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Abstract: This study introduces a novel Groundwater Flooding Risk Assessment (GFRA) 

model to evaluate risks associated with groundwater flooding (GF), a globally significant 

hazard often overshadowed by surface water flooding. GFRA utilizes a conditional 

probability function considering critical factors, including topography, ground slope, and land 

use-recharge to generate a risk assessment map. Additionally, the study evaluates the return 

period of GF events (GFRP) by fitting annual maxima of groundwater levels to probability 

distribution functions (PDFs). Approximately 57% of the pilot area falls within high and 

critical GF risk categories, encompassing residential and recreational areas. Urban sectors in 

the north and east, containing private buildings, public centers, and industrial structures, 

exhibit high risk, while developing areas and agricultural lands show low to moderate risk. 

This serves as an early warning for urban development policies. The Generalized Extreme 

Value (GEV) distribution effectively captures groundwater level fluctuations. According to 

the GFRP model, about 21% of the area, predominantly in the city’s northeast, has over 50% 

probability of GF exceedance (1 to 2-year return period). Urban outskirts show higher return 

values (> 10 years). The model’s predictions align with recorded flood events (90% 

correspondence). This approach offers valuable insights into GF threats for vulnerable 

locations and aids proactive planning and management to enhance urban resilience and 

sustainability. 

Keywords: extreme probability distribution functions; groundwater flooding hazard; 

conditional probability; rising groundwater level 

1. Introduction 

Groundwater flooding (GF) is a phenomenon characterized by groundwater 

levels exceeding normal ranges and surfacing. Despite its emergence as a global 

hazard with profound implications for urban infrastructure, environmental health, 

and socio-economic stability, GF has been historically underappreciated in hazard 

assessment and policy formulation. This oversight is primarily due to more visible 

forms of overland or riverine flooding dominating the discourse [1,2]. This oversight 

is particularly concerning, given the extensive damage GF can inflict, akin to 

traditional flooding yet characterized by distinct features and drivers. For instance, in 

urban areas, GF can silently undermine underground structures without visible 

surface manifestation, posing unique challenges for detection and management [3]. 

Furthermore, the deterioration of GW quality resulting from mixing with wastewater 

through aging and leaking sewer infrastructures endangers groundwater-related 

ecosystems [4]. 
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GF’s development is multifaceted, often resulting from a combination of natural 

and anthropogenic factors. These include heightened infiltration rates due to extreme 

precipitation events [5], artificial recharge, and infrastructural inadequacies, such as 

leaking sewer systems [4]. Moreover, changes in water resource management 

leading to decreased groundwater withdrawal have also been recognized as 

contributing factors [6,7]. Despite its global prevalence, with incidents reported in 

diverse regions, including the UK and the US [1,8,9], GF remains inadequately 

represented in risk maps and management strategies. This gap is highlighted by the 

European Union’s Flood Directive (2007/60/EC), which mandates GF risk mapping 

yet faces challenges due to methodological limitations and data scarcity [10]. 

Identifying areas susceptible to GF is crucial, establishing a foundation for decision 

makers to address critical issues. Groundwater flooding risk maps are recommended 

to illustrate potential adverse consequences [10]. 

Current GF risk mapping techniques, encompassing stochastic and numerical 

models, machine learning, and analytical approaches [11–15], face obstacles due to 

insufficient comprehension of local geological and hydrological conditions, 

variability in GF causes, and challenges in model calibration arising from data 

paucity [16,17]. 

To address these critical gaps, this study proposes a novel GF risk mapping 

approach based on conditional probability. We introduce an innovative methodology 

that integrates several probability distribution functions (PDFs) to estimate the return 

period of GF events using historical data on annual maximum groundwater levels. 

