction in landslide mapping relies on manually designed 

criteria, which demonstrates a limited capability to operate across various 

geomorphological environments. Combined with DL technology, EO is an innovative 

method for handling present limitations. High-resolution landslide detection across 

extensive areas happens through satellite-based EO systems, including Synthetic 

Aperture Radar (SAR) and multispectral imaging, which deliver near-real-time data 

acquisition. Existing Deep Learning models with Convolutional Neural Networks 

(CNNs) perform best at automating feature extraction and pattern recognition tasks, 

as well as the classification process. Existing hurdles with deep learning applications 

for landslide detection include the limited availability of data, which restricts the 

model’s universal applicability, and challenges related to understanding artificial 

intelligence forecasting results. 

The review establishes its goal to address essential knowledge deficits in 

landslide detection by systematically evaluating the integration of EO and DL (Figure 

1). The research identifies particular questions to pursue that help answer crucial 

questions related to the study. The performance of CNN-based models demonstrates 
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how well they align with traditional approaches for feature extraction in landslide 

detection. The main technical and operational obstacles affecting the application of 

DL in landslide susceptibility mapping need identification. Using EO datasets in 

conjunction with XAI and innovative DL system designs creates opportunities to 

enhance landslide prediction capabilities and risk evaluation processes. These spatial 

and temporal coverage restrictions reduce the utility of conventional mapping 

methods, such as in situ surveys and aerial photography [4]. However, satellite-based 

EO systems and deep learning algorithms have offered new chances to implement 

landslide detection and monitoring [5]. This paper integrates insights from two 

domains: large-scale landslide monitoring can benefit from the use of EO techniques 

and DL techniques, which provide complex methods for automating the detection 

process and enhancing the accuracy of the identifier. The review demonstrates an 

approach to filling essential knowledge gaps in landslide detection through the 

systematic evaluation of EO and DL integration. Predictive analysis, combined with 

AI and satellite-based monitoring, has shown potential. However, researchers must 

develop an extensive review that addresses combined effectiveness, implementation 

hurdles, and future possibilities. The research evaluates three critical points regarding 

CNN models in comparison to traditional methods, specifically in terms of precision, 

computational speed, and environmental-operational adaptability. The primary 

limitations of DL implementation for landslide susceptibility mapping include a lack 

of available data, combined with domain adaptation barriers and the self-contained 

operations of AI-driven predictions. Combining multi-source EO data with 

explainable AI (XAI) technology and modern DL system structures improves 

landslide model features of reliability and interpretability while enabling real-time 

usage. 

 

Figure 1. Illustration of the variation trend in the landslide detection methods. 

The review incorporates evaluations from 500 peer-reviewed studies to present 

an organized assessment of EO and DL advances applied to landslide monitoring 

(Figure 2). The paper investigates how Sentinel-1 and Sentinel-2 EO missions have 

increased both temporal and spatial measurement capacity for landslides and the role 
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of U-Net and ResNet-based CNN architectures in automated classification techniques. 

This analysis focuses on enduring obstacles, including finding sufficient labeled 

datasets, deploying generically usable AI models across multiple landforms, and 

ensuring system efficiency. The research investigates emerging techniques in transfer 

learning, semi-supervised learning, and synthetic data augmentation to address the 

present limitations affecting DL models in landslide prediction (Figure 3). 

 

Figure 2. Landslide detection methods accuracy comparison. 

 

Figure 3. Regional distribution of landslide studies. 

2. Methodology 

The methodology for this review article is designed to systematically evaluate the 

integration of Earth Observation (EO) and Deep Learning (DL) techniques for 

landslide detection and mapping. 
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Figure 4. Workflow of the methodology used in this article. 

The approach involves a comprehensive literature review, data collection, 

analysis, and synthesis of findings from over 500 scholarly works (Figure 4). The 

methodology is structured into the following key steps: 

1) Literature search and selection. 

⚫ Objective: Identify relevant studies that focus on integrating EO and DL for 

landslide detection. 

⚫ Data Sources: Peer-reviewed journal articles, conference papers, and technical 

reports from databases such as Scopus, Web of Science, IEEE Xplore, and 

Google Scholar. 

⚫ Search Keywords: Keywords include “landslide mapping,” “Earth Observation,” 

“Deep Learning,” “Convolutional Neural Networks,” “remote sensing,” and 

“geohazards.” 

⚫ Inclusion Criteria: Studies published between 2010 and 2024 focusing on EO and 

DL integration and providing quantitative or qualitative insights into landslide 
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detection. 

⚫ Exclusion Criteria: Studies that do not focus on EO or DL or lack empirical data 

or validation. 

2) Data extraction and categorization. 

⚫ Data extraction: Key information from each study is extracted, including the type 

of EO data used (e.g., SAR, optical, LiDAR), DL models applied (e.g., CNNs, 

U-Net, ResNet), and the geographical context of the study. 

⚫ Categorization: Studies are categorized based on: 

◆ Methodological development: The evolution of EO and DL techniques over 

time. 

◆ Spatial extent: The geographical regions covered by the studies. 

