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Abstract: Mapping land use and land cover (LULC) is essential for comprehending changes 

in the environment and promoting sustainable planning. To achieve accurate and effective 

LULC mapping, this work investigates the integration of Geographic Information Systems 

(GIS) with Machine Learning (ML) methodology. Different types of land covers in the 

Lucknow district were classified using the Random Forest (RF) algorithm and Landsat satellite 

images. Since the research area consists of a variety of landforms, there are issues with 

classification accuracy. These challenges are met by combining supplementary data into the 

GIS framework and adjusting algorithm parameters like selection of cloud free images and 

homogeneous training samples. The result demonstrates a net increase of 484.59 km2 in built-

up areas. A net decrement of 75.44 km2 was observed in forest areas. A drastic net decrease of 

674.52 km2 was observed for wetlands. Most of the wastelands have been converted into urban 

areas and agricultural land based on their suitability with settlements or crops. The 

classifications achieved an overall accuracy near 90%. This strategy provides a reliable way to 

track changes in land cover, supporting resource management, urban planning, and 

environmental preservation. The results highlight how sophisticated computational methods 

can enhance the accuracy of LULC evaluations. 
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1. Introduction 

Mapping land use and cover (LULC) is essential to sustainable development, 

urban planning, and environmental management. Understanding the effects of human 

activity and natural processes on the environment requires knowledge of the 

geographical distribution and changes in land use and cover, which is provided by this 

information [1]. Traditionally, satellite and aerial photo interpretation was done by 

hand, which took a lot of time and was prone to human mistakes while doing LULC 

mapping [2]. However, the accuracy, effectiveness, and automation of LULC mapping 

have been greatly improved by developments in GIS and ML [3]. 

The integration of various datasets, including topographic maps, socioeconomic 

data, and remote sensing imagery, is made possible by GIS, which is essential for 

organizing, interpreting, and visualizing spatial data [4]. Automated pattern 

recognition and classification in LULC mapping have been possible because of the 

combination of ML and GIS [5]. The complexity and variability of LULC data have 

been successfully handled by machine learning, in particular, supervised learning 

algorithms like Random Forest [6–8], Support Vector Machines [9–12], and Neural 

Networks [13,14], which provide high classification accuracy (> 85%) even in 
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heterogeneous landscapes [15,16]. 

The study of high-resolution satellite images, such as data from Landsat, Sentinel, 

and SPOT, IKONOS satellites, demonstrates the synergy between GIS and machine 

learning in particular [17–19]. These datasets offer comprehensive data on land cover, 

but to fully realize their potential, their complexity necessitates the use of sophisticated 

analytical methods. When combined with GIS, machine learning techniques with its 

automation, scalability, generalization and adaptiveness allow for important patterns 

to be extracted from high-dimensional data, resulting in LULC maps that are more 

precise and comprehensive [20].  

Recent research has shown how well GIS and machine learning work together 

for LULC mapping in a variety of contexts. For instance, Myint et al. [21] mapped 

Phoenix, Arizona’s urban land cover with great precision using object-based image 

analysis within a GIS framework. Similarly, Akar and Gungor [22] demonstrated the 

value of machine learning in managing complex landscapes by classifying land cover 

in Turkey using Support Vector Machines in a GIS setting. Maxwell et al. [23] showed 

the algorithm’s resilience in handling varied land cover types in a different study 

where they mapped the forest cover in the Brazilian Amazon using Random Forests 

in conjunction with GIS.  

Notwithstanding these developments, there are still difficulties in using machine 

learning and GIS for LULC mapping. The quality of the input data (data clarity, high 

resolution, good temporal extent) and the choice of suitable ML methods have an 

impact on the accuracy of LULC maps [24]. Furthermore, complex data fusion 

techniques are needed to maximize the information retrieved from each source when 

merging multi-source data into GIS, such as topographic, radar, and optical imaging 

[25]. More research is required to obtain more scalability, efficiency and further 

improve the potential of LULC mapping using GIS and machine learning.  

With an emphasis on approaches, case examples, and difficulties, this study 

examines the state of LULC mapping using GIS and the Random Forest model now. 

Recent breakthroughs in remote sensing technologies, particularly with satellite 

imagery and Geographic Information Systems (GIS), have revolutionized the ability 

to monitor and analyze LULC changes at global, regional, and local scales. These 

innovations have enabled more precise mapping of land cover types, identification of 

land use patterns, and detection of environmental changes such as deforestation and 

urban expansion [26]. 