This approach is validated through a case study in a southeastern Iranian urban 

aquifer with recorded GF incidents, offering insights into the methodology’s 

effectiveness and wider applicability. By advancing our understanding of GF 

dynamics and providing a robust assessment tool, this research not only contributes 

to the scientific discourse but also carries substantial implications for urban planning, 

disaster management, and global climate change adaptation strategies. It is important 

to note that the risk associated with groundwater flooding is a combination of hazard, 

vulnerability, and exposure and this study primarily focuses on the hazard 

component and its contributing factors. 

2. Materials and methods 

2.1. Study area 

Behbahan city in southeastern Khuzestan province, Iran, serves as a compelling 

case study for examining GF dynamics due to its distinct hydrogeological features 

and heightened susceptibility to GF hazards. With a population of approximately 

120,000 inhabitants, this urban area is situated in a critical zone of the aquifer, 

characterized by shallow depths that predispose it to frequent GF events. The study 

area, encompassing approximately 142 km2, lies in the aquifer’s lowest part, 

rendering it particularly vulnerable to hydrological changes. Geographically, it spans 

from 30°32′31″ N to 30°39′46″ N latitude and from 50°11′29″ E to 50°18′30″ E 

longitude, as illustrated in Figure 1, which also depicts groundwater flow and 

contour lines. 
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Several factors contribute to the area’s GF risk. The city’s inadequate drainage 

system, proximity to gaining rivers, fine-grained surface soils, and extensive 

irrigation networks lead to a shallow aquifer, particularly within the 30 km2 urban-

covered area. Situated at an altitude of 21.38 m above sea level, Behbahan exhibits a 

subtropical climate. According to Ehya and Marbouti [18], the region’s average 

annual temperature is around 30 ℃, with an annual precipitation of approximately 

336 mm. 

 
Figure 1. Location map of the study area, illustrating groundwater flow patterns and contour lines. 

Hydrogeologically, the aquifer has an average thickness of approximately 50 m 

within the study scope. Groundwater depth varies across the area, with central 

regions exhibiting shallower depths compared to the southern parts. The general 

groundwater flow originates from the southern and eastern parts, moving towards the 

northwestern parts, aligning with the Maroon River’s discharge (Figure 1). The 

highland geological units, ranging from upper cretaceous carbonate and evaporite 

rocks to more recent conglomerate and alluvial deposits, provide the aquifer 

materials through erosion processes. The surface soil is primarily composed of finely 

graded materials like marl, clay, and silty clay, characterized by their low hydraulic 

conductivity and substantial water-retention capabilities. The extensive irrigation 
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networks, drawing water primarily from surface resources, substantially contribute to 

aquifer recharge, in addition to precipitation and lateral flow sources. 

This detailed characterization of Behbahan city not only underscores its 

vulnerability to GF but also highlights its representativeness for studying GF 

phenomena in similar subtropical urban settings. The combination of climatic, 

hydrological, and geological factors renders this area an ideal model for the 

development and evaluation of novel GF risk assessment methodologies. The 

knowledge gained from this study holds potential implications for global urban 

centers worldwide that face similar challenges. 

2.2. Groundwater monitoring 

In this study, we employed a comprehensive groundwater monitoring network 

within Behbahan city, comprising 14 observation wells with data spanning from 

2002 to 2022. This dataset, characterized by its monthly temporal resolution, 

provides a valuable long-term perspective on aquifer dynamics. Historical analysis 

uncovers periods of significant tension within the aquifer, notably from 2006 to 2009 

and 2013 to 2017. These periods were primarily influenced by excessive 

groundwater extraction and decreased precipitation. These fluctuations ranged from 

315.7 to 319 m.a.s.l., are depicted in Figure 2. Notably, years with precipitation 

surpassing the 336 mm/year average corresponded with a rise in groundwater levels 

(Figure 2), highlighting the direct impact of climatological variables on aquifer 

behavior. This relationship is further evidenced by the reduced pumping rates and 

stabilized groundwater levels during years of higher-than-average precipitation, such 

as 2003, 2013, and 2017, in contrast to the significant fluctuations observed during 

drier years like 2006, 2007, 2009, and 2014. 