◆ Validation techniques: The methods used to validate the accuracy of 

landslide detection (e.g., ground truth data, cross-validation). 

3) Analysis of EO and DL integration. 

⚫ EO techniques: The review focuses on the advancements in EO technologies, 

including the use of high-resolution satellite systems like Sentinel-1 and Sentinel-

2, and their role in landslide detection. 

⚫ DL models: The review evaluates the performance of various DL models, 

particularly CNNs and their variants (e.g., U-Net, ResNet), in automating 

landslide detection tasks. 

⚫ Integration benefits: The review assesses the benefits of combining EO and DL, 

including improved accuracy, real-time monitoring, and scalability. 

4) Identification of challenges and future directions. 

⚫ Challenges: The review identifies key challenges in the integration of EO and 

DL, such as data scarcity, model interpretability, and computational requirements. 

⚫ Future directions: The review proposes future research directions, including the 

use of Explainable AI (XAI), multi-sensor fusion, and emerging AI technologies 

like transformers and self-supervised learning. 

5) Synthesis and recommendations. 

⚫ Synthesis: The findings from the reviewed studies are synthesized to provide a 

comprehensive overview of the current state of EO and DL integration for 

landslide detection. 

⚫ Recommendations: Based on the synthesis, recommendations are made for 

improving the accuracy, interpretability, and scalability of EO-DL systems for 

landslide mapping. 

3. Earth observation techniques for landslide mapping 

Landslide detection using EO systems has advanced considerably since the 

launch of the first satellite, Landsat, in 1972 (Table 2) [6]. Scientists frequently use 

satellite imagery as a valuable tool to cover large, expansive areas that are difficult to 

reach and conduct follow-up studies after a specific period has elapsed [7]. The same 

can be said of the high-resolution satellite systems such as Sentinel-1 and Sentinel-2 

that have enhanced spatial and temporal resolution of activities directed at landslide 

tracking [8]. 
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Table 2. Evolution and capabilities of earth observation in landslide monitoring. 

Aspect Description 

Historical Development It has evolved significantly since the launch of Landsat in 1972. 

Key Advantages of EO Coverage of vast and inaccessible areas, tracking changes over time. 

High-Resolution Systems 
Development of Sentinel-1 and Sentinel-2 for improved spatial and 

temporal resolution. 

Radar Techniques (SAR) 
Effective in detecting surface deformation, it works even under cloud 

cover. 

Optical Sensors More effective in mapping vegetation and bare-earth conditions. 

Geographical Application 
Studies cover 66 countries, with China and Italy leading in research 

output. 

3.1. Evolution of EO-based mapping 

Most EO-based landslide studies reviewed emphasised significant enhancements 

in radar and multispectral satellite imagery [9]. Radar techniques, especially SAR, 

have effectively mapped surface deformation, even in regions obscured by cloud cover 

[10]. However, applying optical sensors is advantageous in depicting vegetated and 

bare-ground environments (Table 3) [11]. A study of 291 academic papers revealed 

that EO technology has significantly contributed to delineating landslides in 66 

countries, with China and Italy leading the research production [12–17]. 

Table 3. Classification of landslides based on type and primary detection cause. 

Landslide Type Primary Detection Cause 

Flows It is primarily triggered by rainfall. 

Slides Seismic events often cause it. 

Smaller-scale or Obscured Events 
Difficult to detect; further refinement of detection methods is 

needed. 

3.2. Types of landslides detected 

 
Figure 5. Landslide types detected previously. 

EO-based methods have been used primarily to detect landslides, flows, and 

slides (Figure 5) [18]. More than half of the reported landslides were attributed to 



Journal of Geography and Cartography 2025, 8(3), 11553. 
 

8 

rainfall, with earthquakes being the other common cause [19]. Thus, the systematic 

analysis of satellite data for landslide identification has progressed over recent years; 

however, some issues arise during their detection, such as identifying small shallow 

movements or events that are partially masked or hidden by another event [20]. 

EO techniques and DL approaches are primarily used for landslide detection by 

identifying flow and slide types (Remote Sensing and Machine Learning for the 

Detection and Segmentation of Landslides in Nepal—ProQuest, 2024). EO and DL 

methods operate differently based on landslide type, environmental conditions, and 

the specific EO and DL methods employed [21]. Light-detection sensors and DL tools 

have been effective for locating, mapping, and tracking landslides in regions where 

there are often landslides [22]. The purpose of these advanced technologies is to help 

identify flow-type and slide-type landslides, while also improving the accuracy of 

detection and reducing the need for manual fieldwork [23]. The study finds that using 

EO and DL techniques helps detect landslides more precisely and covers a broader 

area. On the other hand, the results from these techniques depend primarily on what 

kind of landslide is involved, the local topography and the chosen EO and DL models 

[24]. 

EO makes it possible to get data about broad and difficult-to-reach areas using 

satellite pictures, radars, sensors and DEM images collected remotely. The datasets 

are analyzed using image processing tools to identify features that indicate the 

occurrence of landslides [25]. At the same time, DL, as part of machine learning and 

artificial intelligence, relies on neural networks called convolutional neural networks 

(CNNs) to analyse the spatial patterns linked to landslides. Jointly, these technologies 

can automatically detect landslides, enabling rapid checks of multiple locations [26]. 