2. Study area 

Lucknow Metropolis (Figure 1) lies between the coordinates of 26°30′ N to 

27°10′ N latitudes and 80°30′ E to 81°13′ E longitudes. It is the capital city of India’s 

most populous state Uttar Pradesh. Lucknow is situated in the middle of the Gangetic 

Plain and spreads on the banks of the river Gomati, a left-bank tributary of river Ganga. 

The height of Lucknow city above mean sea level is 123 m. The total land area of 

Lucknow city is 310 Sq. km. Lucknow has an extensive network of roads and railways 

and has grown all around in a radius of 25 km. Half of the rainfall occurs from June to 

October when the city gets an average rainfall of 896.2 mm (35.28 in) from the 

southwest monsoon winds, and occasionally frontal rainfall from the northeast 
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monsoon will occur in January. Lucknow district is a densely populated district of 

Uttar Pradesh that witnessed remarkable expansion, growth, and development 

activities such as significant building construction, construction of highways, etc. Such 

a rapid increase in land consumption and modifications on land use and land cover 

changes need to be addressed through spatiotemporal dynamics of various LULC 

classes. 

 
Figure 1. Location map showing the study area. 

3. Data used and methodology opted 

Cloud-free Landsat series (Figure 2) of datasets (resolution ~ 30 m) for the years 

2004 (TM sensor) and 2024 (OLI sensor) have been deployed for the present study. 

Image classification was performed on the Google Earth Engine (GEE) platform. 

ArcMap was used for data visualization and preparation of maps. 

 

Figure 2. Methodological flowchart for the present study. 
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The study area boundary and respective cloud free and Top of Atmosphere 

(TOA) corrected satellite images were imported into the GEE console. Designated 

image bands (NIR-Red-Green) were assigned to the R-G-B color code for obtaining 

the fine-scale False color composite (FCC). Signatures corresponding to different land 

cover classes viz. built-up areas, forests, agriculture, water bodies, and wasteland were 

collected carefully to prepare the training samples for further use. Training samples 

on the pure pixels distributed throughout the imagery were selected to maintain class 

homogeneity. To obtain a singleton set of classes, the different identifiers of the class 

samples were merged into one. The signatures were then trained respectively for 

classifying the distinct classes through the satellite imagery. 

An ML-based Random forest (RF) classifier was used to classify the imagery into 

different classes mentioned above based on the collected training samples. Being a 

bagging algorithm, RF depicts low prediction error for better accuracy. RF classifier 

works with multiple decision trees (DT). It reduces the variance of the individual DT 

through random selection. The prediction of a target variable (classes) was made with 

the usability of the maximum vote provided by each decision tree for every image 

pixel. To depict the correctness of the classification results, an accuracy assessment 

through confusion matrix carrying users and producers accuracy was made using 

Google Earth images. Areas for different classes were computed and transitions in the 

LULC classes were obtained between the years 2004 and 2024. 

4. Results and discussions 

The training samples collected were based on the land distribution of the study 

area, and visual comparison of the natural and false color composite images. There is 

a considerable amount of change between LULC classes for the years 2004 and 2024. 

Spatiotemporal changes are depicted in Figure 3 and Table 1. 

 

Figure 3. Spatiotemporal LULC dynamics in lucknow. 
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Table 1. Area changes in different LULC classes. 

Classes Area in 2004 (in km2) Area in 2024 (in km2) 

Built up area 157.48 642.07 

Forest 611.16 535.72 

Agriculture 1035.67 1313.60 

Water bodies 23.58 22.02 

Wasteland 698.84 24.32 

Built-up area (Figure 4) increases from 157.48 km2 to 642.07 km2 (net increase 

~ 484.59 km2). This is because of rapid urbanization i.e. transmission of rural to urban 

in Lucknow. Many wastelands were transformed into settlements. Transforming 

wastelands into state and municipal ownership partially addresses the issue of limited 

space for high-rise buildings in urban areas, particularly through infill development. 

The growth was prominently seen over the eastward and southward sides of Lucknow. 

Growth around the Central Business district is also visible. 

 

Figure 4. Google earth snapshot showing built-up areas of lucknow. 

Forest cover (Figure 5) decreases from 611.16 km2 to 535.72 km2 (net decrease 

~ 75.44 km2). This is because many forested areas are converted into agricultural areas 

as well and deforestation is becoming a leading problem in the country [27]. So many 

forests were deforested and converted into built-up areas for settlement zones as well. 

Clearing forests results in the destruction of habitats for numerous plant and animal 

species, many of which are at risk of extinction. Additionally, deforestation disrupts 

the carbon cycle, as trees are essential in absorbing carbon dioxide, a key greenhouse 

gas. In the absence of trees, carbon is released into the atmosphere, further driving 

climate change. For instance the forested patch near Barkhurdarpur was degraded 

significantly throughout the study period. 
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Figure 5. Google earth snapshot showing forested areas of lucknow. 