 
Figure 2. Monthly groundwater level fluctuations (green and red boxes), average annual groundwater fluctuations 

(black line), annual precipitation (blue bar), and average annual precipitation (red-dashed line). 

2.3. Groundwater flooding 

Since 2013, Behbahan city has intermittently encountered groundwater 

flooding; a phenomenon influenced by both physical factors and management 
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practices. Contributing factors include the city’s low-permeability surface soil, 

inadequate drainage systems, and its location within the aquifer’s low-lying areas. 

Furthermore, the management of aquifer withdrawals during various climatic 

conditions has a crucial impact on the occurrence of GF. A field survey conducted in 

2019 documented 40 instances of GF, affecting both open areas and building 

basements (Figure 3). This survey provided valuable insights into the environmental 

conditions and geographical distribution of GF incidents. 

 
Figure 3. Geographical distribution of reported groundwater flooding incidents, and the types of affected structures: 

(a) Foundation; (b) shopping center; (c) basement; (d) building’s yard. 

2.4. Maps for groundwater flooding risk assessment 

To generate a comprehensive Groundwater Flooding Risk Assessment (GFRA), 

this study employed three key driving factors: A digital elevation map, a slope map, 

and a land use-recharge map. The digital terrain model (DTM) was derived by 

processing over 10,000 elevation data points from the National Cartographical 

Center of Iran and refining them through a digital surface model (DSM) sourced 

from earthexplorer.usgs.gov [19]. The resulting DTM was further categorized into 

five distinct elevation classes using ArcGIS, as illustrated in Figure 4. 

Topographical changes can pose crucial effects on the timing and extent of GF [3]. 

The slope map, obtained from the processed DSM, reveals that the majority (65%) of 

the area falls within a 0%–1.15% slope class. This observation suggests that the most 
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critical groundwater mounds are more likely to develop in the low-slope areas of 

aquifers [1]. 

 
Figure 4. (a) Digital terrain model; (b) slope map; (c) land-use map of the study area. 

The land-use map, sourced from Landsat 8 satellite imagery, was analyzed to 

classify five primary land-use types within the region. This map played a pivotal role 

in delineating distinct recharge zones, which are critical in generating the GFRA. 

The region exhibits mixed land use, including residential areas ~20.5%, barren and 

uncultivated areas ~47%, cultivated areas ~31%, and recreation and greenery areas 

~1.5%. The recharge assumptions, adapted from the studies by Dadgar et al. [20,21], 

were integrated to account for the impacts of different land uses on groundwater 

recharge. In residential areas, where impervious surfaces have largely replaced 

natural terrain, recharge was considered negligible. This assumption is consistent 

with the findings of Nguyen et al. [22], who suggest that in urbanized settings, the 

proximity of groundwater levels to the surface reduces the possibility of wastewater 

system exfiltration contributing to groundwater recharge. It should be noted that the 

quantity of recharge was not explicitly incorporated into the calculations, but rather 

employed to illustrate the impacts of recharged and non-recharged regions on the 

probability of the GF risk. To facilitate the analysis, a unique code was assigned to 

each class of driving factors, ranging from 1 to 5. For instance, code 1 corresponds to 

class “290–320” in the DTM, class “0–1.15” in the slope category, and class 

“Cultivated” in land-use classification. This coding system was applied consistently 

across all driving factors to streamline the evaluation process. 

2.5. Probability function and frequency risk 

The methodology of this study, as illustrated in Figure 5, revolves around the 

application of a conditional probability function. This approach premised on the 

principle that the occurrence of certain events can be contingent on others [23], is 

particularly apt for analyzing complex environmental systems such as groundwater 
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flooding. The conditional probability equation employed in this study can be 

expressed as follows: 

𝑃(𝐵/𝐴) =
𝑃(𝐵 ∩ 𝐴)

𝑃(𝐴)
 (1) 

where 𝑃(𝐵/𝐴) represents the probability of event B given that event A has already 

occurred. This equation forms the backbone of our analysis, where three independent 

variables—ground elevation, ground slope, and recharge zones—are considered as 

antecedent events, and the depth to the groundwater table is treated as the dependent 

variable. A critical depth cut-off of 10 m was established, taking into account the 

distinct soil characteristics of the study area, which allow water uptake from the 

water table up to this depth. Hence, observation wells that did not meet this criterion 

were excluded from further investigation. 