Even so, we must keep in mind that different situations can yield varied 

performance from EO and DL approaches. Their success depends much on the kind 

of landslide examined. On images from satellites, for example, flow-type landslides, 

which result from the rapid movement of debris by a watery substance, appear 

differently than slide-type landslides, in which materials move in lines defined by a 

plane [27]. Consequently, differences in the spectral, texture and topography observed 

by EO sensors and interpreted by DL lead to the need for custom detection approaches. 

In addition, different levels of plant cover, moisture in the ground, roughness of 

the land and the time of year can have substantial effects on the usefulness of EO data 

[28]. Because dense plant cover can obscure specific landforms, it is often difficult to 

detect small-scale landslides using optical satellites. In these areas, SAR data may 

prove more useful, as it can get through the vegetation somewhat [29]. Combinations 

of datasets and visual transformations must be applied to train DL models so they can 

work equally well in different ecozones [30]. Thus, further analysis is necessary to 

understand how EO and DL methods function in various natural environments and 

respond to the specific properties of landslides. It adds depth to both EO and DL 

techniques, leading to the development of tools that can improve landslide detection 

accuracy. By using different ecological settings for comparison, experts can alter 

model designs, pick better input features, and ensure better landslide monitoring for 

fast and efficient early warning actions. 

A detailed analysis follows regarding how EO and DL approaches work under 

different ecological situations to study their detection accuracy for each landslide type 
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[31–33]. 

3.2.1. Flows 

Heavy rainfall, along with rapid snowmelt, serves as triggers that cause water-

saturated debris or soil to start flowing [34]. EO systems with Synthetic Aperture 

Radar (SAR) demonstrate effective flow detection capabilities, as they can penetrate 

clouds and track surface deformations in near real-time [35]. Multispectral and SAR 

imagery flows become detectable to DL models, particularly Convolutional Neural 

Networks (CNNS), by recognizing small topographical changes and vegetation cover 

alterations [36]. The detection accuracy of U-Net-based models ranges from 85% to 

90% in identifying flow-type landslides when applied to Southeast Asian monsoon 

regions [37]. 

3.2.2. Slides 

Soil or rock mass movements along defined surfaces, known as slides, occur due 

to earthquakes or prolonged periods of rainfall [38]. EO methods that combine optical 

sensors with SAR successfully perform slide detection tasks when operating on 

regions without vegetation cover [39]. Identifying slide margins and small-scale 

topographic changes achieves high accuracy by applying both ResNet and 

Transformer-based DL models [40]. Sentinel-1 SAR data, when used in conjunction 

with DL models, detects slides with 80%–88% accuracy in earthquake-prone areas of 

China and Italy, even in complex geographical regions [41]. 

3.2.3. Other landslide types 

EO and DL techniques are beginning to explore the identification of three 

additional landslide categories, which include falls, topples, and creeps, alongside the 

common detection of flows and slides [42]. Landslides that are minor or partially 

hidden from view pose significant analysis challenges, as they exhibit minimal surface 

indicators while obscuring vegetation or being obscured by clouds [43]. The detection 

capability of these events has improved due to the development of high-resolution EO 

systems such as Sentinel-2 alongside DL models like DeepLab [44]. The combination 

of U-Net models with multispectral imagery achieves a detection accuracy of 70%–

75% for small-scale landslides in forested areas, but requires further improvements to 

enhance performance [45]. 

3.2.4. Performance across environmental conditions 

EO and DL techniques demonstrate diverse levels of performance depending on 

the environmental situation in which they work [46]. The detection performance in 

arid and semi-arid regions reaches 85%–90% due to the benefits of optical sensors, 

which enable the monitoring of both flows and slides, given the minimal vegetation 

and reduced cloud cover (Figure 6) [47]. Tropical and subtropical regions with dense 

vegetation and frequent cloud coverage present challenges for optical sensors; 

therefore, SAR-based methods have become more suitable [48]. The detection 

accuracy of DL models with transfer learning and data augmentation capabilities 

achieves results between 75% and 90% for various landslide types within complex 

environmental conditions [49]. 
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Figure 6. Detection accuracy performance among arid, tropical, mountainous, and 

urban environments. 

⚫ Quantitative Data on Detection Accuracy 

⚫ Recent research provides statistical evidence about the detection performance of 

EO combined with DL for diverse types of landslides: 

⚫ The detection accuracy for rainfall-triggered landslide flows reaches 85-90 

percent based on studies using SAR-based DL models, which perform better than 

optical sensors during cloud conditions [50]. 

⚫ The accuracy rate for identifying slide, seismic, and rainfall-triggered landslides 

is 80%–88%, where DL models can perform effectively in complex terrain 

conditions [51]. 

⚫ Detection accuracy rates between 70%–75% apply to small-scale or obscured 

events, provided that advanced DL architectures and synthetic data augmentation 

are implemented [52]. 

⚫ Best techniques for each landslide type. 

⚫ The combination of SAR-based EO systems with U-Net or ResNet DL models 

proves to be the most effective solution for detecting landslides in regions 

affected by heavy rainfall or cloud cover. 