Agricultural area (Figure 6) increases from 1035.67 km2 to 1313.60 km2 (net 

increase ~ 277.93 km2). This is because many forested areas were converted into 

agricultural areas as well as many fallow lands have been converted into cropped and 

matured cropped areas. Many wastelands based on their land suitability for agriculture 

have also been converted into agricultural areas. In the Misripur area forested patch 

was converted into agricultural area. 
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Figure 6. Google earth snapshot showing agricultural areas of lucknow. 

The water body is not much affected throughout these 20 years. Forests and 

settlements cover most of the periphery areas of rivers and water bodies. Gomati River 

(Figure 7) crosses Lucknow. There are some other water bodies in Lucknow such as 

Kathauta Jheel. 

 

Figure 7. Google earth snapshot showing the gomati river crossing lucknow. 

Wasteland shows a major variation in Lucknow as they decrease from 698.84 

km2 to 24.32 km2 (net decrease ~ 674.52 km2). Most of the wastelands have been 

converted into urban areas (Figure 8) and agricultural land based on their suitability 

with settlements or crops. In 2004 generally, wastelands surrounded urban areas 

whereas in the year 2024, most of them have been converted into built-up areas. 
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Figure 8. Google earth snapshot showing wasteland converting to built-up areas. 

Accuracy assessment was performed for the classified images for both years and 

confusion matrices were generated using the classified and reference points (collected 

from high-resolution Google Earth imagery). The confusion matrices with several 

training samples generated for both years depict classification accuracies of 89 % for 

the year 2004 (Table 2) and 90 % for the year 2024 (Table 3). 

Table 2. Confusion matrix for the year 2004 (G.T signifies ground truth). 

Classes Ref 1 Ref 2 Ref 3 Ref 4 Ref 5 G.T 

Built-up 80 0 0 3 0 80 

Forest 0 45 0 7 0 54 

Agriculture 0 6 32 0 0 38 

Waterbody 0 0 4 51 0 53 

Wasteland 9 0 0 2 51 65 

Total 89 51 36 63 51 290 

Table 3. Confusion matrix for the year 2024. 

Classes Ref 1 Ref 2 Ref 3 Ref 4 Ref 5 G.T 

Built-up 72 3 0 0 0 71 

Forest 0 60 6 2 0 69 

Agriculture 0 6 38 0 0 44 

Waterbody 3 0 1 56 0 60 

Wasteland 6 9 0 0 61 78 

Total 81 78 44 58 61 322 

To reduce deforestation, effective strategies include fostering reforestation 

efforts, enforcing stricter land-use regulations, and advocating for sustainable forestry 

practices. Managing urban sprawl requires the implementation of smart growth 

initiatives, encouraging denser development, and enhancing public transportation 

systems to minimize the need for widespread urban expansion. In the realm of 

sustainable agriculture, promoting agroecology, diversifying crops, and adopting 
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organic farming practices can help maintain soil health and biodiversity while 

decreasing reliance on harmful chemicals. By combining these approaches, we can 

achieve a more harmonious balance between environmental preservation and urban 

development [28]. 

The Random Forest classifier is a highly effective and commonly used machine 

learning algorithm, but it does have certain limitations. One significant issue is its 

potential to become computationally demanding and slow, especially with large 

datasets or when a high number of trees are included in the forest. Furthermore, due 

to the complexity, interpreting Random Forest models can be difficult. There is also a 

risk of overfitting if the model is not properly tuned, particularly when the number of 

trees or the depth of the trees is excessively large. These issues can be addressed 

through hybrid ML models and improved algorithms [29,30] which will fulfil the large 

computation time gap and the problems of overfitting. 

5. Conclusions 

This study aimed to identify and analyze general trends in LULC Changes that 

have taken place in Lucknow district over 20 years using Landsat satellite imagery 

and ML-based image classification in the GEE platform. The key findings of this study 

revealed that the major LULC classes of Lucknow district identified include 

agriculture, forest, wasteland, built-up areas, and water. Significant building 

construction and deforestation were major drives of LULC dynamics in the Lucknow 

district over the study period from 2004 to 2024. This study showed a continuous 

decrease in wasteland areas in the district. Consequently, the urban built-up area and 

the agriculture area increased. Some future insights could be the integration of IoT for 

smart technology based embedded infrastructure, waste management etc and urban 

growth prediction modelling for decision and policymaking. Some other 

recommendations could be the relationship between urban growth and urban heat 

islands etc. Such study is required to support environmental policy; physical planning 

purposes, sustainable land use, and land development. 
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