The Frequency Risk (FR) index was derived by first calculating the success 

percentages of conditional probabilities for each factor and then averaging and 

normalizing these values to create an index ranging from 0 to 1. Building upon 

similar methodologies employed in previous studies [e.g., 15,24], we categorized the 

FR into five risk classes: No Risk (FR = 0), Low (0 < FR < 0.5), Medium (0.5 < FR 

< 0.7), High (0.7 < FR < 0.9), and Critical (0.9 < FR ≤ 1). This classification system 

allows for a more nuanced understanding of the varying levels of susceptibility to 

groundwater flooding, enabling decision-makers to prioritize resources and 

mitigation efforts accordingly. The thresholds for each risk class were carefully 

selected to balance sensitivity and specificity in identifying areas at risk, while also 

accounting for potential uncertainties in the underlying data and methodologies. 

The process for generating the GFRA comprises the following steps: 

• Creation of thematic maps for all variables, ensuring a consistent pixel size, and 

classification of the independent variables into four or five distinct classes. 

• Calculation of the probability for each factor by determining the number of 

pixels in each class and subsequently normalizing these values. 

• Assessment of the intersection between dependent and independent factors to 

determine the success percentage. 

• Application of the conditional probability equation to calculate the probability 

of the dependent factor. 

In order to combine the impacts of three independent factors into a single 

representative risk map, the conditional probabilities associated with each 

independent factor were averaged within each pixel. The resulting value for each 

pixel was normalized to generate a novel classification for groundwater flooding 

risks. This GFRA was subsequently validated against field survey data, confirming 

the model’s precision in identifying actual flooded locations. 

2.6. Probability distribution functions and map for groundwater flooding 

return period 

Frequency analysis, a fundamental technique in hydrological studies [25], was 

employed to analyze the behavior of the groundwater system using historical data 

fitting methods. This study’s exploration into the return period of groundwater 
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flooding events represents a significant advancement in hydrogeological risk 

assessment. Drawing from the findings of Guerriero et al. [26], we acknowledged the 

hydrogeological heterogeneity of large areas by employing multiple probability 

models. This approach recognizes the diverse hydrological responses across different 

observation wells due to the unique tensions imposed on the aquifer. Hence, various 

PDFs were considered to fit the annual maxima time series of groundwater levels, 

including Weibull, Fréchet, Gumbel, and the Generalized Extreme Value (GEV) 

distribution [27]. The selection and application of these PDFs are detailed in the 

Appendix. To ensure the most accurate representation of the data, the performance of 

each PDF was evaluated using goodness-of-fit tests, such as the Anderson-Darling 

(AD), Kolmogorov-Smirnov (KS), and Chi-Squared (x2) tests [28]. This analysis was 

conducted using the EasyFit tool. Consequently, the most appropriate distribution 

was used to predict the return periods of groundwater levels, culminating in the 

creation of a Groundwater Flooding Return Period (GFRP) map. 

 
Figure 5. Flowchart illustrating the proposed framework for generating the GFRA 

and the GFRP. 

3. Results and discussion 

3.1. Frequency risk 

The analysis of frequency risk in relation to driving factors confirms the crucial 

role of topographical features in GF incidents. As Figure 6a shows GF mostly 

occurs in low-lying areas, indicating the groundwater table is mainly susceptible to 

rising in lowland areas [4]. Almost 100% of the critical-risk zone lies within the 

290–320 m elevation range, while this range concurrently exhibits the least 

percentage of no-risk areas. Regions with elevations higher than 350 m appear to be 
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exempt from GF risk, which can be considered in future urban development. 