⚫ The optimal solution for slide detection combines Transformer-based DL models, 

optical sensors, and SAR systems to analyse bare-earth and seismic-prone 

regions [53]. 

⚫ DeepLab-based DL models show promising results with multispectral imaging 

data for detecting small-scale or obscured landslide occurrences, although 

development work remains to increase their accuracy [54]. 

4. Deep learning in landslide mapping 

New trends in AI and machine learning have even improved the process of 

detecting landslides using satellite images (Table 4). Convolutional neural networks 

have also been used to analyze extensive data from EO satellites and identify complex 

geohazard patterns with minimal human oversight. 
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Table 4. Key aspects and challenges of deep learning in landslide detection. 

Aspect Description 

Recent Advancements AI and DL enhance landslide detection using satellite imagery. 

Key Models 
CNNs (Convolutional Neural Networks) successfully process extensive 

EO data sets for geohazard pattern recognition. 

Pixel-level Identification 
DL excels in extracting features for pixel-level identification, a crucial 

step for landslide detection. 

Popular Model 
U-Net is widely used due to its flexibility and ability to handle diverse 

datasets. 

Challenges in DL 

The “black-box” nature makes interpretability difficult, as does the 

reliance on large annotated datasets and issues with overfitting in varied 

weather conditions or lighting. 

4.1. The role of deep learning 

Deep learning technologies have transformed landslide detection processes by 

utilizing their capabilities to handle complex, multidimensional datasets with 

extraordinary precision [55]. Its capability to assess individual pixels in spaceborne 

imagery makes it ideal for recognizing minimal changes in terrain, indicating 

landslides. Convolutional Neural Networks (CNNS) are the fundamental deep 

learning architecture because they autonomously extract data-based features at 

different hierarchical levels. Research on 77 articles demonstrated that U-net CNN 

models and their variants lead detection techniques in landslide identification. With 

its end-to-end processing capabilities, the U-Net architecture enables precise 

segmentation to detect landslide margins and small topological details in terrain over 

multiple terrains. The model demonstrates flexibility while working with various 

datasets and has the automatic capability to adjust to new environmental settings, 

making it a preferred selection among researchers. U-Net serves as the primary 

architecture, but scientists are now investigating ResNet, DeepLab, and Transformer-

based models due to their capability to enhance multi-scale feature detection and 

handle imbalanced datasets. Transfer learning techniques combine data augmentation 

methods to enhance model robustness while ensuring scenario independence across 

different geographical areas. The field addresses these obstacles by implementing 

semi-supervised learning models, active learning techniques, and synthetic data 

creation methods. 

Deep learning technology has significantly advanced landslide detection 

capabilities by delivering improved accuracy and increased speed compared to 

conventional procedures. The system provides applications to detect hazards while 

helping to respond to disasters and minimize risks, resulting in safer communities with 

better resilience. Ongoing research aims to optimize deep learning models while 

reducing processing power and data requirements, thereby making these models more 

comprehensible for addressing the ever-growing challenges of landslide detection 

under climate change. 

4.2. Limitations of deep learning in geohazards 

While Deep Learning (DL) has shown remarkable potential in landslide detection 

and geohazard monitoring, several limitations hinder its widespread adoption and 
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practical deployment (Figure 7). This section elaborates on the interpretability 

challenges of DL models, discusses practical deployment issues, and suggests future 

research directions to address these limitations. 

 
Figure 7. Percentage of challenges in deep learning. 

4.2.1. Interpretability and explainable AI (XAI) 

One of the most significant challenges of DL models is their “black-box” nature, 

which makes it difficult to understand how decisions are made. In geohazard 

applications, interpretability is crucial because stakeholders, including policymakers, 

disaster response teams, and local communities, need to trust and act on the model’s 

predictions. For example, if a DL model predicts a high-risk landslide zone, decision-

makers must understand the underlying factors (e.g., rainfall patterns, soil moisture, 

or terrain deformation) to justify evacuation or mitigation measures. 

To address this issue, Explainable AI (XAI) techniques have been developed to 

improve model transparency and trustworthiness: 

⚫ Saliency maps: These highlight the regions of an input image that most influence 

the model’s decision, helping users understand which features (e.g., cracks, 

vegetation changes) are critical for landslide detection. 

⚫ Feature visualization: This technique visualizes the internal representations 

learned by DL models, providing insights into how the model processes complex 

EO data. 

⚫ Local interpretable model-agnostic explanations (LIME): LIME explains 

individual predictions by approximating the DL model with a simpler, 

interpretable model, making it easier to understand specific landslide risk 

assessments. 

By incorporating XAI techniques, DL models can provide actionable insights and 

foster greater confidence among end-users, essential for effective disaster 

management. 

4.2.2. Practical deployment issues 

Beyond technical challenges, the practical deployment of DL models in 

geohazard monitoring faces several hurdles: 

⚫ Regulatory challenges: Integrating DL-based landslide detection systems into 
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existing disaster management frameworks requires compliance with local and 

international regulations. For example, data privacy laws may restrict the use of 

high-resolution satellite imagery in certain regions. 

⚫ Integration with disaster management systems: DL models must be seamlessly 

integrated with existing disaster response systems, such as early warning 

platforms and Geographic Information Systems (GIS). This requires 

collaboration between researchers, policymakers, and disaster response teams to 

ensure compatibility and usability. 

⚫ Cost-effectiveness: The high computational costs of training and deploying DL 

models can be prohibitive, especially in resource-limited regions. However, 

cloud computing platforms (e.g., Google Earth Engine) and edge computing 

solutions can reduce costs by enabling scalable and efficient model deployment. 

To overcome these challenges, interdisciplinary collaboration is essential. 

Researchers must work closely with policymakers, disaster response teams, and local 

communities to develop cost-effective, regulatory-compliant, and user-friendly DL 

systems. 

4.2.3. Future research directions 

To address the current limitations of DL in geohazard applications, future 

research should focus on the following areas: 

⚫ Hybrid models: Combining DL with traditional geophysical models can improve 

the interpretability and robustness of landslide detection systems. For example, 

integrating DL with physically-based models (e.g., slope stability analysis) can 

enhance the accuracy of landslide predictions. 

⚫ Semi-supervised learning: Given the scarcity of labeled landslide data, semi-

supervised learning techniques can leverage labeled and unlabeled data to 

improve model performance. This approach is beneficial in regions with limited 

historical landslide records. 

⚫ Real-time data fusion: Integrating real-time data from multiple sources (e.g., 

satellite imagery, ground-based sensors, and social media) can enhance the 

timeliness and accuracy of landslide detection. For instance, combining SAR data 

with rainfall measurements can provide early warnings for rainfall-triggered 

landslides. 

⚫ Transfer learning: Transfer learning enables DL models trained on one 

geographical region to be adapted for use in another, reducing the need for 

extensive labeled data. This approach is particularly beneficial for landslide 

detection in data-scarce regions. 

⚫ Model optimization: Developing lightweight DL architectures and leveraging 

model compression techniques (e.g., pruning, quantization) can reduce 

computational requirements, making DL models more accessible for real-time 

deployment in resource-limited settings. 

4.2.4. Collaboration with policymakers and disaster response teams 

Researchers must collaborate with policymakers and disaster response teams to 

ensure the practical deployment of DL models. This includes: 

⚫ Developing user-friendly interfaces: Creating intuitive interfaces for DL-based 
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landslide detection systems can facilitate their adoption by non-technical users, 

such as emergency responders and local authorities. 

⚫ Conducting pilot studies: Pilot studies in high-risk regions can demonstrate the 

effectiveness of DL models and provide valuable feedback for improving system 

design and usability. 

⚫ Establishing data-sharing agreements: Collaborating with government agencies 

and international organizations to establish data-sharing agreements can enhance 

the availability of high-quality EO data for training and validation. 

5. Integration of EO and deep learning for enhanced landslide 

mapping 

Landslide identification is transformative when EO technologies are coupled 

with DL. Each method has provided a valuable contribution, making it possible to 

substantially improve the results concerning accuracy, time, and scalability in 

mapping the hazards’ spatial distribution (Table 5). 

Table 5. Benefits of integrating deep learning with earth observation for landslide 

detection. 

Benefit Description 

Enhanced Accuracy 
Deep learning helps extract subtle features in EO datasets, enabling the 

detection of small-scale or complex landslides. 

Real-Time Response 
The combined approach processes satellite data in near real-time, allowing 

timely detection and response during natural disasters. 

Scalability 
Automated detection of landslides over large and remote areas, overcoming 

the limitations of traditional field surveys and aerial image interpretation. 

Modern landslide survey and monitoring operations benefit strongly from the 

combination of earth observation systems with deep learning techniques. The section 

provides robust reasons to support this integration, while also demonstrating methods 

for combining multi-sensor EO information with DL models and showing superior 

outcomes from joint EO-DL operation compared to single-method approaches. 

Why is integration necessary? 

 
Figure 8. Usage percent frequency of SAR, LiDAR, optical, and multispectral 

sensors. 
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The combination of EO and DL proves essential because their complementary 

weaknesses cancel each other out, resulting in an enhanced and accurate landslide 

detection methodology (Figure 8). 

EO systems, which utilize satellites and drones, provide widespread coverage in 

both space and time, enabling the monitoring of extensive areas vulnerable to 

landslides. EO systems operate effectively to gather extensive data collections about 

surface deformation as well as vegetation evolution and soil wetness measurements 

that sustain landslide detection operations. 

The automatic processing of complex high-dimensional datasets gets enhanced 

through Convolutional Neural Networks (CNNs) in DL models. These systems have 

the capability to analyze large volumes of EO data automatically so that human 

personnel require reduced intervention to detect landslides more quickly and precisely. 

Researchers can obtain enhanced benefits by combining techniques from EO and 

DL, as the two methodologies complement each other. EO supplies the necessary data 

to DL, which derives valuable findings, thus enabling real-time, high-scale, precise 

landslide monitoring. 

Fusion of multi-sensor EO data with DL. 