Groundwater flow is normally governed by ground slope, with gentler slopes being 

more susceptible to groundwater mounding. Figure 6b corroborates this, in which 

most GF incidents occur on slopes lower than 3%. In this case, areas with slopes 

steeper than 11% can be considered without GF risk. The high- and critical-risk 

zones are predominantly located within the first two slope classes, where covered by 

residential areas (see Figure 6c). Almost 40% of urban areas fall within high- and 

critical-risk levels, highlighting a critical finding. Despite the absence of recharge as 

a contributing factor in these urban areas, their low elevation and flat topography 

substantially increase their susceptibility to groundwater flooding. Recreational 

regions exhibit a 20% frequency risk, characterized by high and critical risk levels. 

The results of the frequency risk analysis suggest that the southeastern part of the 

region can be considered for future urban development planning, as it offers 

opportunities for expansion while mitigating potential groundwater flooding risks. 

 
Figure 6. Frequency risk of groundwater flooding regarding driving factors: (a) 

DTM; (b) slope; (c) land-use. 

3.2. Groundwater flooding risk assessment (GFRA) 

The GFRA map generated in this study represents a significant advancement in 

assessing spatial groundwater flooding risks. As illustrated in Figure 7a, the GFRA 

uncovers a critical level of risk in the central, northern, and eastern parts of the city. 

This is further corroborated by the GFRA, which identifies specific regions in the 

southeast and northwest as exhibiting low to high risk levels, underscoring the need 

for careful consideration in future urban planning and development (Figure 7c). The 

urban developed area, as shown in Figure 7d, displays a medium to high level of 
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risk, aligning with the findings of Chebanov and Zadniprovska [24], Allocca et al. 

[15]. Our approach offers several methodological advantages over earlier studies. It 

leverages commonly available hydrogeological data, such as groundwater level 

monitoring and recharge zone maps, circumventing the need for extensive field data 

on soil properties and hydraulic characteristics. This aspect is particularly 

advantageous in regions where such data are scarce or difficult to obtain. The 

model’s validation, as depicted in Figure 7b, demonstrates a robust correlation 

between predicted and recorded groundwater flooding points. The majority of 

recorded GF incidents are located within the critical risk zone, while the remaining 

incidents, except for one, fall within the high-risk zone. This notable correspondence 

validates the efficacy of our model and underscores its practical applicability in real-

world scenarios. Furthermore, the approach’s reduced reliance on extensive data sets 

for calibration distinguishes it from other models that necessitate substantial data 

inputs. This aspect is particularly relevant in the context of developing regions or 

areas with limited monitoring infrastructure. Our findings resonate with the work of 

Coda et al. [17], who also employed a probability modeling approach, reinforcing 

the potential of such methodologies in Groundwater Flooding Risk Assessment. 

 
Figure 7. Groundwater flooding risk assessment (GFRA) map of the (a) study area; (b) comparison of GFRA and 

recorded flooding points; (c) GFRA in relation to urban area development; (d) GFRA in relation to the developed 

area. 

3.3. Groundwater flooding return period (GFRP) 

This section discusses the results of fitting probability density functions and 

evaluating their goodness of fit. Analyzing goodness of fit is crucial to understand 

which distribution best represents the observed patterns within the samples. In 

contrast to surface water studies, where the GEV distribution has been extensively 

explored, our research pioneers the evaluation of various extreme continuous 
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distributions for groundwater levels. This novel approach not only aids in generating 

a GFRA map but also paves the way for estimating groundwater flood return 

periods. Our analysis focused on fitting various PDFs to groundwater level data and 

rigorously assessing their goodness of fit. This crucial process of identifying the 

most accurate distribution model is illustrated in Figure 8. The GEV distribution 

emerged as the superior model, demonstrating the highest fit and lowest rejection 

rates (Table 1). The Weibull model ranked second in terms of fit, while the Frechet 

model showed the least suitability regarding the numbers of rejections. Notably, the 

Chi-squared test seldom rejected the GEV distribution, suggesting its robustness in 

modeling extreme groundwater levels, despite the sample size limitations highlighted 

by Cunnane [25]. The flexibility of the GEV distribution, which allows it to 

encompass the Gumbel, Frechet, and Weibull distributions, is particularly 

advantageous for capturing extreme groundwater levels. This adaptability is further 

supported by the negative average value of the shape parameter, k (−0.355), in our 

dataset (Table 1). Such a characteristic reflects an unbounded distribution, which is 

desirable for practical applications as it allows for the modeling of larger return 

periods [28]. According to the statistics from Table 1, the GEV distribution function 

was selected to estimate the probability of groundwater level exceedance, and 

subsequently return periods were estimated. 

 
Figure 8. Graphical representation of fitted PDFs for maximum groundwater level data in each observation well. The 

f(x) axis and x-axis stand for the probability of occurrence and the maxima groundwater level distributions, 

respectively. 
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Table 1. Statistics for the fitted PDFs and goodness of fit analysis. 

Observation well Distribution Parameters† 
Goodness of Fit (rank/rejection) 

AD KS x2 

B1 

Frechet (2P) α = 323.42, β = 307.51 3/No 2/No 3/1 

Gen. Extreme Value k = −0.24975, σ = 1.0599, μ = 307.69 2/No 1/No 2/No 

Gumble Max σ = 0.81136, μ = 307.62 4/No 4/No 4/2 

Weibull (2P) α = 322.09, β = 308.5 1/No 3/No 1/No 

B2 

Frechet (2P) α = 155.31, β = 330.03 4/No 2/No 2/No 

Gen. Extreme Value k = −0.21397, σ = 2.3114, μ = 330.43 1/No 1/No 4/3 

Gumble Max σ = 1.8567, μ = 330.28 2/No 3/No 1/No 

Weibull (2P) α = 227.04, β = 4.7676 × 10−4, γ =5.6949 3/No 4/No 3/No 

B7 

Frechet (2P) α = 238.46, β = 306.59 4/2 3/No 1/No 

Gen. Extreme Value k = −0.65326, σ = 1.4534, μ = 307.12 1/No 1/No 2/No 

Gumble Max σ = 1.006, μ = 306.77 3/2 4/2 4/2 

Weibull (2P) α = 255.55, β = 307.89 2/No 2/No 3/No 

B8 

Frechet (2P) α = 210.49, β = 312.52 4/3 3/2 4/3 

Gen. Extreme Value k = −0.96169, σ = 1.3408, μ = 313.35 1/No 1/No 2/No 

Gumble Max σ = 1.0203, μ = 312.78 3/1 4/3 3/No 

Weibull (2P) α = 242.74, β = 313.97 2/No 2/No 1/No 

B10 

Frechet (2P) α = 357.7, β = 333.4 4/2 3/1 4/1 

Gen. Extreme Value k = −0.19836, σ = 0.88432, μ = 333.6 3/No 2/No 1/No 

Gumble Max σ = 0.74364, μ = 333.53 2/1 4/1 2/No 

Weibull (2P) α = 357.81, β = 334.37 1/No 1/No 3/No 

B12 

Frechet (2P) α = 604.37, β = 328.29 4/No 3/No 2/No 

Gen. Extreme Value k = −0.08685, σ = 0.55573, μ =328.36 2/No 1/No 3/No 

Gumble Max σ = 0.50098, μ = 328.35 1/No 2/No 1/No 

Weibull (2P) α = 588.56, β = 328.86 3/No 4/1 4/No 

B25 

Frechet (2P) α = 627.79, β = 293.51 4/No 3/No 1/No 

Gen. Extreme Value k = −0.29376, σ = 0.55589, μ = 293.64 1/No 1/No 4/No 

Gumble Max σ = 0.44417, μ = 293.57 3/No 2/No 2/No 

Weibull (2P) α = 673.75, β = 293.98 2/No 4/1 3/No 

B26 

Frechet (2P) α = 458.8, β = 318.81 3/No 2/No 3/No 

Gen. Extreme Value k = −0.24832, σ = 0.77859, μ = 318.95 1/No 1/No 2/No 

Gumble Max σ =0.60015, μ = 318.89 4/No 3/No 4/No 

Weibull (2P) α = 459.31, β = 319.54 2/No 4/No 1/No 

Total 

Frechet (2P) - 4/7 2/3 3/5 

Gen. Extreme Value - 1/No 1/No 2/3 

Gumble Max - 3/4 4/6 4/4 

Weibull (2P) - 2/No 3/2 1/No 

† 𝛼 and 𝛽 are the Frechet’s shape and scale parameters, 𝑘, 𝜎 and 𝜇 are the GEV’s shape, scale, location 

parameters, 𝜎 and 𝜇 are scale and location parameters of the Gumble Max distribution, and for the 

Weibull, 𝛼 and 𝛽 stand for shape and scale parameters, respectively. 