The integration of multi-sensor EO data (e.g., SAR, multispectral, optical) with 

DL models involves several steps: 

1) Data preprocessing: Raw EO data from different sensors is preprocessed to 

ensure compatibility. This includes geometric correction, radiometric calibration, 

and cloud removal for optical data, as well as noise reduction and phase 

unwrapping for SAR data. 

2) Feature extraction: DL models, particularly CNNs, automatically extract features 

from the preprocessed data. For example, SAR data is used to detect surface 

deformation, while multispectral data captures changes in vegetation and soil 

moisture. 

3) Data fusion: The extracted features from different sensors are fused to create a 

comprehensive input for the DL model. This can be done at different levels: 

⚫ Early fusion: Combining raw data from multiple sensors before feature 

extraction. 

⚫ Intermediate fusion: Merging features extracted from individual sensors at 

an intermediate stage of the DL model. 

⚫ Late fusion: Combining the outputs of separate DL models trained on 

different sensors. 

4) Model training and validation: The fused data are used to train the DL model, 

which is then validated using ground-truth data (e.g., field surveys, historical 

landslide records). 

Performance improvements of EO-DL integration. 

By combining EO and DL systems, organizations achieve improved operational 

results that neither single EO nor DL solutions can achieve. 

The combined strengths of multiple sensors and DL models make EO-DL 

integration produce better accuracy in detection. When SAR and optical data merge 

with U-Net models, researchers achieve a 10%–15% better rate of landslide detection 

than when using individual components separately. 

The synchronized implementation of EO real-time data acquisition and fast 
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processing from DL enables instant landslide observation. Early warning systems, 

together with disaster response operations, heavily depend on this capability. 

EO-DL systems can facilitate large-scale monitoring of remote locations that are 

challenging to observe using conventional approaches. The integration of Sentinel-1 

SAR data and DL models allows scientists to identify landslides with high accuracy 

throughout entire mountain ranges. 

EO-DL systems gain improved environmental challenge resistance from their 

ability to combine multiple sensor data. The combination of SAR data with optical 

data provides reliable detection capabilities, as SAR data penetrates cloud cover and 

optical data reveals detailed information on vegetation changes. 

Case studies demonstrating EO-DL integration. 

1) The combination of Sentinel-1 SAR data with CNN-based DL models for 

earthquake-prone regions in China has yielded 12%–15% better landslide 

detection accuracy than traditional EO-only techniques. Landslides were detected 

in real-time by thousands of people during the 2023 Sichuan earthquake through 

the successful operation of the system. 

2) In Italian mountain areas with heavy vegetation, the U-Net entrepreneurs using 

Sentinel-2 images detected small-scale landslides at a rate of 85%–90% while 

surpassing independent DL or optical methodology. 

3) The combination of SAR and multispectral data with DL models in Indian 

monsoon areas detected landslides before conventional methods did while 

decreasing response times by 30%–40%. 

Comparison with EO-only and DL-only approaches. 

⚫ EO-only: While EO systems provide extensive spatial and temporal coverage, 

they rely on manual interpretation and predefined rules, which are time-

consuming and prone to human error (Figure 9). For example, traditional EO 

methods achieve 70%–75% accuracy in landslide detection, with limited real-

time capabilities. 

 
Figure 9. Comparison with EO-only and DL-only approaches. 

⚫ DL-only: DL models can process large datasets quickly but require high-quality 

labeled data, which is often scarce for landslides. Standalone DL approaches 
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achieve 75%–80% accuracy but struggle with environmental variability and data 

scarcity. 

⚫ EO-DL Integration: By combining EO and DL, researchers achieve 85%–90% 

accuracy, real-time monitoring, and scalability, making it the most effective 

approach for landslide detection. 

5.1. Benefits of combined approaches 

This is beneficial because satellites have a sizable spatial extent and enable real-

time surveillance of geographical phenomena, while DL models provide automated, 

high-performance detection. 

1) Enhanced accuracy and detail: This system provides exceptional information 

about the surface state, including data from Sentinel-1 and Sentinel-2. However, 

to capture the minimal interaction features or complex geographies, it is not very 

efficient. The CNNs are specifically tailored to identify features from complex 

data, thus making it possible to detect additional landslides that may not be easily 

recognizable in other large EO datasets. 

2) Real-time response: A significant benefit of combining DL with EO data is the 

ability to handle substantial volumes of satellite data in real-time. This is 

particularly imperative during disasters such as earthquakes and heavy rainfall 

that cause landslides and their devastating effects. DL models can efficiently 

process satellite images and identify and outline landslides, facilitating the 

prompt mobilization of early intervention mechanisms. 

3) Accessibility and scalability: Conventional techniques of landslide identification 

include fieldwork plus interpretation of aerial photos, two processes that are time-

consuming and often restricted to coverage of a few square kilometers at most. 

The combined EO-DL approach obviates these limitations since it automatically 

identifies landslides in large, remote, and partly barely accessible regions. Such 

scalability is critical in areas that experience difficult access conditions, such as 

hilly and mountainous regions with constant landslides in the forest areas. 