Journal of Geography and Cartography 2025, 8(2), 11495.  

13 

The final GFRP map, depicted in Figure 9, reveals significant spatial variability 

in flooding risk. The northern part of the study area shows a high likelihood of 

groundwater flooding, with a return period of less than 2 years. In contrast, the 

central and northeastern urban regions exhibit a 20% probability of exceedance. This 

map is an invaluable resource for urban planning and risk management, offering 

crucial insights into areas prone to recurrent groundwater flooding. As a preemptive 

tool, it highlights regions where residential expansion might exacerbate flooding 

risks. 

The validation of the GFRP map, however, presented challenges due to the lack 

of historical data on groundwater flooding events. We relied on visual evidence, 

survey data, and local testimonies to corroborate our model’s predictions. Comparing 

Figures 7b and 9b shows a strong correspondence between survey data and areas 

predicted to encounter more frequent flooding, particularly in regions with return 

periods of less than 5 years. This correlation reinforces the model’s reliability, as 

90% of survey data aligns with areas characterized by return periods of less than 5 

years. 

 
Figure 9. Groundwater flood return period (GFRP) map of (a) study area; (b) Behbahan city; (c) groundwater 

drainage area; (d) urban developed area. 

3.4. Integrated impact and implications 

The integration of GFRA and GFRP analyses in this study provides a 

comprehensive framework for understanding and managing groundwater flooding 

risks in urban environments. This approach, leveraging conditional probability 
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functions and probability distribution models, offers significant insights for urban 

planning, policy formulation, and environmental management. 

The study’s findings emphasize the critical role of topography and slope 

variations in influencing groundwater flooding, suggesting that water accumulation 

in high recharge areas gradually moves towards lower topographic lands due to 

ground slope. This has profound implications for urban development and flood 

mitigation strategies, highlighting the need to account for these factors in urban 

planning processes [29,30]. The proposed classification system for GFRA, including 

No Risk, Low, Medium, High, and Critical risk categories, effectively delineates 

areas susceptible to groundwater flooding. The model’s high accuracy, as evidenced 

by its alignment with 91% of recorded flood events, demonstrates its practical utility 

in predicting flood-prone areas. This is particularly valuable for urban planners and 

policymakers in making well-informed decisions regarding infrastructure 

development and emergency preparedness measures. Furthermore, the application of 

various probability distribution functions, particularly the Generalized Extreme 

Value (GEV) distribution, facilitates a nuanced understanding of groundwater level 

fluctuations and flooding return periods. This approach is essential for predicting the 

frequency of flooding events and formulating targeted flood mitigation strategies 

[31–33]. The study’s methodology, which employs commonly available 

hydrogeological data, offers a practical and accessible means of assessing 

groundwater flooding risks. This is especially beneficial for regions with limited data 

availability, as it reduces reliance on extensive field data. The validation of the 

GFRP using visual evidence, survey data, and local knowledge further strengthens 

the model’s credibility. 