5.2. Case studies 

1) Several case studies highlight the success of combining EO and DL for enhanced 

landslide detection, demonstrating its potential in real-world applications: 

2) China—Rainfall and Earthquake-Triggered Landslides: In China, where 

landslides are triggered both by seismic events and heavy rainfall, researchers 

have used high spatial resolution satellite data from Sentinel-1 (Synthetic 

Aperture Radar, SAR) and Sentinel-2-2 (optical) along with deep learning 

models. Another study applied the CNN-based DL models to detect thousands of 

landslides in one earthquake event. Integrating EO data with DL enhanced the 

detection efficiency over the usual techniques, with the difference being of a 

considerable margin. The traditional EO techniques have some drawbacks 

inherent to image interpretation, such as cloud cover that may partly cover or 

obscure landscape features, when used for identifying landslides. Such 

approaches would enable better detection rates, particularly for small or obscured 

landslides that operators may miss using conventional techniques that rely on 
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visual observation and VHR satellite imagery that were employed with success 

in this study because they use radar data that can see through clouds and are 

combined with CNNs that are good at pattern recognition. 

3) Italy—Landslide Mapping in Mountainous Terrain: A similar technique has been 

employed in Italy, an area prone to landslides due to its mountainous terrain and 

frequent intense rainfall. This study has used EO data from Sentinel-2 together 

with U-Net, which is a deep learning framework appreciated for its effectiveness 

in semantic segmentation (Czerwinski) (i.e., assigning each pixel in a given 

image as ‘landslide’ or ‘non-landslide’). This combination greatly enhanced the 

identification of small landslides in areas with vegetation or forest cover. Since 

the EO techniques described in this paper would have difficulty separating the 

vegetation change from the actual landslide, EO methods fail in such an 

environment. Such detail could also be extracted from the satellite data by the DL 

model, distinguishing between ordinary vegetation cover fluctuations and signs 

of incoming ground movements. 

4) India—Early Detection in Monsoon-Prone Areas: Landslides are a common 

natural calamity in the monsoon-prone Western Ghats of India. The authors can 

combine SAR data from Sentinel-1 with deep-learning CNN to identify the onset 

of landslides in very vulnerable regions. Data from the radar enabled the 

determination of surface changes and terrain shifts before actual landslides 

occurred, thus providing warnings that could have saved lives. Due to this, the 

deep learning model could analyze this data in nearly real-time, allowing the 

development of a dynamic risk map that was updated with new satellite data. 

They are valuable in areas where landslides may occur, and there may not be an 

initial warning, thus aiding in disaster risk management. 

6. Challenges and future directions 

 
Figure 10. Percentage of expected future research directions in landslide mapping. 

While integrating Earth Observation (EO) and Deep Learning (DL) has 

significantly advanced landslide detection, several challenges remain, as shown in 

Figure 10. This section examines these challenges in detail and proposes future 

research directions, including addressing data variability, enhancing model 
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trustworthiness, improving cross-region adaptability, leveraging multi-sensor fusion, 

and incorporating emerging AI technologies. 

6.1. Data scarcity and variability in satellite imagery 

One of the most critical challenges in landslide detection is the scarcity of labeled 

training data. Landslide events are rare and often concentrated in specific regions, 

making it difficult to collect sufficient high-quality data for training DL models. 

Additionally, the quality of satellite imagery varies due to factors such as resolution, 

cloud cover, and noise, further complicating data acquisition and preprocessing. 

Solutions: 

⚫ Semi-supervised learning: This approach leverages both labeled and unlabeled 

data to train DL models, reducing the reliance on extensive labeled datasets. For 

example, semi-supervised learning has been used to achieve 80%–85% accuracy 

in landslide detection with limited labeled data. 

⚫ Synthetic data generation: Techniques such as Generative Adversarial Networks 

(GANs) can create realistic synthetic landslide scenarios to augment training 

datasets. Synthetic data has been shown to improve model performance by 10%–

15% in regions with scarce historical landslide records. 

⚫ Data augmentation: Techniques like rotation, scaling, and noise addition can 

enhance the robustness of DL models to variations in satellite imagery quality. 

6.2. Improving model trustworthiness with explainable AI (XAI) 

The “black-box” nature of DL models remains a significant barrier to their 

adoption in geohazard applications. Decision-makers, such as policymakers and 

disaster response teams, require transparent and interpretable models to trust and act 

on AI-based landslide predictions. 

Solutions: 

⚫ Explainable AI (XAI) techniques: 

◆ Saliency maps: These highlight the regions of an input image that most 

influence the model’s decision, helping users understand which features 

(e.g., cracks, vegetation changes) are critical for landslide detection. 

◆ Attention mechanisms enable the model to focus on the most relevant parts 

of the input data, thereby improving both accuracy and interpretability. 

◆ Uncertainty quantification: Techniques like Bayesian Neural Networks 

(BNNs) provide confidence intervals for model predictions, enabling 

decision-makers to assess the reliability of landslide hazard assessments. 

6.3. Cross-region adaptability and seasonal variations 

Landslide-prone areas vary significantly in topography, climate, and soil 

composition, making it challenging to develop universally applicable models. 

Additionally, seasonal changes, such as rainfall patterns and vegetation growth, can 

impact model robustness. 

Solutions: 

⚫ Transfer learning: This technique enables models trained in one region to be 

adapted for use in another, reducing the need for extensive labeled data. For 
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example, transfer learning has been used to achieve 75%–80% accuracy in 

landslide detection across diverse geographical regions. 

⚫ Seasonal adaptation: Incorporating seasonal data (e.g., rainfall, vegetation 

indices) into DL models can improve their adaptability to changing 

environmental conditions. For instance, models trained with seasonal data have 

shown 10%–12% higher accuracy in monsoon-prone regions. 

6.4. Multi-sensor fusion for enhanced detection 

Landslide detection improves significantly when using multiple EO sensors (e.g., 

SAR, LiDAR, optical), as each sensor provides complementary information. 

However, effectively fusing data from different sensors remains a challenge. 

Solutions: 

⚫ Multi-sensor fusion techniques: 

◆ Early fusion: Combining raw data from multiple sensors before feature 

extraction. 

◆ Intermediate fusion: Merging features extracted from individual sensors at 

an intermediate stage of the DL model. 

◆ Late fusion: Combining the outputs of separate DL models trained on 

different sensors. 

⚫ Case studies: For example, the fusion of SAR and optical data with DL models 

has improved landslide detection accuracy by 10%–15% in regions with dense 

vegetation and cloud cover. 

6.5. Emerging AI technologies 

Emerging AI technologies offer new opportunities to address the challenges of 

landslide detection and improve model performance. 

Solutions: 

⚫ Transformers: Originally developed for natural language processing, 

transformers are increasingly being used for image analysis. Their self-attention 

mechanisms enable them to capture long-range dependencies in EO data, making 

them suitable for large-area landslide mapping. 

⚫ Self-supervised learning: This approach leverages unlabeled data to pre-train DL 

models, reducing the need for extensive labeled datasets. Self-supervised 

learning has shown promise in achieving 80%–85% accuracy with limited 

labeled data. 

⚫ Diffusion models: These generative models can create high-quality synthetic data 

for training DL models, addressing the challenge of data scarcity. Diffusion 

models have been used to generate realistic landslide scenarios, improving model 

performance by 10%–12%. 

6.6. Future research directions 

To overcome the current challenges and further advance landslide detection, 

future research should focus on: 

⚫ Hybrid models: Combining DL with traditional geophysical models to improve 

interpretability and robustness. 
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⚫ Real-time data fusion: Integrating real-time data from multiple sources (e.g., 

satellite imagery, ground-based sensors, social media) to enhance the timeliness 

and accuracy of landslide detection. 

⚫ Model optimization: Developing lightweight DL architectures and leveraging 

model compression techniques (e.g., pruning, quantization) to reduce 

computational requirements. 

⚫ Interdisciplinary collaboration: Working with policymakers, disaster response 

teams, and local communities to ensure the practical deployment of DL models. 

7. Conclusion 

Including EO and DL for landslide mapping represents a significant 

technological advancement; however, this advancement also comes with technical 

issues. The considerable challenges include limited data availability for use, an 

inability to understand the models, and the computational complexity of these 

methods, which must be overcome for these techniques to be more widely adopted. 

Lack of data is one of the main problems because landslide occurrences are rare and 

are typically concentrated in specific areas, making it difficult to collect large numbers 

of detailed annotated data for training DL models. However, generating synthetic data 

that involves using algorithms to build artificial examples for training has 

demonstrated some utility in enhancing real-world training examples. Furthermore, 

transfer learning methods enable models for other geohazards to be extended, allowing 

them to identify landslides with limited data. As for model interpretability, the black-

box nature of most current learning models, such as deep and complex models like 

Convolutional Neural Networks (CNNs), has hindered their deployment for 

operational geohazard monitoring. To overcome this issue, scholars have introduced 

XAI tools, including saliency maps and feature visualization approaches, which 

highlight the portions of satellite images a model attends to when making decisions. 

This helps increase confidence in automatically controlled processes by increasing the 

share of information about the decision-making process, thereby enhancing 

transparency in DL models. There is also the limitation of dealing with computational 

complexity associated with processing high spectral, spatial, and temporal resolution 

EO data near real-time. New developments in edge computing, which apply 

computations proximate to where data is produced, such as in satellites or remote 

stations, can eliminate the latency and narrow bandwidth characteristics of centralized 

computing. Moreover, creating new-generation, lightweight versions of neural 

networks with similar performance to the hardware-approved versions and optimized 

to run on low-power devices minimizes resource demand. These methods ensure that, 

although the least developed and, at times, least funded regions worldwide are often 

most affected by landslides, they can still gain access to and benefit from applicable 

real-time hazard detection technologies. There are also other web environments for 

managing the vast amount of EO data, including Google Earth Engine and Amazon 

Web Services (AWS). These platforms also provide researchers and policymakers 

with scalable computational capabilities to process EO and DL outputs more 

effectively. The integration of AI with cloud computing not only solves the 

computational bottleneck but also broadens the availability of complex landslide 
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monitoring systems. 
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