In summary, this integrated analysis of groundwater flooding risk and return 

period provides actionable insights for mitigating the impacts of groundwater 

flooding on society and the environment. The study not only contributes to the 

scientific understanding of groundwater flooding dynamics but also delivers 

practical strategies for enhancing urban resilience, informing policy development, 

and promoting environmental sustainability. The methodologies and findings of this 

research hold the potential to be applied in other urban areas facing similar 

groundwater flooding challenges, rendering it a valuable contribution to the field of 

hydrology and urban planning [34,35]. 

4. Conclusion 

This study introduces a novel methodology for assessing the susceptibility of 

urban areas to groundwater flooding risk by employing a conditional probability 

function to generate the Groundwater Flooding Risk Assessment (GFRA) and 

utilizing a range of continuous extreme probability density functions to estimate the 

return period of groundwater flooding events. The key findings of this investigation 

are as follows: 

1) Topographical influence on groundwater flooding: The study reveals that 

topography and slope variations significantly influence groundwater flooding 

incidence. This suggests that water ponding in areas with high recharge rates 
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gradually moves towards lower topographic lands due to ground slope, despite 

the slow movement of groundwater. 

2) Classification system and GFRA performance: The proposed classification 

system, comprising No Risk, Low, Medium, High, and Critical risk categories 

based on the Frequency Risk index, effectively delineates areas susceptible to 

groundwater flooding. The GFRA’s performance was validated against field 

survey data, with only one out of 40 observed sites falling outside the projected 

boundary. This high level of accuracy underscores the model’s practicality in 

predicting flood-prone areas. 

3) Goodness of fit and return period analysis: The goodness of fit tests indicated 

that the Generalized Extreme Value (GEV) distribution provided the best fit in 

most cases, although the Gumbel and Weibull distributions were also suitable in 

certain scenarios. This highlights the need to test different PDFs in aquifers 

with heterogeneities. 

The generation of the GFRA and GFRP maps provides decision-makers and 

local authorities with valuable tools for understanding groundwater flooding threats, 

visualizing vulnerable areas, and issuing early warnings for urban development 

planning. 

However, the effectiveness of this approach in other case studies remains to be 

established. Further investigations in diverse urban settings are required to validate 

the adaptability and robustness of this methodology and explore its potential 

widespread application in Groundwater Flooding Risk Assessment. 
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Appendix 

PDFs 

Supposing a number of annual maxima observations 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}: 

⚫ Gumbel (Maximum Extreme Value) PDF 

𝑓(𝑥) =
1

𝜎
𝑒𝑥𝑝( − 𝑧 − 𝑒𝑥𝑝( − 𝑧)), 

where 𝑧 ≡
𝑥−𝜇

𝜎
,   and 𝜇 are scale and location parameters, respectively. 

⚫ Frechet (Maximum Extreme Value) PDF 

𝑓(𝑥) =
𝛼

𝛽
(

𝛽

𝑥−𝛾
)
𝛼+1

𝑒𝑥𝑝( − (
𝛽

𝑥−𝛾
)
𝛼
), 

where 𝛼, 𝛽 and 𝛾 are shape, scale and location parameters, respectively. 

⚫ Weibull PDF 

𝑓(𝑥) =
𝛼

𝛽
(
𝑥−𝛾

𝛽
)
𝛼−1

𝑒𝑥𝑝( − (
𝑥−𝛾

𝛽
)
𝛼
), 

where 𝛼, 𝛽 and 𝛾 are shape, scale and location parameters, respectively. 

⚫ Generalized Extreme Value Distribution  

𝑓(𝑥) = {
1

𝛿
𝑒𝑥𝑝( − (1 + 𝑘𝑧)

−1

𝑘 ), 𝑘 ≠ 0

𝑒𝑥𝑝( − 𝑒𝑥𝑝( − 𝑧)), 𝑘 = 0
, 

where 𝑘, 𝜎 and 𝜇 are shape, scale and location parameters, respectively. 


